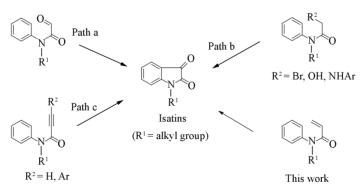
doi: 10.7503/cjcu20210260

基于钯铜催化合成靛红类 化合物的新方法


郭 阳1,2, 林 凯2, 谢凯强2, 刘 晟1,2

- (1. 贵州医科大学省部共建药用植物功效与利用国家重点实验室,
 - 2. 贵州省中国科学院天然产物化学重点实验室, 贵阳 550014)

摘要 发展了一种合成靛红的新方法,并进行了底物扩展,得到了一系列靛红类化合物.以 N-烷基取代的丙烯酰苯胺类化合物为原料,在醋酸钯、碘化亚铜和氧气的催化及参与下,以 42%~87%的产率合成了 N-烷基化的靛红衍生物.利用该方法制备了 23个靛红类化合物,并提出了可能的反应机理.该合成路线减少了保护基的使用.简洁高效.

关键词 靛红; 钯催化; 氧化; 分子内关环 中图分类号 0621.3 文献标志码 A

能红是一类重要的杂环化合物,也是天然产物、药物和染料中常见的结构单元.一直以来围绕其发展了Sandmeyer合成法^[1,2]、Stollé合成法^[3,4]和Martinet合成法^[5,6]等多种合成方法.这些方法均基于酰基苯胺的关环反应.近年来,随着过渡金属催化的兴起,从酰基苯胺衍生物出发合成*N*-烷基取代靛红的方法得到进一步发展(Scheme 1). Li等^[7]利用氯化铜和氧气催化乙醛酰苯胺,通过氧化-酰化反应合成了靛红;Wu等^[8-13]采用氯化钯/空气、三氯化铁/空气等催化体系同样实现了该转化(Scheme 1中Path a);羟基乙酰苯胺以及溴乙酰苯胺衍生物^[14]也可在氧化条件下经由醛基中间体生成靛红类化合物(Scheme 1中Path b).近年来,利用丙炔酰苯胺合成靛红的方法也被开发出来. Tang等^[15]以丙炔酰苯胺为底物采用氧化自由基环化合成靛红;Li等^[16]利用钯催化氧化裂解苯丙炔酰苯胺合成靛红类化合物(Scheme 1中Path c);Jia等^[17,18]利用*N*-苯基甘氨酰苯胺通过氧化引发连续的C—H键活化反应合成了靛红类化合物.

Scheme 1 Synthesis of isatins from N-acylaniline derivative

本课题组前期工作主要利用钯催化反应来合成吲哚类结构[0-22]. 实验过程中,设计用N-(2-碘苯基)-N-(4-甲氧基苄基)丙烯酰胺($\mathbf{1}a$)与吲哚发生氧化 $\mathbf{1}a$ +医k反应合成化合物(E)-3-(1H-吲哚-3-基)-1

收稿日期: 2021-04-19. 网络出版日期: 2021-08-18.

基金项目: 国家自然科学基金 (批准号: 21762014) 资助.

联系人简介: 刘 晟, 男, 博士, 研究员, 主要从事药物合成研究. E-mail: lsheng@126.com

N-(2-碘苯基)-N-(4-甲氧基苄基)丙烯酰胺(2)(Scheme 2). 但在尝试中发现吲哚并未参与该反应. 化合物 1a 在醋酸钯和醋酸铜的催化作用下,自身发生转化并生成 N-(4-甲氧基苄基) 靛红(3f),产率为38%. 随后发现丙烯酰邻碘苯胺衍生物(1a~1e)均能通过上述条件产生靛红系列化合物 3. 取代的邻碘苯胺作为商品化试剂种类少且昂贵,不利于关环底物的制备和方法学的用途. 推测底物 1a 的碘取代位点先与钯试剂生成中间体后才能进行后续转化,进一步考虑可以利用酰基苯胺衍生物的邻位 C—H活化反应来产生类似的钯配位中间体,从而引发生成靛红衍生物的反应历程. 围绕这一思路,经过条件筛选和优化,最终建立了一种以取代丙烯酰苯胺为底物、基于钯铜催化氧化反应合成 N-取代靛红的新方法.

Scheme 2 Initial design inspiration

1 实验部分

1.1 试剂与仪器

醋酸钯[Pd(OAc)₂, 纯度 98%]购自南京康满林生物医药科技有限公司; 碘化亚铜(CuI, 纯度 99%)购自国药集团化学试剂有限公司; 二甲基亚砜(DMSO, 纯度 99%)和 N, N-二甲基甲酰胺(DMF, 纯度 99%)购自上海泰坦化学有限公司; 丙烯酰氯(纯度 98%)和苯胺类原料(纯度 98%)购自萨恩化学技术(上海)有限公司. 常用溶剂以及柱层析溶剂均为分析纯. 柱层析使用硅胶为青岛化工厂产品.

Agilent-600型核磁共振波谱仪[NMR,以四甲基硅烷(TMS)作为内标]和Agilent Q-TOF 6510型高分辨质谱仪(HRMS),美国Agilent公司;HP-1100型液相色谱质谱联用仪(ESI,直接进样法进样),中国惠普有限公司;ZF-20D暗箱式紫外分析仪,波长为254 nm,郑州科泰实验设备有限公司.

1.2 实验方法

通过丙烯酰氯和N-甲基苯胺反应制备N-甲基-N-苯基丙烯酰胺(4a).

室温下,在 25 mL 反应瓶中加入 161 mg(1.0 mmol) 化合物 4 和 3 mL DMF,搅拌溶解;随后加入 22 mg(0.1 mmol) 醋酸钯和 380 mg(2.0 mmol) 碘化亚铜,并将反应瓶内填充氧气,在 120 $^{\circ}$ 下加热搅拌,用薄层层析法(TLC) 跟踪反应;反应结束后(12~24 h) 将体系降温至室温;反应液用乙酸乙酯稀释,用水洗涤 3 遍,有机相用无水 Na_2SO_4 干燥和过滤后,所得滤液经旋转蒸发除去溶剂得粗产品;粗产品经柱层析[洗脱剂: V(乙酸乙酯): V(石油醚) = 1:2]得到 N-甲基吲哚啉-2,3-二酮(3a). 采用相同的方法合成化合物 3b~3g 和 3k~3y. 产物的熔点和高分辨质谱数据列于表 1,核磁共振波谱数据列于表 2,核磁共振波谱谱图见图 S1~图 S46(见本文支持信息).

Table 1 Yields, melting points and HRMS data of compounds 3a—3g and 3k—3y

Compd.	Yield(%)	m. p./°C	$\mathrm{HRMS}(\mathrm{calcd.}),m/z[\mathrm{M+H}]^+$
3a	83	132—133	162.0553(162.0550)
3 b	85	93—94	176.0715(176.0706)
3e	75	34—35	204.1028(204.019)
3d	70	68—69	190.0869(190.0863)
3 e	74	121—122	238.0865(238.0863)
3 f	87	170—171	268.0977(268.0968)
$3\mathrm{g}$	51	178—179	363.9835(363.9829)
3k	76	135—136	176.0711(176.0706)
31	77	139—140	282.1133(282.1125)
3m	68	194—195	252.1023(252.1019)
3n	53	145—146	296.1288(296.1281)
30	58	166—167	324.1596(324.1594)
3 p	62	158—159	310.1444(310.1438)
3 q	10	119—120	252.1027(252.1019)
3q'	65	119—120	252.1023(252.1019)
$3\mathrm{r}$	77	147—148	298.1080(298.1074)
3s	57	69—70	306.0746(306.0736)
3t	56	126—127	210.0324(210.0316)
3u	45	126—127	210.0322(210.0316)
3 v	60	120—121	180.0463(180.0455)
3w	45	152—153	220.0612(220.0604)
3 x	42	182—183	188.0723(188.0706)
3 y	56	195—196	238.0506(238.0499)

Table 2 1 H NMR and 13 C NMR data of compounds 3a—3g and 3k—3y

Compd.	1 H NMR(600 MHz, CDCl $_{3}$), δ	¹³ C NMR(150 MHz, CDCl ₃), δ
3a	7.64—7.57(m, 2H), 7.13(t, <i>J</i> =7.5 Hz, 1H), 6.90(d, <i>J</i> =7.9 Hz, 1H),	183.3, 158.2, 151.4, 138.4, 125.2, 123.8,
	3.25 (s, 3H)	117.4, 109.9, 26.2
3b	7.63—7.54(m, 2H), 7.13—7.07(m, 1H), 6.91(d, J =8.2 Hz, 1H),	183.7, 157.8, 150.6, 138.3, 125.4, 123.6,
	3.81—3.76(q, J =6.0 Hz, 2H) , 1.31(t, J =7.3 Hz, 3H)	117.6, 110.0, 34.9, 12.5
3c	7.64—7.52(m, 2H), 7.10(t, J =7.5 Hz, 1H), 6.90(d, J =8.1 Hz, 1H),	183.6, 158.1, 151.0, 138.3, 125.4, 123.5,
	$3.72({\rm t}, \textit{J}=7.3~{\rm Hz}, 2{\rm H}), 1.68({\rm q}, \textit{J}=7.5~{\rm Hz}, 2{\rm H}), 1.41({\rm q}, \textit{J}=7.5~{\rm Hz}, 2{\rm H}),$	117.5, 110.1, 39.2, 28.7, 19.4, 13.6
	0.96(t, J=7.4 Hz, 3H)	
3d	7.60—7.53(m, 2H), 7.08(t, J =7.4 Hz, 1H), 7.03(d, J =8.0 Hz, 1H),	183.8, 157.8, 150.4, 138.1, 125.5, 123.2,
	4.52(td, J=7.1, 14.0 Hz, 1H), 1.51(s, 3H), 1.50(s, 3H)	117.8, 111.3, 44.7, 19.3
3e	7.62(d, J=7.4 Hz, 1H), 7.49(d, J=7.8 H, 1H), 7.37-7.28(m, 5H),	183.2, 158.2, 150.7, 138.3, 134.4, 129.0,
	$7.10(\mathfrak{t},J\!=\!7.4\mathrm{Hz},1\mathrm{H}),6.79(\mathfrak{d},J\!=\!7.7\mathrm{Hz},1\mathrm{H}),4.94(\mathfrak{s},2\mathrm{H})$	128.1, 127.4, 125.4, 123.8, 117.6, 111.0,
		44.0
3 f	7.59(d, J=6.8 Hz, 1H), 7.51-7.46(m, 1H), 7.27(d, J=8.8 Hz, 2H),	183.3, 159.4, 158.7, 150.3, 138.0, 128.9,
	7.10—7.06(m, 1H), 6.87(d, J =8.8 Hz, 2H), 6.81(d, J =8.0 Hz, 1H),	127.3, 124.5, 123.73, 117.7, 114.1, 111.2,
	4.86(s, 2H), 3.78(s, 3H)	55.1, 42.4
3g	$7.90({\rm d}, \textit{J}=7.8~{\rm Hz}, 1{\rm H}), 7.66({\rm d}, \textit{J}=7.4~{\rm Hz}, 1{\rm H}), 7.51({\rm td}, \textit{J}=7.8, 1.1~{\rm Hz}, 1{\rm H}),$	182.9, 158.3, 150.4, 139.9, 138.5, 135.9,
	7.29 (t, <i>J</i> =7.5 Hz, 1H) , 7.10—7.16(m, 2H) , 7.02(t, <i>J</i> =7.3 Hz, 1H) , 6.68	129.7, 128.8, 127.1, 125.5, 124.1, 117.7,
	(d, <i>J</i> =8.0 Hz, 1H), 4.98(s, 2H)	111.3, 97.6, 49.1
3k	7.43 - 7.36 (m, 2H), 6.79 (d, J=8.2 Hz, 1H), 3.23 (s, 3H), 2.33 (s, 3H)	183.6, 158.3, 149.2, 138.7, 133.6, 125.6,
		117.4, 109.7, 26.2, 20.6
31	7.42(s, 1H), 7.31-7.28(m, 2H), 7.27(s, 1H), 6.89-6.87(m, 2H),	183.6, 159.3, 158.2, 148.5, 138.6, 133.6,
	6.70(d, J=8.0 Hz, 1H), 4.86(s, 2H), 3.80(s, 3H), 2.31(s, 3H)	128.8, 126.5, 125.6, 117.6, 114.3, 110.8,
		55.2, 43.4, 20.8
$3 \mathrm{m}$	$7.50(\mathrm{d}, \mathit{J}\text{=}7.6\mathrm{Hz}, 1\mathrm{H}), 7.37(\mathrm{d}, \mathit{J}\text{=}0.7\mathrm{Hz}, 1\mathrm{H}), 7.35(\mathrm{d}, \mathit{J}\text{=}3.5\mathrm{Hz}, 2\mathrm{H}), 7.34$	183.6, 159.6, 148.6, 142.5, 136.2, 129.1,
	$({\rm s},1{\rm H}),7.32({\rm s},1{\rm H}),6.90({\rm d},{\it J}\text{=}7.6{\rm Hz},1{\rm H}),6.60({\rm s},1{\rm H}),$	127.7, 125.6, 124.1, 123.6, 122.0, 118.8,
	4.92(s, 2H), 2.36(s, 3H)	45.3, 18.6

Compd.	1 H NMR(600 MHz, CDCl ₃), δ	13 C NMR(150 MHz, CDCl ₃), δ
3n	$7.54(\mathrm{dd},J\!=\!1.2,7.4\mathrm{Hz},1\mathrm{H}),7.34(\mathrm{d},J\!=\!7.8\mathrm{Hz},1\mathrm{H}),7.13(\mathrm{d},J\!=\!8.7\mathrm{Hz},2\mathrm{H}),$	183.6, 159.8, 159.1, 147.8, 141.0, 130.6,
	$7.07(\mathfrak{t}, \textit{J}=7.5\mathrm{Hz}, 1\mathrm{H}), 6.87(\mathfrak{d}, \textit{J}=8.7\mathrm{Hz}, 2\mathrm{H}), 5.11(\mathfrak{s}, 2\mathrm{H}), 3.78(\mathfrak{s}, 3\mathrm{H}),$	128.6, 127.9, 126.9, 124.2, 123.6, 119.1,
	2.61(q, <i>J</i> =7.6 Hz, 2H), 1.11(t, <i>J</i> =7.5 Hz, 3H)	114.4, 55.3, 45.1, 24.3, 16.0
3 o	$7.65(\mathrm{d},J\!=\!1.8\mathrm{Hz},1\mathrm{H}),7.52(\mathrm{dd},J\!=\!1.8,8.5\mathrm{Hz},1\mathrm{H}),7.29(\mathrm{s},1\mathrm{H}),7.27(\mathrm{s},1.65)$	183.8, 159.4, 158.5, 148.5, 147.2, 135.3,
	1H), $6.87(d, J=8.5 Hz, 2H)$, $6.74(d, J=8.5 Hz, 1H)$, $4.85(s, 2H)$, $3.79(s, 2H)$	128.9, 126.7, 122.4, 117.5, 114.3, 110.6,
	3H), 1.27(s, 9H)	55.2, 43.5, 34.5, 31.1
3 p	$7.52({\rm d}, {\it J}=7.7{\rm Hz}, 1{\rm H}), 7.28({\rm d}, {\it J}=8.7{\rm Hz}, 2{\rm H}), 6.93({\rm d}, {\it J}=7.8{\rm Hz}, 1{\rm H}),$	182.7, 161.3, 159.4, 158.9, 151.2, 128.9,
	6.88(d, J=8.4 Hz, 2H), 6.65(s, 1H), 4.86(s, 2H), 3.79(s, 3H),	126.7, 125.5, 121.9, 115.8, 114.3, 109.2,
	2.94—2.81(m, 1H), 1.20(d, <i>J</i> =6.8 Hz, 6H)	55.3, 43.4, 35.2, 23.3
3q	7.36—7.34(m, 1H), 7.34(d, <i>J</i> =2.0 Hz, 3H), 7.32—7.30(m, 2H), 6.86(d,	183.7, 158.2, 150.7, 141.3, 137.4, 134.7,
	J=7.8 Hz, 1H), 6.59(d, J =7.8 Hz, 1H), 4.92(s, 2H), 2.58(s, 3H)	129.0, 128.0, 127.3, 126.1, 115.8, 108.2,
		43.9, 18.1
3q'	7.50(d, J=7.6 Hz, 1H), 7.39-7.37(m, 1H), 7.36(d, J=3.3 Hz, 2H),	182.4, 158.9, 151.1, 150.7, 134.6, 128.9,
	7.35—7.29(m, 2H), 6.90(d, J =7.6 Hz, 1H), 6.60(s, 1H), 4.92(s, 2H),	128.0, 127.2, 125.3, 124.5, 115.5, 111.5,
	2.36(s, 3H)	43.8, 22.9
3r	$7.28(\mathrm{d},J\!=\!9.3\mathrm{Hz},2\mathrm{H}),7.16(\mathrm{d},J\!=\!2.7\mathrm{Hz},1\mathrm{H}),7.05(\mathrm{dd},J\!=\!2.7,8.5\mathrm{Hz},1\mathrm{H}),$	183.6, 159.3, 158.3, 148.5, 138.6, 133.6,
	$6.92 - 6.85 (\mathrm{m}, 2\mathrm{H}), 6.72 (\mathrm{d}, \textit{J} = 8.7~\mathrm{Hz}, 1\mathrm{H}), 4.86 (\mathrm{s}, 2~\mathrm{H}), 3.80 (\mathrm{s}, 3\mathrm{H}), 3.79$	128.8, 126.5, 125.6, 117.6, 114.3, 110.8,
	(s, 3H)	55.2, 43.4, 20.6
3s	7.87(s, 1H), 7.76(dd, J=1.3, 8.4 Hz, 1H), 7.39-7.36(m, 2H), 7.36-7.31	182.0, 157.8, 153.0, 135.2, 135.1, 133.8,
	(m, 3H), 6.91(d, J=8.4 Hz, 1H), 4.99(s, 2H)	129.3, 128.5, 127.4, 122.6, 117.5, 111.3,
		44.4
3t	7.58—7.54(m, 2H), 6.89—6.87(m, 1H), 3.79(q, J =7.3 Hz, 2H), 1.31	182.6, 157.3, 148.9, 137.6, 129.4, 125.4,
	(t, <i>J</i> =7.3 Hz, 3H)	118.4, 111.2, 35.1, 12.4
3u	$7.58 - 7.51 (\mathrm{m},2\mathrm{H}),7.07 (\mathrm{t},\mathit{J} = 7.7\mathrm{Hz},1\mathrm{H}),4.20 (\mathrm{q},\mathit{J} = 7.1\mathrm{Hz},2\mathrm{H}),1.38 (\mathrm{t},1.38 ($	182.8, 158.3, 146.3, 140.5, 124.6, 124.1,
	<i>J</i> =7.2 Hz, 3H)	120.5, 117.1, 37.0, 14.7
3v	7.35—7.32(m, 2H), 6.88—6.86(m, 1H), 3.27(s, 3H)	182.7, 160.2, 158.6, 158.0, 147.5, 124.7,
		112.5, 111.0, 26.3
3w	8.33(d, J=8.1 Hz, 1H), 8.26(s, 1H), 6.98(d, J=8.1 Hz, 1H), 3.93(s, 1H),	182.2, 165.4, 158.2, 154.5, 140.0, 126.6,
	3.31(s, 1H)	126.0, 117.1, 109.7, 52.5, 26.5
3x	7.40(d, J=7.2 Hz, 1H), 7.34(d, J=7.9 Hz, 1H), 7.00(t, J=7.5 Hz, 1H),	184.0, 156.9, 147.6, 137.1, 123.2, 123.0,
	3.85—3.59(m, 2H), 2.79(t, <i>J</i> =6.1 Hz, 2H), 2.18—1.95(m, 2H)	121.9, 115.8, 38.4, 23.9, 20.2
3 y	7.60(d, J=7.6 Hz, 1H), 7.20(d, J=8.5 Hz, 1H), 7.16-7.12(m, 3H),	186.4, 149.7, 148.8, 143.9, 135.2, 134.8,
	6.71—6.51(m, 2H)	133.4, 132.9, 130.5, 125.5, 116.2, 106.9

2 结果与讨论

2.1 反应条件的优化

目前关于靛红合成的报道较多是利用醋酸钯和卤代铜盐催化实现邻位定位的卤代反应^[23-26]. 受此启发,实验中尝试用含不同卤素取代(Cl, Br或 I)的铜盐(一价或二价)及醋酸钯作为催化反应的试剂(表3中 Entries 1~5). 研究发现,在氧气氛围下,当采用0.1 mmol的醋酸钯和2.0 mmol的碘化亚铜为催化剂时,以DMF为溶剂加热到120℃时,反应18 h后,产率达到83%(表3中 Entry 5). 当用氧化亚铜和醋酸铜替换碘化亚铜时,前者效率降低(表3中 Entry 6),而后者不能发生转化(表3中 Entry 7). 采用0.1 mmol醋酸钯对于原料的完全和高效转化是有必要的,当降低醋酸钯的用量为0.05 mmol,反应24 h后原料仍然有剩余,产率仅为44%(表3中 Entry 8). 以氯化钯作为钯催化剂,虽然也可以发生反应,但与醋酸钯相比非常低效,产率仅为20%(表3中 Entry 9). 当以空气代替氧气时,产率也会显著降低(表3中 Entry 10);而在氩气保护下,既定反应则不能发生(表3中 Entry 11). 这表明氧气对于反应的顺利进行是不可缺少的.实验考察了碘化亚铜用量对反应的影响,结果表明,降低碘化亚铜的量到1.8 mmol,产率有一定程度下降(表3中 Entry 12);而增加碘化亚铜的用量到2.2 mmol,虽然能缩短反应时间,但是产率也有轻微下降(表3中 Entry 13). 对溶剂 DMF进行替换,考察了溶剂对该转化反应的影响. 依次选用 N, N-二甲基乙酰胺(DMA)、二甲基亚砜(DMSO)、甲苯、乙腈和1,4-二氧六环等溶剂,发

现仅 DMA 和 DMSO 以 45% 和 8% 的产率得到产物,其余溶剂则不能发生反应转化(表 3 中 Entries 14~18). 进一步对反应温度进行了优化. 当采用 110 ℃的温度时,转化变缓慢,效率也明显下降(表 3 中 Entry 19);而升高反应温度到 130 ℃试图缩短反应时间,产物会变得复杂而导致产率降低(表 3 中 Entry 20). 优化后的反应条件如下:在氧气氛围中,以 0.1 mmol 醋酸钯和 2.0 mmol 碘化亚酮作催化剂,以 DMF 作溶剂,反应温度控制在 120 ℃.

Vol.42

Table 3 Optimization of the reaction conditions^a

Entry	Solvent	Cat.	Temperature/ $^{\circ}$ C	Time/h	$\mathrm{Yield}^b(\%)$
1	DMF	0.1 mmol Pd(OAc) ₂ , 2.0 mmol CuCl	120	24	42
2	DMF	$0.1~\mathrm{mmol}~\mathrm{Pd(OAc)}_2,~2.0~\mathrm{mmol}~\mathrm{CuCl}_2$	120	24	10
3	DMF	$0.1 \text{ mmol Pd(OAc)}_2, 2.0 \text{ mmol CuBr}$	120	18	38
4	DMF	$0.1~\mathrm{mmol}~\mathrm{Pd(OAc)}_2,~0.1~\mathrm{mmol}~\mathrm{CuBr}_2$	120	18	5
5	DMF	$0.1 \text{ mmol Pd(OAc)}_2, 2.0 \text{ mmol CuI}$	120	18	83
6	DMF	$0.1~\mathrm{mmol~Pd(OAc)_2},~2.0~\mathrm{mmol~Cu_2O}$	120	18	25
7	DMF	$0.1~\mathrm{mmol}~\mathrm{Pd(OAc)}_2,~2.0~\mathrm{mmol}~\mathrm{Cu(OAc)}_2$	120	18	0
8	DMF	$0.05 \text{ mmol Pd}(\text{OAc})_2, 2.0 \text{ mmol CuI}$	120	24	44
9	DMF	0.1 mmol PdCl_2 , 2.0 mmol CuI	120	24	20
10^{c}	DMF	$0.1 \text{ mmol Pd}(\text{OAc})_2$, 2.0 mmol CuI	120	24	66
11^d	DMF	$0.1 \text{ mmol Pd}(\text{OAc})_2$, 2.0 mmol CuI	120	24	0
12	DMF	$0.1 \text{ mmol Pd}(\text{OAc})_2$, 0.18 mmol CuI	120	24	63
13	DMF	$0.1 \text{ mmol Pd}(\text{OAc})_2$, 2.2 mmol CuI	120	12	74
14	DMA	$0.1 \text{ mmol Pd}(\text{OAc})_2$, 2.0 mmol CuI	120	24	45
15	DMSO	0.1 mmol Pd(OAc) ₂ , 2.0 mmol CuI	120	24	8
16	Toluene	$0.1 \text{ mmol Pd}(\text{OAc})_2, 2.0 \text{ mmol CuI}$	120	18	0
17	MeCN	$0.1 \text{ mmol Pd(OAc)}_2$, 2.0 mmol CuI	120	18	0
18	Dioxane	$0.1 \text{ mmol Pd}(\text{OAc})_2$, 2.0 mmol CuI	120	18	0
19	DMF	$0.1 \text{ mmol Pd}(\text{OAc})_2$, 2.0 mmol CuI	110	24	64
20	DMF	$0.1 \text{ mmol Pd}(\text{OAc})_2, 2.0 \text{ mmol CuI}$	130	12	72

a. Unless specified otherwise, the reaction conditions were N-methyl-N-phenylacrylamide 4a(1.0 mmol), Pd-catalyst and copper salts in 3.0 mL solvent under O_2 ; b. isolated yield(%); c. under air; d. under Ar.

2.2 底物的适用性

确立了最优反应条件后,对该方法的底物适用性进行了研究.参考文献[27,28]方法,利用丙烯酰氯与苯胺衍生物或者卤代烃和丙烯酰苯胺反应,可以快速合成一系列的丙烯酰苯胺底物4,然后对其尝试进行关环反应合成不同的靛红衍生物(Scheme 3). 首先,考察了N上的取代基对关环反应的影响,发现一般的烷基和苄基取代的底物均能顺利发生关环反应(3b~3g, 3k~3y),产率在42%~87%之间. 但当NH裸露或者烯丙基取代的衍生物进行关环反应时,则既定转化完全不能进行(3h~3j),推测可能与裸露的胺基和烯烃基团会阻碍钯配位中间体的生成有关. 进一步考察了苯环上取代基对反应的影响,发现该转化对于供电基团包括烷基(Me, Et, i-Pr或t-Bu)、甲氧基及吸电基团包括卤素(Cl, F)、三氟甲基和羧酸甲酯等都是可行的,进而生成产物 3k~3w. 总体来看,基团的电子效应对于反应收率的影响没有明显规律. 值得注意的是,对于苯环间位取代的底物,当取代基位阻较大时(i-Pr),能生成单一产物 3p;而当甲基取代时,反应则因区域选择性生成 2个异构体 3q和 3q'. 进一步对并环芳基底物进行关环,当选取丙烯酰四氢喹啉和丙烯酰吩嘌嗪为关环底物时,环化反应能以中等偏低的产率(42%~56%)获得环张力较大的并环结构化合物 3x和 3y.

Scheme 3 Reaction scope of N-alkyl acrylanilides

Reactions were performed using amide (1.0 mmol), CuI(2.0 mmol), with $\text{Pd}(\text{OAc})_2(0.1 \text{ mmol})$ in 3.0 mL of DMF. Fraction (%) represented isolated yield.

2.3 反应机理

根据实验结果提出了可能的反应机理,如 Scheme 4 所示. 以产物 N-甲基吲哚啉-2,3-二酮($\mathbf{3}a$)为例,参考乙酰苯胺的邻位 C—H活化/卤代反应的历程进行推导 $^{[23-26]}$. N-甲基-N-苯基丙烯酰胺($\mathbf{4}a$)在酰胺基团邻位参与下发生定向化作用,生成钯中间体 $\mathbf{I}^{[23]}$;随后碘离子交换醋酸根并经过分子内 \mathbf{H} Heck 反应,得到不稳定的中间体 $\mathbf{III}^{[27,28]}$;在 \mathbf{H} Heck 反应过程中释放出来的零价钯在氧化条件下被转化为二价钯继续参与催化循环;中间体 \mathbf{III} 的烯键发生氧化断裂生成靛红衍生物 $\mathbf{3}a$.

Scheme 4 Proposed reaction mechanism

综上所述建立了以醋酸钯、醋酸铜为催化剂,以氧气为氧化剂及以氮取代的丙烯酰苯胺为原料合成能红衍生物的新方法.这些关环反应前体易于制备,且该反应对及种不同取代的底物(包括给电子基团和吸电子基团)均具有较好的适应性.该方法为能红类化合物的制备提供了一种新的合成策略.

参考文献

- [1] Sandmeyer T., Helv. Chim. Acta, 1919, 2(1), 234—242
- [2] Pinto A. C., Lapis A. A. M., Silva B. V., Bastos R. S., Dupont J., Neto B. A. D., Tetrahedron Lett., 2008, 49(39), 5639—5641
- [3] Stollé R., Ber. Bunsenges Dtsch. Chem., 1913, 46(3), 3915—3916
- [4] Stollé R. J., Prakt. Chem., 1922, 105(1)137—148
- [5] Martinet J., Compt. Rend., 1918, 166, 851—853
- [6] Bonnefoy J., Martinet J., Compt. Rend., 1921, 172, 220-221
- [7] Tang B. X., Song R. J., Wu C. Y., Liu Y., Zhou M. B., Wei W. T., Deng G. B., Yin D. L., Li J. H., J. Am. Chem. Soc., 2010, 132 (26), 8900—8902
- [8] Yue Q. M., Wang Y. L., Hai L., Guo L., Yin H. M., Wu Y., Synlett, 2016, 27(8), 1292—1296
- [9] Zheng Y., Li J., Yu X. L., Lv S. Y., Hai L., Wu Y., Tetrahedron Lett., 2016, 57(1), 39—42
- [10] Li J., Zheng Y., Yu X. L., Lv S. Y., Wang Q. T., Hai L., Wu Y., RSC Adv., 2015, 5(125), 103280—103283
- [11] Li J., Cheng X., Ma X. J., Lv G. H., Zhan Z., Guan M., Wu Y., Synlett, 2016, 27 (17), 2485—2488
- [12] Wang Y. L., Li W. J., Cheng X., Zhan Z., Ma X. J., Guo L., Jin H., Wu Y., Tetrahedron, 2016, 72(23), 3193—3197
- [13] Wang Y. L., Cheng X., Zhan Z., Ma X. J., Nie R. F., Hai L., Wu Y., RSC Adv., 2016, 6(4), 2870—2874
- [14] Gui Q. W., Dai F. L., Liu J. D., Chen P. X., Yang Z. Y., Chen X., Tan Z., Org. Biomol. Chem., 2014, 12(21), 3349—3353
- [15] Liao Y. Y., Gao Y. C., Zheng W. X., Tang R. Y., Adv. Synth. Catal., 2018, 360(17), 3391—3400
- [16] Zhou M. B., Li Y., Ouyang X. H., Li J. H., Sci. China Chem., 2020, 63(2), 222—227
- [17] Ji H. H., Zhu Y. Z., Shao Y., Liu J., Yuan Y., Jia X. D., J. Org. Chem., 2017, 82(18), 9859—9865
- [18] Jia X. D., Zhu Y. Z., Yuan Y., Zhang X. W., Lii S. W., Zhang L., Luo L. L., ACS Catal. 2016, 6(9), 6033—6036
- [19] Duan L., Zuo M. X., Xie K. Q., Liu Y. C., Qiu W. Z., Wang L. P., Liu S., Synthesis, 2020, 52(11), 1680—1686
- [20] Zhao P., Huang Z. Y., Zhao C. S., Liu S., J. Heterocyclic Chem., 2019, 56(1), 108—113
- [21] Lin K., Jian Y., Zhao, P., Zhao C. S., Pan W. D., Liu S., Org. Chem. Front., 2018, 5(4), 590—594
- [22] Guo L. H., Xu M., Jian Y., Liu S., Pan W. D., Duan L., Chem. Res. Chinese Universities, 2019, 35(4), 621—626
- [23] Wan X. B., Ma Z. X., Li B. J., Zhang K. Y., Cao S. K., Zhang S. W., Shi Z. J., J. Am. Chem. Soc., 2006, 128(23), 7416—7417
- [24] Bedford R. B., Mitchell C. J., Webster R. L., Chem. Commun., 2010, 46(18), 3095—3097
- [25] Bedford R. B., Engelhart J. U., Haddow M. F., Mitchell C. J., Webster R. L., Dalton Trans., 2010, 39(43), 10464—10472
- [26] Li Z. L., Sun K. K., Cai C., Org. Biomol. Chem., 2018, 16(30), 5433—5440
- [27] Grigg R., Millington E. L., Thornton-Pett Mark., Tetrahedron Lett., 2002, 43(14), 2605—2608
- [28] Hinman R. L., Bauman C. P., J. Org. Chem., 1964, 29(8), 2431—2437

Novel Approach to Isatins via Pd-Cu Catalyzed Oxidative Transformation

GUO Yang^{1,2}, LIN Kai², XIE Kaiqiang², LIU Sheng^{1,2*}

- (1. State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University,
- $\hbox{\it 2. Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, } \\ Guiyang~550014\,,~China)$

Abstract A new method of synthesizing isatin was developed and applied to the substrate extension to get a series of isatin compounds. Using *N*-alkyl substituted acrylanilide compounds as raw materials, in palladium acetate, cuprous iodide and under the catalysis and participation of oxygen, *N*-alkylated isatin derivatives could be synthesized with the yields of 42%—87%. Using this method, 23 isatin compounds were prepared and the possible reaction mechanism was proposed. This synthetic route reduces the use of protecting groups and is simple and efficient.

Keywords Isatin; Pd-catalyzed; Oxidation; Intramolecular cyclization

(Ed.: P, H, W, K)

[†] Supported by the National Natural Science Foundation of China (No.21762014).