

Institute of Physics, CAS

非晶态Gd₄₅Ni₃₀A1₁₅Co₁₀合金的制备与磁热性能 彭嘉欣 唐本镇 陈棋鑫 李冬梅 郭小龙 夏雷 余鹏 Preparation and magnetocaloric properties of Gd₄₅Ni₃₀Al₁₅Co₁₀ amorphous alloy Peng Jia-Xin Tang Ben-Zhen Chen Qi-Xin Li Dong-Mei Guo Xiao-Long Xia Lei Yu Peng 引用信息 Citation: Acta Physica Sinica, 71, 026102 (2022) DOI: 10.7498/aps.70.20211530 在线阅读 View online: https://doi.org/10.7498/aps.70.20211530 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

Eu09M01TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应

Magnetic and magnetocaloric effects of Eu₀₉M₀₁TiO₃ (M=Ca, Sr, Ba, La, Ce, Sm) compounds

物理学报. 2018, 67(24): 247502 https://doi.org/10.7498/aps.67.20181750

一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性

 $\label{eq:linear} Linear \ dependence \ of \ magnetocaloric \ effect \ on \ magnetic \ field \ in \ Mn 0.6 Fe 0.4 Ni Si 0.5 Ge 0.5 \ and \ Ni 50 Mn 34 Co 2 Sn 14 \ with \ first-order \ magnetostructural \ transformation$

物理学报. 2018, 67(20): 207501 https://doi.org/10.7498/aps.67.20180927

磁制冷材料LaFe115Si15基合金成分与磁相变温度关系的高通量计算

 $High-throughput\ computation\ on\ relationship\ between\ composition\ and\ magnetic\ phase\ transition\ temperature\ of\ LaFe_{11.5}Si_{1.5}-based\ magnetic\ refrigeration\ materials$

物理学报. 2021, 70(20): 207501 https://doi.org/10.7498/aps.70.20211085

间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响

Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound 物理学报. 2018, 67(7): 077501 https://doi.org/10.7498/aps.67.20172250

钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展

Research progress of critical behaviors and magnetocaloric effects of perovskite manganites 物理学报. 2021, 70(15): 157501 https://doi.org/10.7498/aps.70.20210097

非晶聚苯乙烯和Pd40Ni10Cu30P20玻璃化转变中比热变化的机理和定量研究

Mechanism and quantitative study of specific heat change during glass transition of amorphous polystyrene and Pd40Ni10Cu30P20

物理学报. 2020, 69(12): 126401 https://doi.org/10.7498/aps.69.20200331

非晶态 $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 合金的制备与磁热性能^{*}

彭嘉欣1) 唐本镇1)2) 陈棋鑫1) 李冬梅1) 郭小龙1) 夏雷2) 余鹏1)†

1) (重庆师范大学物理与电子工程学院,光电功能材料重庆市重点实验室,重庆 401331)

2) (上海大学材料研究所,上海 200072)

(2021年8月19日收到; 2021年9月14日收到修改稿)

具有优良磁热性能的材料是磁制冷技术应用的关键.本文设计制备出了一种非晶态四元 $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 合金条带,系统地研究了该合金的磁热性能. Co 的引入增加了合金的非晶态热稳定性,扩大了过冷液相区宽度. $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 非晶态合金条带的居里温度和有效磁矩分别为 80 K和 7.21 μ_B ,在 10 K温度下饱和磁化强度达到 173 A·m²·kg⁻¹,矫顽力为 0.8 kA·m⁻¹,具有优异的软磁性能.在 5 T的外加磁场下, $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 非晶态合金的磁熵变峰值和相对制冷能力分别高达 10.2 J·kg⁻¹·K⁻¹和 918 J·kg⁻¹. 该合金具有典型的二级磁相变特征,可以在较宽的温度范围内实现磁制冷,且 Gd 原子含量低于 50%,成本较低,表明该合金是一种理想的磁制冷材料.

关键词:非晶态合金,磁热效应,磁熵变,磁制冷 **PACS**: 61.43.Dq, 64.70.pe, 75.50.Kj, 81.05.Kf

DOI: 10.7498/aps.70.20211530

1 引 言

能源与环境问题是人类面临的共同挑战,节能 环保技术因此受到了全世界的高度关注. 基于材料 磁热效应 (magnetocaloric effect, MCE) 的磁制冷 (magnetic refrigeration, MR) 技术是一种环境友 好的绿色技术,具有良好的发展前景. 相较于目前 的主流制冷技术——蒸汽压缩式制冷, MR 具有高 效率、低能耗、低噪声、小型化等独特的优势. MR 替代传统制冷技术将产生巨大的经济和环保效益, 因此近年来对宽温区 MR 技术的研究一直是国内 外的研究热点^[1-4]. MCE 是磁性材料在绝热条件 下由磁场的变化而引起的温度变化效应^[5,6], 是磁 性材料的内禀性质; 通常由两个重要参数来评估一 个材料的磁制冷性能,即磁熵变 (magnetic entropy change, $-\Delta S_{m}$) 和相对制冷能力 (relative cooling power, RCP).

作为磁制冷技术的关键环节,磁制冷工质的磁 热性能直接决定制冷系统的功率与效率,因此探索 和开发具有优良磁热性能的新型磁性材料尤为重 要[7,8]. 不同类型磁性材料具有不同的磁熵变机制且 各具优势. 其中, 以 Gd₅(Si_rGe_{1-r})₄^[9], LaFe_{11 4}Si_{1 6}^[10], MnFeP_{0.45}As_{0.55}^[11]和 MnAs_{1-x}Sb_x^[12]为代表的具有 一级磁相变特征的合金材料通常会表现出较大的 磁熵变峰值 (peak value of the $-\Delta S_{\rm m}, -\Delta S_{\rm m}^{\rm peak}$) 和 较窄的磁熵变半高宽 (full width at half maximum of the $-\Delta S_{\rm m}, \Delta T_{\rm FWHM}$), 加之难以避免的热 滞及磁滞效应会限制该类材料的制冷效果,使其无 法在较宽的温度范围内工作;相比之下,具有二级 磁相变特征的非晶态合金 (metallic glass, MG) 可 以在较宽的工作温区实现磁制冷,以获得较高的 RCP 值, 从而弥补了 $-\Delta S_m^{\text{peak}}$ 值较低的缺点 [13-15]. 此外,长程无序的原子结构赋予了非晶态合金独特

^{*} 国家自然科学基金 (批准号: 52071043) 和重庆市教委科学技术研究重点项目 (批准号: KJZD-K201900501) 资助的课题.

[†] 通信作者. E-mail: pengyu@cqnu.edu.cn

^{© 2022} 中国物理学会 Chinese Physical Society

的性能:几乎为零的磁滞、高电阻率、良好的耐腐 蚀性、成分调整范围大以及突出的力学性能,这些 特性使得 MG 作为磁制冷工质具有更大的优势^[16-18].

稀土 Gd 元素的 4f 层电子处于半满状态, 具 有较大的理论磁矩,因此 Gd 基非晶合金通常表现 出优异的 MCE, 其 $-\Delta S_m^{\text{peak}}$ 高、居里温度 (Curie temperature, T_c) 调制范围大, 非常适合于埃里克森制 冷循环^[19]. 近年来, Gd 基非晶态合金的研究受到 了广泛关注,低 Gd 含量的 Gd34Ni33Al33 体系具有 优异的磁热性能,在5T外加磁场下38K附近的 $-\Delta S_{\rm m}^{\rm peak}$ 高达 11.06 J·kg⁻¹·K^{-1[20]}; Gd₆₀Al₂₅(NiCo)₁₅ 非晶合金在 5 T 外加磁场下的 – ΔS_{m}^{peak} 和 RCP 值 分为 6.31 J·kg⁻¹·K⁻¹ 和 890 J·kg⁻¹^[21]; Gd₆₃Ni_{37-x}Co_x (x = 2, 5, 10, 12)系列非晶条带的 $-\Delta S_{m}^{\text{peak}}$ 在125— 137 K 温度范围内达到 9.74 J·kg⁻¹·K⁻¹, 其 RCP 值 在5T外加磁场下可达818.8 J·kg^{-1[22]}; Gd₅₀Co₄₈Ni₂ 和 $Gd_{50}Co_{45}Ni_5$ 非晶条带在室温附近的 – ΔS_m^{peak} 分别 为4.97 J·kg⁻¹·K⁻¹和5.34 J·kg⁻¹·K⁻¹^[23]; Gd₅₅Ni₃₀Al₁₅ 非晶条带在 5 T 外加磁场下 – ΔS_{m}^{peak} 与 RCP 分别 为 9.25 J·kg⁻¹·K⁻¹ 和 851 J·kg^{-1[24]}. 稀土 Gd 价格比 较昂贵,不利于其大规模应用.因此,本文在 Gd-Ni-Al 三元合金的基础上, 通过 Co 元素替代 Gd 设计了四元 Gd₄₅Ni₃₀Al₁₅Co₁₀ 合金, 系统地研究了 合金的磁热性能,该合金在 Gd 基非晶合金家族中 具有相对低的成本和优异的磁制冷能力.

2 实 验

Gd₄₅Ni₃₀Al₁₅Co₁₀ 母合金铸锭由高纯金属单质 原料 Gd (质量含量 99.9%), Ni (质量含量 99.99%), Al (质量含量 99.999%)和 Co (质量含量 99.99%) 在氩气保护环境下由电弧炉反复熔炼 5 次制得,接 着在感应炉中通过单辊甩带法制备出厚度约为 30 μ m、宽度为 3—5 mm 的条带.通过 X 射线衍 射仪 (XRD, SHIMADZU XRD-6100 Cu 靶 Ka 辐 射)对所制备的条带进行结构表征;采用 NETZSCH 差示扫描量热仪 (DSC-404C 型)在氩气氛围中, 在 20 K·min⁻¹的升温速率下获得样品的热力学参 数;使用综合物性测量系统 (PPMS6000, Quantum Design)测试样品在外磁场下的磁化强度随温度变 化的 (*M*-*T*)曲线、不同温度下的磁滞回线以及绝 热磁化 (*M*-*H*)曲线,以确定样品的 T_{c} 、饱和磁化 强度 (saturation magnetization, M_{s}), $-\Delta S_{m}$ 值以 及其他磁性参数. *M-T*曲线测试外加磁场为 0.03 T, 测试温度范围为 10—120 K; 磁滞回线测试外场 为 5 T,测试温度分别为 10 和 160 K;并在选定温 度范围内 (10—160 K)测试了 5 T 外加磁场下的 *M-H*曲线.

3 结果与讨论

Gd₄₅Ni₃₀Al₁₅Co₁₀ 合金条带的 XRD 图谱如图 1 所示, XRD 图并无明显的晶化峰出现, 仅在 $2\theta =$ 35°附近展现出了无序结构特有的漫散射峰,初步 表明 Gd45Ni30Al15Co10 合金条带为非晶态结构. 进 一步结合图 1 插图中样品的 DSC 曲线可以发现, 在 20 K·min⁻¹ 的升温速率下, DSC 曲线在晶化放 热峰之前展现出了明显的玻璃转变吸热现象,这进 一步确定了 Gd45Ni30Al15Co10 合金的非晶结构特 征. 从 DSC 曲线中可以得到合金的玻璃转变温度 $T_{\rm g}$ 、晶化温度 $T_{\rm x}$ 、熔化温度 $T_{\rm m}$ 、液相线温度 $T_{\rm l}$ 等 热力学参数,由此计算得到合金的过冷液相区 $\Delta T_{\rm x} \left(\Delta T_{\rm x} = T_{\rm x} - T_{\rm g} \right)$ 、 γ 参数 ($\gamma = T_{\rm x} / (T_{\rm g} + T_{\rm l})$) 等列于表1中.此外,表1中还列出了 Gd₅₅Ni₃₀Al₁₅ 非晶条带的热力学参数.从表1热力学参数可见, 原子含量 10% 的 Co元素的替换明显地降低了 $Gd_{55}Ni_{30}Al_{15}$ 非晶条带的 T_g 和 T_x , 与 $Gd_{55}Ni_{30}Al_{15}$ 合金相比^[22], Gd₄₅Ni₃₀Al₁₅Co₁₀ 合金的 ΔT_x 从 44 K 提高到了 80 K, 非晶态结构的热力学稳定性明 显增强. Co原子替换 Gd 原子后,新的原子对 Gd-Co, Co-Ni, Co-Al的混合焓分别为-22 kJ·mol⁻¹,

图 1 Gd₄₅Ni₃₀Al₁₅Co₁₀ 合金条带的 XRD 图像, 插图为合 金条带的 DSC 曲线

Fig. 1. XRD pattern of the $Gd_{45}Ni_{30}Al_{15}Co_{10}$ alloy ribbon, the inset shows DSC trance of the alloy ribbon.

0 kJ·mol⁻¹ 和-19 kJ·mol⁻¹,即引入 Co 元素后合金 的混合焓减小,从而导致亚稳态结构的热力学稳定 性提高^[25,26].

表 1 Gd₅₅Ni₃₀Al₁₅和 Gd₄₅Ni₃₀Al₁₅Co₁₀ 非晶条带 的热力学参数 Table 1. Thermodynamics parameters of the Gd₅₅

Ni₃₀Al₁₅ and Gd₄₅Ni₃₀Al₁₅Co₁₀ amorphous ribbons.

合金	$T_{\rm g}/{\rm K}$	$T_{\rm x}/{\rm K}$	$\Delta T_{\rm x}/{\rm K}$	$T_{\rm m}/{\rm K}$	$T_{\rm l}/{\rm K}$	γ
$\mathrm{Gd}_{55}\mathrm{Ni}_{30}\mathrm{Al}_{15}$	576	620	44	911	962	0.40
$\mathrm{Gd}_{45}\mathrm{Ni}_{30}\mathrm{Al}_{15}\mathrm{Co}_{10}$	525	605	80	930	1231	0.35

图 2(a) 为 Gd₄₅Ni₃₀Al₁₅Co₁₀ 非晶条带在 0.03 T 外加磁场下的 *M*-*T*曲线,测试温度范围为 10— 120 K,插图为 (d*M*/d*T*)-*T*曲线. *M*-*T*曲线中磁化 强度变化最为剧烈的点对应合金的居里温度 *T*_c, 即 (d*M*/d*T*)-*T*曲线的最低点,由此得到样品的 *T*_c值为 80 K. Gd₄₅Ni₃₀Al₁₅Co₁₀ 非晶条带的 *H*/*M*-*T* 曲线如图 2(b) 所示,根据居里-外斯 (Curie-Weiss) 定律计算得到样品的有效磁矩 (effective magnetic

图 2 (a) $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 非晶合金在 0.03 T 外加磁场下 的 *M-T* 曲线, 插图为 (dM/dT)-*T* 曲线; (b) $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 非晶合金磁场强度/磁化强度的温度依赖 (*H/M-T*) 曲线

Fig. 2. (a) The M-T curve of $\mathrm{Gd}_{45}\mathrm{Ni}_{30}\mathrm{Al}_{15}\mathrm{Co}_{10}$ amorphous ribbon under a field of 0.03 T, the inset shows $(\mathrm{d}M/\mathrm{d}T)$ -T curve; (b) the H/M-T curve for the $\mathrm{Gd}_{45}\mathrm{Ni}_{30}\mathrm{Al}_{15}\mathrm{Co}_{10}$ amorphous ribbon.

moment, μ_{eff}) 约为 7.21 μ_B , 稀土元素 Gd 的 4f 电 子与过渡金属元素 Co 的 3d 电子之间存在较强的 磁相互作用, 从而产生较大的磁矩^[27].

在 5 T 外加磁场下, $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 非晶合 金在 10 和 160 K 温度下的磁滞回线如图 3 所示. 在 10 K 时, $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 非晶合金展现出良好的 软磁性能, 如插图所示, 其矫顽力 (coercivity, H_C) 值极小, 约为 0.8 kA·m⁻¹, 极小的 H_C 表明该合金 易于磁化和退磁, 从而在磁场作用下具有较小的 磁滞损耗 (hysteresis loss), 同时合金的 M_s 达到 173 A·m²·kg⁻¹; 当温度为 160 K 时, 磁滞回线则表 现为顺磁性特征. 居里温度以下 $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 合金优良的软磁性能以及较高的饱和磁化强度表 明该合金具有较好的能量转换效率.

图 3 Gd₄₅Ni₃₀Al₁₅Co₁₀ 非晶合金在5 T 外加磁场下 10 和 160 K 的磁滞回线, 插图为 10 K 温度下磁滞回线的放大部分 Fig. 3. The hysteresis loops of Gd₄₅Ni₃₀Al₁₅Co₁₀ amorphous alloy at 10 and 160 K under a field of 5 T, the inset shows the enlarged part of magnetic hysteresis loop at 10 K.

 $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 非晶条带在 5 T 外加磁场下 的等温 *M*-*H*曲线如图 4(a)所示,测试温度范围为 10—160 K. 从图 4(a)中可以看出,合金在 T_c 以下 的低温范围内具有较高的磁化率,磁化强度随外加 磁场的增大而迅速增大并达到饱和,此时样品表现 出显著的铁磁性;在 T_c 附近,样品的磁化率逐渐 减小,发生了铁磁-顺磁转变;当温度达到 T_c 以上 时,此时合金完全转变为顺磁性,磁化强度与外加 磁场之间表现出近似线性的关系.对于 $Gd_{45}Ni_{30}$ $Al_{15}Co_{10}$ 非晶条带在磁场中发生的磁相变类型,可 进一步通过 Arrott (*H/M*-*M*²)曲线进行验证.如 图 4(b)所示, $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 非晶条带的 Arrott 曲线斜率均为正值,根据 Banerjee 准则^[28],说明该 合金发生了典型的二级磁相变.这一相变特征使得 该合金在磁热转换时具有较小的磁滞与热滞损耗, 同时其宽的相变区间使得合金具有连续变化的 $-\Delta S_{\rm m}$,从而产生相对较大的制冷量^[29].

图 4 (a) Gd₄₅Ni₃₀Al₁₅Co₁₀ 非晶条带在不同温度下的绝 热 *M*-*H*曲线; (b) 合金的 Arrott 曲线

Fig. 4. (a) The adiabatic M-H curves of the $Gd_{45}Ni_{30}Al_{15}Co_{10}$ amorphous ribbon at different temperatures; (b) arrott curves of the amorphous ribbon.

基于一系列的绝热等温磁化曲线,样品的 -ΔS_m值可通过热力学麦克斯韦方程计算得出:

$$\Delta S_{\rm m}(T,H) = S_{\rm m}(T,H) - S_{\rm m}(T,0)$$
$$= \int_0^H \left(\frac{\partial M}{\partial T}\right)_H dH. \tag{1}$$

由此得到 $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 非晶条带在 1—5 T 外 加磁场下- ΔS_{m} 随温度变化的 (- ΔS_{m} -T) 曲线. 如 图 5(a) 所示,所有的- ΔS_{m} -T 曲线均表现出相似的 变化趋势,展现出二级磁相变材料特有的宽磁熵变 峰特征.在同一外加磁场下,样品的- ΔS_{m} 值随着 温度升高均呈现先增大后减小的变化趋势,并在 T_{c} 附 近达到最大值.在5 T 外加磁场下, $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 非晶条带的 - ΔS_{m}^{peak} 达到了 10.2 J·kg⁻¹·K⁻¹,超过 稀土单质 $Gd^{[30]}$ 与 $Gd_{55}Ni_{30}Al_{15}$ 非晶态合金 ^[24], 达到一级磁相变材料 $Gd_{5}Si_{2}Ge_{2}^{[31]}$ 的 55%,与 Er 基、Ho基、Dy基非晶态合金的 $-\Delta S_m^{\text{peak}}$ 值^[32–35]相接近.

图 5 (a) $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 非晶条带在不同磁场下磁熵变的温度依赖关系; (b) $\ln(-\Delta S_m^{peak})$ 与 $\ln H$ 的关系图, 插图 为指数 n 随温度变化 n-T 曲线

Fig. 5. (a) Temperature dependence of magnetic entropy changes $(-\Delta S_{\rm m})$ of the Gd₄₅Ni₃₀Al₁₅Co₁₀ amorphous ribbon under different magnetic field; (b) the ln $(-\Delta S_{\rm m}^{\rm peak})$ vs. ln*H* plot of the amorphous ribbon, the inset shows the *n*-*T* curve of the amorphous ribbon.

合金中存在许多中短程有序原子团簇,正是这些异质结构的存在,造成非晶态合金在较宽温度范围内的磁性转变,并导致在 *T*。附近的 *n* 值略大于平均场的理论预测值^[29].

RCP 作为评估磁性材料 MR 性能的另一个重要指标,它综合考虑了磁熵变大小和温度区间,是衡量材料综合制冷能力的一个关键指标.根据 Gschneidner 方法^[37],基于 $-\Delta S_m^{\text{peak}} \approx \delta T_{\text{FWHM}}$ 的数值,RCP 可以表示为

$$RCP = -\Delta S_{\rm m}^{\rm peak} \times \delta T_{\rm FWHM}.$$
 (2)

根据 (2) 式计算得到了 $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 非晶条带 的 RCP 值. 表 2 列出了 $Gd_{45}Ni_{30}Al_{15}Co_{10}$ 非晶条 带与已报道的部分 Gd 基晶态和非晶态合金的 T_{c} , 5 T 外加磁场下的 – ΔS_{m}^{peak} 及 RCP 值.

表 2 Gd₄₅Ni₃₀Al₁₅Co₁₀ 和部分 Gd 基非晶态 (A)、 晶态 (C) 合金的 T_c 、5 T 磁场下的 $-\Delta S_m^{\text{peak}}$ 和 RCP 值 Table 2. T_c , $-\Delta S_m^{\text{peak}}$, and RCP under 5 T applied field of the Gd₄₅Ni₃₀Al₁₅Co₁₀ amorphous alloy and some other Gd-based amorphous and crystalline alloys.

合金	结构	$T_{\rm c}/{\rm K}$	$-\Delta S^{ m peak}_{ m m}/$	$\begin{array}{c} \mathrm{RCP} / \\ \left(\mathrm{J}{\cdot}\mathrm{kg}^{-1} \right) \end{array}$	参考 文献
$\mathrm{Gd}_{45}\mathrm{Ni}_{30}\mathrm{Al}_{15}\mathrm{Co}_{10}$	A	80	10.2	918	本文
$\mathrm{Gd}_{65}\mathrm{Ni}_{35}$	A	122	6.9	524	[38]
$\mathrm{Gd}_{68}\mathrm{Ni}_{32}$	A	124	8	583	[38]
$\mathrm{Gd}_{71}\mathrm{Ni}_{29}$	A	122	9	724	[38]
$\mathrm{Gd}_{60}\mathrm{Ni}_{37}\mathrm{Co}_3$	A	135	10.42	860	[17]
$\mathrm{Gd}_{34}\mathrm{Ni}_{33}\mathrm{Al}_{33}$	A	38	11.06		[20]
$Gd_{55}Ni_{15}Al_{30}$	A	70	6.12	606	[24]
$Gd_{55}Ni_{20}Al_{25}$	A	71	7.98	782	[24]
$Gd_{55}Ni_{25}Al_{20}$	A	75	8.49	806	[24]
$Gd_{55}Ni_{30}Al_{15}$	A	83	9.25	851	[24]
$\mathrm{Gd}_{34}\mathrm{Ni}_{22}\mathrm{Co}_{11}\mathrm{Al}_{33}$	A	54	9.91		[39]
$Gd_{55}Al_{20}Co_{20}Ni_5$	A	105	9.8	615	[40]
$\mathrm{Gd}_{60}\mathrm{Al}_{25}(\mathrm{NiCo})_{15}$	A	91	6.31	890	[21]
Gd	C	293	9.7	556	[30]
$\mathrm{Gd}_5\mathrm{Si}_2\mathrm{Ge}_2$	C	276	18.6	305	[31]

相较于三元 Gd₅₅Ni₃₀Al₁₅ 非晶条带, Gd₄₅Ni₃₀ Al₁₅Co₁₀ 合金的 $-\Delta S_m^{\text{peak}}$ 值提高了约 10.3%, RCP 值提高了约 7.9%, 因此, Co 元素的加入有效地提 高了合金的磁热性能. Gd₄₅Ni₃₀Al₁₅Co₁₀ 非晶条带 在 5 T 外加磁场下的 $-\Delta S_m^{\text{peak}}$ 值达到 10.2 J·kg⁻¹·K⁻¹, 大于已报道的大多数 Gd 基非晶合金. Gd₄₅Ni₃₀ Al15Co10 非晶条带的 RCP 值在 5 T 外加磁场下达 到 918 J·kg⁻¹, 是稀土单质 Gd^[30] 的约 1.65 倍, 晶 态合金 Gd₅Si₂Ge₂^[31] 的约 3 倍, 几乎是 Gd 基非晶 合金中最高的. Wang 等^[20]的研究结果表明, 在 Gd-TM 二元合金中,与 Gd-Gd 和 TM-TM 间的 交互作用相比, Gd-TM 间的交互作用对合金样品 T_c的影响可忽略不计;在Gd-Co二元合金中,Gd-Co二元合金的 T_c主要由更强的 Co-Co 原子间的 交互作用决定[41]; 而在 Gd-Ni 二元合金中, Gd 元 素和 Ni 元素对合金磁性能的影响作用相当^[14]; 在 $Gd_{50}Co_{50-x}Al_x$ (x = 0, 5) 三元非晶态合金中, Al 原子本身可作为一个电子储存库,为 Co 原子 3d 态填充提供 s, p 电子, 减少其 3d 电子之间的交换 行为,从而降低 Co-Co 间交互作用,使得合金样品 的 T_c 值减小^[41]. 在本文所制备的 Gd₄₅Ni₃₀Al₁₅Co₁₀ 非晶态合金中,虽然 Co 原子替换 Gd 原子可引入 更强的 Co-Co 原子间的交互作用, 但 Al 元素的存 在削弱了此交互作用, 使得合金样品的 T_c 略微减 小. Belo 等^[42] 研究结果表明, 磁性材料的 – $\Delta S_{\rm m}^{\rm peak}$ 与 $T_c^{-2/3}$ 成正比关系, 即 $-\Delta S_m^{\text{peak}} \propto T_c^{-2/3}$, 所以 Gd₄₅Ni₃₀Al₁₅Co₁₀ 非晶态合金在其 T_c 值略微减小 的同时其 $-\Delta S_m^{\text{peak}}$ 值增加.

4 结 论

综上所述,本文通过感应熔炼甩带法成功制备 了四元 Gd₄₅Ni₃₀Al₁₅Co₁₀ 非晶态合金条带,其中 Gd 元素含量低于 50%,具有较低的原材料成本,实验 结果表明该合金具有优异的综合磁热性能. Gd₄₅ Ni₃₀Al₁₅Co₁₀ 非晶条带的居里温度和有效磁矩分别 为 80 K 和 7.21 $\mu_{\rm B}$;在 10 K 下合金的饱和磁化强 度为 173 A·m²·kg⁻¹,具有非常小的磁滞,表现出良 好的软磁性能. 居里温度附近的指数 n 值约为 0.73,与平均场理论预测值 2/3 的偏差主要与非晶 合金中的局域团簇有关. 该非晶态条带在 5 T 外加 磁场下的 – $\Delta S_{\rm m}^{\rm peak}$ 和 RCP 值分别为 10.2 J·kg⁻¹·K⁻¹ 和 918 J·kg⁻¹,表明其具有优异的磁熵变性能和制 冷能力,从而证明 Gd₄₅Ni₃₀Al₁₅Co₁₀ 非晶条带是理 想的磁制冷工质.

参考文献

 Uporov S A, Ryltsev R E, Bykov V A, Uporova N S, Estemirova S K, Chtchelkatchev N M 2021 J. Alloys Compd. **854** 157170

- [2] Fang Y K, Lai C H, Hsieh C C, Zhao X G, Chang H W, Chang W C, Li W 2010 J. Appl. Phys. 107 09A901
- [3] Yu P, Zhang J Z, Xia L 2017 J. Mater. Sci. 52 13948
- [4] Wang Y T, Liu Z D, Yi J, Xue Z Y 2012 Acta Phys. Sin. 61
 056102 (in Chinese) [王永田, 刘宗德, 易军, 薛志勇 2012 物理
 学报 61 056102]
- [5] Warburg E 1881 Ann. Phys. 13 141
- [6] Zhao X G, Lai J H, Hsieh C C, Fang Y K, Chang W C, Zhang Z D 2011 J. Appl. Phys. 109 07A911
- [7] Tang B Z, Liu X P, Li D M, Yu P, Xia L 2020 Chin. Phys. B 29 056401
- [8] Huang L W, Tang B Z, Ding D, Wang X, Xia L 2019 J. Alloys Compd. 811 152003
- [9] Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
- [10] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675
- [11] Tegus O, Brück E, Buschow K H J, De Boer F R 2002 Nature 415 150
- [12] De Medeiros Jr L G, De Oliveira N A, Troper A 2010 J. Alloys Compd. 501 177
- [13] Zhong X C, Tang P F, Gao B B, Min J X, Liu Z W, Zheng Z G, Zeng D C, Yu H Y, Qiu W Q 2013 Sci. China: Phys. Mech. Astron. 56 1096
- [14] Tang B Z, Huang L W, Song M N, Ding D, Wang X, Xia L 2019 J. Non-Cryst. Solids 522 119589
- [15] Yu P, Chen L S, Xia L 2018 J. Non-Cryst. Solids 493 82
- [16] Zhong X C, Tang P F, Liu Z W, Zeng D C, Zheng Z G, Yu H Y, Qiu W Q, Zhang H, Ramanujan R V 2012 J. Appl. Phys. 111 07A919
- [17] Ma Y F, Tang B Z, Xia L, Ding D 2016 Chin. Phys. Lett. 33 126101
- [18] Huo J T, Sheng W, Wang J Q 2017 Acta Phys. Sin. 66 176409 (in Chinese) [霍军涛, 盛威, 王军强 2017 物理学报 66 176409]
- [19] Wang X, Tang B Z, Wang Q, Yu P, Ding D, Xia L 2020 J. Non-Cryst. Solids 554 120146

- [20] Wang X, Wang Q, Tang B Z, Yu P, Xia L, Ding D 2021 J. Rare Earths 39 998
- [21] Uporov S, Bykov V, Uporova N 2019 J. Non-Cryst. Solids 521 119506
- [22] Song M N, Huang L W, Tang B Z, Ding D, Wang X, Xia L 2019 Intermetallics 115 106614
- [23] Song M N, Huang L W, Tang B Z, Ding D, Zhou Q, Xia L 2020 Mod. Phys. Lett. B 34 2050050
- [24] Yuan F, Du J, Shen B L 2012 Appl. Phys. Lett. 101 032405
- [25] Ma L Q, Inoue A 1999 Mater. Lett. 38 58
- [26] Takeuchi A, Inoue A 2000 Mater. Trans. 41 1372
- [27] Ding D, Tang M B, Xia L 2013 J. Alloys Compd. 581 828
- [28] Banerjee S K 1964 Phys. Lett. 12 16
- [29] Zhang H Y, Ouyang J T, Ding D, Li H L, Wang J G, Li W H 2018 J. Alloys Compd. 769 186
- [30] Shen J, Wu J F, Sun J R 2009 J. Appl. Phys. 106 083902
- [31] Provenzano V, Shapiro A J, Shull R D 2004 Nature 429 853
- [32] Feng J Q, Li F M, Wang G, Wang J Q, Huo J T 2020 J. Non-Cryst. Solids 536 120004
- [33] Gao W L, Wang X J, Wang L J, Zhang Y K, Cui J Z 2018 J. Non-Cryst. Solids 484 36
- [34] Zhang H Y, Li R, Zhang L L, Zhang T 2014 J. Appl. Phys. 115 133903
- [35] Luo Q, Zhao D Q, Pan M X, Wang W H 2007 Appl. Phys. Lett. 90 211903
- [36] Franco V, Blázquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512
- [37] Pecharsky V K, Gschneidner Jr K A 1999 J. Appl. Phys. 86 565
- [38] Zhong X C, Tang P F, Liu Z W, Zeng D C, Zheng Z G, Yu H Y, Qiu W Q, Zou M 2011 J. Alloys Compd. 509 6889
- [39] Yu P, Wu C, Cui Y T, Xia L 2016 Mater. Lett. 173 239
- [40] Xia L, Tang M B, Chan K C, Dong Y D 2014 J. Appl. Phys. 115 223904
- [41] Wu C, Ding D, Xia L 2016 Chin. Phys. Lett. 33 016102
- [42] Belo J H, Amaral J S, Pereira A M, Amara V S, Araújo J P 2012 Appl. Phys. Lett. 100 242407

Preparation and magnetocaloric properties of $Gd_{45}Ni_{30}Al_{15}Co_{10}$ amorphous alloy^{*}

 $\begin{array}{cccc} \operatorname{Peng}\ \operatorname{Jia-Xin}^{1)} & \operatorname{Tang}\ \operatorname{Ben-Zhen}^{1)2)} & \operatorname{Chen}\ \operatorname{Qi-Xin}^{1)} & \operatorname{Li}\ \operatorname{Dong-Mei}^{1)} \\ & \operatorname{Guo}\ \operatorname{Xiao-Long}^{1)} & \operatorname{Xia}\ \operatorname{Lei}^{2)} & \operatorname{Yu}\ \operatorname{Peng}^{1)\dagger} \end{array}$

1) (Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China)

 $2) \ (Institute \ of \ Materials, \ Shanghai \ University, \ Shanghai \ 200072, \ China)$

(Received 19 August 2021; revised manuscript received 14 September 2021)

Abstract

Materials with excellent magnetocaloric properties are a key factor for the application of magnetic refrigeration technology. In this work, an amorphous ribbon of quaternary $Gd_{45}Ni_{30}Al_{15}Co_{10}$ alloy is designed and prepared, and the magnetocaloric properties of the alloy are systematically studied. The introduction of Co can improve the thermal stability of the amorphous structure. The Curie temperature and effective magnetic moment of $Gd_{45}Ni_{30}Al_{15}Co_{10}$ amorphous ribbon are 80 K and 7.21 $\mu_{\rm B}$, respectively. At 10 K temperature, the saturation magnetization and the coercivity of the alloy reach 173 A·m²·kg⁻¹ and 0.8 kA·m⁻¹, respectively, which indicates excellent soft magnetic properties. At 5 T magnetic field, the peak value of magnetic entropy change and relative cooling capacity of $Gd_{45}Ni_{30}Al_{15}Co_{10}$ amorphous alloy are as high as 10.2 J·kg⁻¹·K⁻¹ and 918 J·kg⁻¹ respectively. The amorphous alloy has typical secondary magnetic phase transition characteristics, and the magnetic refrigeration can be realized in a wide temperature range. The Gd atomic content is less than 50% with low cost, which means that the alloy is an ideal magnetic refrigeration material.

Keywords: amorphous alloy, magnetocaloric effect, magnetic entropy change, magnetic refrigerationPACS: 61.43.Dq, 64.70.pe, 75.50.Kj, 81.05.KfDOI: 10.7498/aps.70.20211530

^{*} Project supported by the National Nature Science Foundation of China (Grant No. 52071043) and the Key Project of Science and Technology Research Program of Chongqing Education Commission of China (Grant No. KJZD-K201900501).

[†] Corresponding author. E-mail: pengyu@cqnu.edu.cn