One-period Portfolio Management Stochastic Optimization Model

CHEN Shou-dong ZHAO Zhen-quan Jilin University, P.R.China, 130012

Abstract This paper studies portfolio management One-Period Stochastic Optimization model, under the unknown economic environment, obtains a simplex model of maximal utility function of final wealth.

Key words Portfolio management, Optimization model

1 Introduction

The applications of the portfolio management model were widespread in finance industry since the 80's. There are a great deal of feasible mathematical models in fixed income derivative and balance sheet managements, which provide scientific decision-making of the portfolio management for the investment administration. However, in the results of citation [1] and [2], the studies on stochastic behavior of portfolio management have not been deeply discussed. The paper is concerned with a portfolio management problem in a simple situation. A certain value portfolio at time t_0 will have uncertainty at time t_1 for the uncertainty of the economic environment. We assume that there are t_0 states of the economic circumstance. We use t_0 ,..., t_0 to denote the state variables and t_0 ,..., t_0 to denote the occurrence probability where t_0 and t_0 and t_0 . Thus, a portfolio t_0 at time t_0 will

have l likelihoods at time t_l which are denoted with $z^1, ..., z^l$. The uncertainty is induced by the uncertainty price on economic environment. We further assume that there are m securities in the market.

 C_0 denotes the cash asset of the portfolio at time t_0 , and b_0 denotes a m dimension vector where each component denotes the amount of each security at time t_0 in the portfolio. We seek to reconstruct a decision-making: cash and the portfolio are hold to time t_1 , so that they can adapt to developing a fixed cash payment and maximizing utility function of final wealth.

2 Model

In this problem, there are 4 elements at time t_0 :

- (1) Vector x_0 denotes the amount of buying each security in the portfolio M.
- (2) Vector y_0 denotes the amount of selling each security in the portfolio b_0 .

- (3) Vector z_0 denotes the amount of the securities under the primal decision.
- (4) Scaler quantity v_0 denotes the amount of cash hold to time t_1 .

In the study of portfolio management, there are 2 relations: one is to invest current asset which will provide standby capital for the future cash flow p_l ; the other is to adjust original portfolio to buy new assets.

When we make investment decision, cash asset is composed of original cash C_0 and the return $\zeta_0 y_0$ from selling y_0 of the original portfolio b_0 , where vector ζ_0 denotes the price of security which has been sold at time t_0 . The outflow of cash is composed of cash-holding v_0 and the cost of buy $\xi_0 x_0$ where vector ξ_0 denotes the price of security which has been bought at time t_0 . The portfolio at time t_0 has the following equilibrium constraints.

Cash
$$C_o + \zeta_o y_o = \xi_o x_o + v_o$$

Security quantity $b_o + x_o = y_o + z_o$

The value of asset consists of cash $k_{\cancel{x}}v_0$ and the value of portfolio $\zeta^s z_0$ at time t_l where $k_{\cancel{x}}$ denotes continuous compounding.

The outflow of cash is composed of the payment p_1 and final value of the portfolio v^s .

Thus The portfolio at time t_1 also has the following equilibrium constraint.

$$k_{s}v_{o} + \zeta^{s}z_{o} = P_{I} + V^{s}$$
 $s \in S$

If we use U(*) to denote the utility function of investor, maximal investment utility function model is as follows:

$$\max EU(x_o, y_o, z_o, v_o, V^s)$$

$$\begin{cases} C_o + \zeta_o y_o = \varepsilon_o x_o + v_o \\ b_o + x_o = y_o + z_o \end{cases}$$

$$st \begin{cases} k_{\cancel{4}} v_o + \zeta z_o = P_t + V^s \\ x_o \ge o, y_o \ge o, \ z_o \ge o, v_o \ge o, V^s \ge o \end{cases}$$

$$s \in S$$

There are m+1+l constraints and (3m+1)+l variables in the model. Where

$$u_{o} = (x_{o}y_{o}z_{o}v_{o})^{T}, u^{s} = (z_{o}, V^{s})$$

$$A_{0} = \begin{pmatrix} -\xi_{0} & \zeta_{0} & 0 & -1 \\ -1 & 1 & 1 & 0 \end{pmatrix} T^{s} = (0,0,0,k_{s})$$

$$f_{o} = (-c_{o},b_{o})^{T} R^{s} = \begin{pmatrix} \zeta^{s} & -1 \\ 1 & 0 \end{pmatrix}$$

$$f = (P,0)^{T}$$

These constraints can be denoted

$$\begin{bmatrix} A_0 & & & & \\ T^1 & R^1 & & & \\ M & O & & \\ T' & & R^I \end{bmatrix} \qquad \begin{bmatrix} u_o \\ u^1 \\ M \\ u^I \end{bmatrix} = \begin{bmatrix} f_o \\ f_1 \\ M \\ f_I \end{bmatrix}$$

We partition the matrix, then the model is as follows:

$$\begin{cases} A_o u_o &= f_o \\ T^s u_o + R^s u^s &= f_l & \forall s \in S \\ u_o \ge o, u^s \ge o & s \in S \end{cases}$$

3 General Model

Generally, two-stage stochastic programming model E is as follows.

S is a strategy set, defined as following:

 u_0 -the first period investment-decision vector based on known information at time t=0.

 u_l^s -the next term decision according each strategy $s \in S$.

 π_s -the probability of strategy $s \in S$.

 $U(u_0, u_l^s)$ -utility of return which is the function of decisive variables.

Certainly $\forall s \in S$, u_l^s must be decided before observing the realization of strategy.

Decisive variables u_0 , u_l^s must maximize beginning utility and satisfy all accounts, strategies, diversification of investment as well.

Matrix A_0 , T_i^s , R_i^s denote general constraints, then we have stochastic optimization model E:

$$\max_{s,t} EU(u_o, u_i^s)$$

$$\begin{cases} A_o u_o = b_o \\ R_i^s u_i^s + T_i^s u_o = b_s \\ u_o \ge 0 \\ u_i^s \ge 0 \forall s \in S \end{cases} \quad \forall s \in S$$

Note: because all constraint sets are used, we have a large N-LP resolution. u_0 independs from future information set in each stage, so it is identical.

Last we can extend Stochastic programming model E to multi-term or multi-stage investment decision.

References

[1]Raymond Mekendall, Stavros Zenios, Martin Holmer, Stochastic Programming Models for Portfolio Optimization with Mortgage Backet Securities:Comprehensive Research Guide, Operations Research Model in Quantitative Finance, Physical-verlag Heidelbery 1994, 135—171. [2]A.Zenios,Finance Optimigation,Cambrigde University Press 1993, 15-35