DOI:10.13475/j.fzxb.20200700106

粘胶基沸石咪唑骨架材料的制备及其对染料的脱色

娄娅娅,王 静,董燕超,王春梅

(南通大学 纺织服装学院, 江苏 南通 226019)

摘 要为提高沸石咪唑骨架材料(ZIF-8)对染料的脱色性能,以粘胶织物为基材,在其表面负载氧化石墨烯,再原位生长 ZIF-8 得到氧化石墨烯/ZIF-8 粘胶基功能材料,然后还原得到还原氧化石墨烯(rGO)/ZIF-8 功能材料。 借助扫描电子显微镜、X 射线衍射仪、傅里叶红外光谱仪等对功能材料进行表征,分析其在不同光源下对活性黑 KN-B 染料的光催化降解效果及光催化机制。结果表明:rGO/ZIF-8 粘胶基功能材料在模拟太阳光下,对20 mg/L 的活性黑 KN-B 染料的脱色率在 90 min 时达到 97.1%,其与太阳光反应产生的导带电子被水中的溶解氧捕获形成 过氧阴离子自由基(·O²⁻),是使活性黑 KN-B 染料降解的主要活性物质;重复使用 3 次后, rGO/ZIF-8 粘胶基功能 材料对活性黑 KN-B 染料的脱色率保持在 90%以上。

关键词 还原氧化石墨烯; 沸石咪唑骨架材料; 粘胶织物; 光催化降解; 活性黑 KN-B; 废水处理 中图分类号: TS 190.2 文献标志码: A

Preparation and decolorization of rayon based zeoliticimidazolate framework functional material

LOU Yaya, WANG Jing, DONG Yanchao, WANG Chunmei (School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China)

Abstract In order to improve the decolorization performance of zeoliticimidazolate framework material (ZIF-8) for dyes, reduced graphene oxide(rGO)/ZIF-8 rayon based functional materials were prepared by loading graphene oxide (GO) and ZIF-8 on rayon surface followed by reducing. The functional materials were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometer. The photocatalytic degradation of Reactive Black KN-B dye by rGO/ZIF-8 rayon based functional material under different light sources was studied, and the photocatalytic mechanism was discussed. The results show that the decolorization ratio of rGO/ZIF-8 rayon based functional material for Reactive Black KN-B dye is 97. 1%, and the superoxide anion radical (\cdot O²⁻) produced by the reaction between the functional material and sunlight are captured by dissolved oxygen in water, which is the main active substance to degrade Reactive Black KN-B. After being reused for three times, the decolorization ratio of Reactive Black KN-B dye remains to be more than 90%.

Keywords reduced graphene oxide; zeoliticimidazolate framework material; rayon fabric; photocatalytic degradation; Reactive Black KN-B; wastewater treatment

近年来,由于水污染造成的环境问题,不仅威胁 着人们的健康,而且造成了一系列的经济损失^[1-3]。 水污染物中的有机染料存在成分复杂、生物毒性大、 生物降解困难、抗光解能力强等有害因素^[4-6],因 此,必须采用可行的方法来消除水体中的有机染料。 沸石咪唑酯骨架材料(ZIF-8)是类沸石咪唑酯 骨架化合物(ZIFs)的重要分支之一,以2-甲基咪唑 为有机配体,是通过氮原子与锌的离子簇形成的配 位化合物^[7]。ZIF-8由于具有较大的比表面积和孔 容,较好的水热稳定性能和光催化性能^[8]而占据染

第一作者:娄娅娅(1996—),女,硕士生。主要研究方向为光催化材料。

收稿日期:2020-07-01 修回日期:2020-11-11

获奖说明:本文荣获中国纺织工程学会颁发的第21 届陈维稷优秀论文奖

基金项目:江苏省研究生科研创新计划项目(SJKY19-2380);南通大学大学生创新训练计划项目(2020130)

通信作者:王春梅(1967—),女,教授,博士。主要研究方向为功能纺织材料。E-mail: w.cmei@ntu.edu.cn。

料脱色领域的重要地位。ZIF-8光催化剂降解有机 染料主要依靠有机连接体的光敏剂形成电子-空穴 对和转移到活性中心的电荷载体发生催化氧化和还 原反应来实现^[9]。为提高对染料的脱色效率,相关 工作者将多孔铝、碳纤维等作为载体负载 ZIF-8^[10-11]。Yang等^[12]将氧化石墨烯(GO)负载在 金属-有机骨架(MOF)上,对亚甲基蓝、甲基橙和罗 丹明 B 进行光催化降解。将 GO 与 ZIF-8 结合时, 由于光激发载流子的迁移率提高的同时降低了电 子-空穴电子对的复合,从而提高了 ZIF-8 的光催 化性能^[13],但粉末状的 ZIF-8 在染液脱色方面存在 难回收再利用的问题,所以将其负载在织物上可有 效解决这一问题。

粘胶纤维具有优异的吸湿性^[14],结晶度和取向 度较低,分子中含有大量的羟基,且价格低廉,是负 载纳米材料的理想基材。GO中含有大量的羟基、 羧基等含氧官能团,可与粘胶纤维上的羟基形成氢 键^[15]。本文利用粘胶纤维的特点将 GO 和 ZIF-8 负载到粘胶织物上,并进行还原,制备了还原氧化石 墨烯(rGO)/ZIF-8 粘胶基功能材料,既解决了粉末 状的 ZIF-8 难以回收利用的问题,又提高了 ZIF-8 的光催化性能。

1 实验部分

1.1 实验材料与仪器

材料:粘胶织物(经纬纱线密度均为16.7 tex, 经、纬密分别为360、352 根/(10 cm));甲醇(分析 纯,上海振兴化工一厂);六水合硝酸锌、异丙醇、乙 二胺四乙酸二钠(分析纯,西陇化工股份有限公 司);2-甲基咪唑(分析纯,上海笛柏化学品技术有 限公司);活性黑 KN-B(工业级,上海雅运纺织化工 股份有限公司);对苯醌(分析纯,上海迈瑞尔化学 技术有限公司);阳离子改性剂(工业级,清新县宏 图助剂有限公司);氧化石墨烯(自制)。

仪器:EL303 型电子天平(梅特勒-托利多仪器(上海)有限公司);DF-101S 型集热式恒温加热 磁力搅拌器(郑州长城科工贸有限公司);DL-480E 型超声波清洗器(上海之信仪器有限公司);XPA-1000W 型氙灯光化学反应仪(南京胥江机电厂); Uvmini-1240 型紫外-可见分光光度计(日本岛津公 司);D8ADVANCE 型X射线衍射仪(德国 BRUKER 公司);赛默飞 NICOLET is10 傅立叶变换红外光谱 仪(泽泉国际集团上海泽权仪器设备有限公司); CXS-5TAH-119405X 型扫描电子显微镜(韩国 COXEM 公司);101AB-1 型电热恒温鼓风干燥箱 (江苏省海门市恒瑞通用仪器厂)。

1.2 rGO/ZIF-8 粘胶基功能材料的制备

 氧化石墨烯的制备:参考 Hummers 法制备氧 化石墨烯^[16]。

2)粘胶织物的阳离子改性:将粘胶织物按浴比 1:20 置于 2.5 g/L 氢氧化钠溶液中,升温至50 ℃, 处理 10 min,然后加入 4% (o.w.f) 阳离子改性剂, 升温至 70 ℃,处理 30 min,取出洗去织物上残留的 碱剂和改性剂,烘干备用。

3) 在阳离子改性的粘胶织物上负载 GO:将粘胶织物在1.5 g/L 的 GO 分散液中二浸二轧,烘干后得到 GO/粘胶复合材料。

4) 在 GO/粘胶上原位生长 ZIF - 8: 称取 0.02 mol 的 2-甲基咪唑溶于 100 mL 的无水甲醇 中,超声 10 min, 记为 A 溶液; 称取 0.01 mol 的 Zn(NO₃)₂·6H₂O 溶于 100 mL 的无水甲醇中, 超声 10 min, 记为 B 溶液。将 1 g 的 GO/粘胶功能材料 加入到 B 溶液中, 超声 30 min。在磁力搅拌的条件 下,将 A 溶液缓慢滴入 B 溶液中, 室温反应 24 h 后 取出, 用蒸馏水重复洗 3 次, 烘干得到 GO/ZIF-8 粘 胶功能材料。

5) GO/ZIF-8 粘胶材料的还原:将 GO/ZIF-8 粘胶材料浸入到 0.4 mmol/L 的硼氢化钠溶液中,用 5%的碳酸钠溶液调节 pH 值为 9~10,置于 80 ℃水 浴中反应 70 min,取出用蒸馏水洗净,烘干。

1.3 性能测试

1.3.1 表面形貌观察

用扫描电子显微镜观察粘胶织物与rGO/ZIF-8 粘胶基功能材料的表面形貌。

1.3.2 化学结构分析

使用傅里叶红外光谱仪对粘胶、GO/ZIF-8粘胶基功能材料及 rGO/ZIF-8粘胶基功能材料进行 测试,扫描范围为4000~650 cm⁻¹,分辨率为2.0 cm⁻¹。

1.3.3 物相结构表征

用 X 射线衍射表征粘胶织物、GO/ZIF-8 粘胶 基功能材料和 rGO/ZIF-8 粘胶基功能材料的物相 结构。测试时设备的工作条件为:辐射源 CuKα;扫 描范围 5°~45°。

1.3.4 功能材料对染料光催化脱色效果的测试

配制质量浓度为 20 mg/L 的活性黑 KN-B 染液,采用紫外-可见分光光度计在 200~800 nm 内测 出活性黑 KN-B 的吸收光谱曲线,测得其最大吸收 波长为 598 nm。配制系列浓度的染液,在 598 nm 处测量吸光度,绘制染料的标准曲线。在 0.1~0.6 的范围内,吸光度与浓度呈线性关系,所以用吸光度 的变化来表示浓度的变化。

取 0.25 g 的 rGO/ZIF-8 粘胶基功能材料置于 50 mL 质量浓度为 20 mg/L 的活性黑 KN-B 染液, 在黑暗条件下搅拌 30 min, 使功能材料充分吸附染 料,取出烘干后,将其置于上述浓度的新鲜染液中, 在不同光源的照射下光催化降解 90 min,每隔 15 min 测试染液吸光度。染料的降解率 D 按下式 计算:

$$D = \frac{A_0 - A_1}{A_0} \times 100\% \tag{1}$$

式中,A。和A1分别为染液降解前后的吸光度。 1.3.5 功能材料的重复使用效果测试

取 0.25 g 的 rGO/ZIF-8 粘胶基功能材料置于 50 mL 质量浓度为 20 mg/L 的活性黑 KN-B 染液, 在1000 W 氙灯的照射下处理 90 min. 每隔 15 min 测试染液吸光度。脱色率 D'按下式计算:

$$D' = \frac{A'_0 - A_2}{A_0} \times 100\%$$
(2)

式中,A/和A,分别为染液脱色前后的吸光度。

结果与讨论 2

2.1 表面形貌分析

图1示出粘胶织物和rGO/ZIF-8粘胶基功能 材料的表面形貌。可知,粘胶织物表面较为光滑、平 整,负载有 rGO 和 ZIF-8 的织物表面含有还原氧化 石墨烯片层和 ZIF-8 晶体颗粒。

(b) rGO/ZIF-8粘胶基功能材料

图 1 粘胶织物及 rGO/ZIF-8 粘胶基功能材料的 SEM 照片(×2 000)

Fig.1 SEM images of rayon(a) and rGO/ZIF-8 loaded rayon functional material (b) (×2 000)

2.2 化学结构分析

图 2 示出粘胶织物、GO/ZIF-8 和 rGO/ZIF-8 粘胶基功能材料的傅里叶红外光谱。可以看出,与 粘胶织物的红外谱图相比,rGO/ZIF-8粘胶基功能 材料在1310 cm⁻¹和3130 cm⁻¹处的峰为 N—H 的 伸缩振动和弯曲振动峰,1 460 cm⁻¹和 758 cm⁻¹处的 振动峰是由咪唑基团引起的,692 cm⁻¹和 685 cm⁻¹ 处为=-CH和N--H的面外振动峰,C---N的伸缩振

动峰在 990 cm⁻¹和 1 140 cm⁻¹处。1 140 cm⁻¹处的振 动峰变强可能是由于2-甲基咪唑转变为咪唑酯后, C-H 振动峰蓝移至1140 cm⁻¹与C-N 的振动峰相 互重合引起的。比较功能材料在还原前后的红外谱 图发现, GO 还原成 rGO 后, 只能观察到 1 580 cm⁻¹ (C==C) 处的特征峰, 而-COOH 对应在 1 740 cm⁻¹ 处的峰减弱。

图 2 粘胶和粘胶基功能材料的红外谱图 Fig.2 FT-IR spectra of rayon and functional material

2.3 物相结构分析

图 3 示出 ZIF-8、粘胶织物、GO/ZIF-8 粘胶基 功能材料和 rGO/ZIF-8 粘胶基功能材料的 XRD 图 谱。可以看到, rGO/ZIF-8 粘胶基功能材料在 2θ 为 7.4°、10.3°、14.8°、16.4°、18.2°、26.7°处分别对应 ZIF-8 的(011)、(002)、(022)、(013)、(222)、 (134)晶面反射的强衍射峰;当GO还原成rGO时, 在 $2\theta = 9.3°$ 处的衍射峰消失, 而在 $2\theta = 24.3°$ 处出现 新的峰。结合扫描电镜照片和红外谱图,证实 ZIF-8和rGO已成功负载到粘胶织物上。

图 3 ZIF-8、粘胶和粘胶基功能材料的 XRD 图 Fig.3 XRD patterns of ZIF-8, rayon and functional material

对染料的光催化降解性能分析 2.4

取 0.25 g 制备的 rGO/ZIF-8 粘胶基功能材料

置于 50 mL 质量浓度为 20 mg/L 的活性黑 KN-B 染 液中,在1000 W 氙灯的照射下进行光催化降解实 验,对降解前后的染液进行光谱分析,结果如图 4 所 示。可知,降解后的活性黑 KN-B 在最大吸收波长 598 nm 处的特征峰消失,说明其发色体偶氮结构被 rGO/ZIF-8 粘胶基功能材料在光照条件下破坏,从 面使染液脱色。

采用经黑暗条件下吸附染料后的粘胶织物和 rGO/ZIF-8粘胶基功能材料对活性黑 KN-B 进行光 催化降解,实验结果如图 5 所示。可知,经过黑暗条 件下吸附染料后粘胶织物对活性黑 KN-B 几乎没有 脱色作用,而 rGO/ZIF-8 粘胶基功能材料对活性黑 KN-B 有明显的光催化降解作用,且随着降解时间的 增加,降解率也随之增大,在光照 90 min 后,对活性 黑 KN-B 的降解率达到 94.2%。说明太阳光下 rGO/ ZIF-8 粘胶基功能材料能催化降解活性黑 KN-B。

2.5 光催化机制研究

图 6 示出 ZIF-8 的光催化机制^[17]。ZIF-8 在 光照下产生空穴(h^+)和电子(e^-),价带上的空穴捕 捉水中的电子或氢氧根离子(OH-)形成羟基自由 基(·OH),导带上的电子与水中的溶解氧生成过氧 阴离子自由基($\cdot 0, \overline{}$)。为推断 rGO/ZIF-8 粘胶基 功能材料在光催化过程中起主要作用的自由基,分 别采用乙二胺四乙酸二钠(EDTA-2Na)、异丙醇 (IPA)和对苯醌(BQ)作为 h⁺、·OH、·O,⁻的捕捉剂。 将 0.25 g 经黑暗处理后的功能材料分别加入到添 加不同捕捉剂,其质量浓度为 20 mg/L 活性黑 KN-B染液中,在1000 W 氙灯模拟太阳光照射下,进行 光催化降解实验,结果如图7所示。可以看到:加入 IPA 的染液对功能材料的光催化活性在初始时有抑 制作用,但随着降解时间的增加,对其催化活性几乎 没有影响;EDTA-2Na的存在略微降低了光催化活 性;而加入 BQ 使得光催化功能材料对活性黑 KN-B 的降解率大大降低。表明·O₂⁻是光催化过程中的主 要物质,h⁺也起到一定的作用,而·OH 对光催化影 响小。

图 7 不同捕捉剂对光催化效果的影响 Fig.7 Effect of different trappers on photocatalytic performance

可用前线轨道理论(HOMO-LUMO)解释 rGO/ ZIF-8粘胶基功能材料对活性黑 KN-B 染液的光催 化降解,在光照下,有机配体中的 e⁻从 N 所在的最 高占据分子轨道(HOMO)跃迁到 Zn 所在的最低未 占分子轨道(LUMO),而 LUMO 上的激发电子易转 移到锌-氮四面体,并将水中的 $O_2 变成 \cdot O_2^-$,而 HOMO 则需要捕捉水中的一个电子形成 · OH 回到 基态^[16]。该过程存在的反应如下式所示:

> 功能材料 + $hv \rightarrow h^+ + e^-$ (3) h⁺ + H₂O → · OH + H⁺ (4)

> $0_2 + e^- \rightarrow \cdot 0_2^- \tag{5}$

·
$$0_2^-/h^+/·OH + 染料 → 产物$$
 (6)

2.6 不同光源对染料光催化效果的影响

为探讨用氙灯模拟太阳光时,rGO/ZIF-8粘胶基 功能材料对活性黑 KN-B 起光催化降解作用的是可 见光还是紫外光,实验时采用紫外光滤光片和可见光 滤光片分别过滤可见光和紫外光后对活性黑 KN-B 进行催化降解,结果如图 8 所示。由图可知:在过滤 掉紫外光或可见光后,rGO/ZIF-8 粘胶基功能材料对 活性黑 KN-B 的降解率在前 60 min 内均低于氙灯模 拟太阳光照射时的降解率;而在光催化降解 90 min 后,过滤掉紫外光后的降解率与氙灯几乎相同,过滤 掉可见光后的降解率相比氙灯降低了 10%左右。说 明 rGO/ZIF-8 粘胶基功能材料对活性黑 KN-B 的光 催化降解反应在实验初期是可见光和紫外光起协同 作用,在反应后期紫外光的作用不明显。

2.7 重复使用的脱色效果

图 9 示出 rGO/ZIF-8 粘胶基功能材料对活性 黑 KN-B 重复使用的脱色效果。由图可知, rGO/ ZIF-8 粘胶基功能材料在 90 min 内对 50 mL 质量浓 度为 20 mg/L 活性黑 KN-B 的初始脱色率为 97.1%,且重复使用的功能材料对活性黑 KN-B 的 脱色效果下降较小,重复使用 3 次后,脱色率保持在 90%以上,说明 rGO/ZIF-8 粘胶基功能材料具有一 定的重复利用性能。

图 9 rGO/ZIF-8 粘胶基功能材料的重复使用效果 Fig.9 Reuse effect of rGO/ZIF-8 rayon based functional materials

3 结 论

1)以粘胶织物为基材,负载氧化石墨烯(GO) 和沸石咪唑骨架材料 ZIF-8 并进行还原,制得还原 氧化石墨烯(rGO)/ZIF-8 粘胶基功能材料。测试 表征结果证实 ZIF-8 已成功负载到粘胶织物上,且 具有较高的结晶度。

2)rGO/ZIF-8 粘胶基功能材料对活性黑 KN-B 染料光催化降解的主要活性物质为・O₂⁻;在光催化 降解过程中可见光起主要作用。

3) rGO/ZIF-8 粘胶基功能材料用1000 W 氙灯 对 20 mg/L 的活性黑 KN-B 染液光催化90 min 的 脱色率为97.1%,重复使用3次后仍能达到90%以 上,说明 rGO/ZIF-8 粘胶基功能材料对活性黑 KN-B 染液具有较好的重复使用效果。 FZXB

参考文献:

- [1] GE M Z, CAO C Y, HUANG J Y, et al. Rational design of materials interface at nanoscale towards intelligent oil-water separation[J]. Nanoscale Horizons, 2018, 3(3): 235-260.
- [2] QIU J L, LIU F Q, CHENG S, et al. Recyclable nanocomposite of flowerlike MoS₂ @ hybrid acid-doped PANI immobilized on porous PAN nanofibers for the efficient removal of Cr (VI) [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 447-456.
- [3] DONG H R, ZHANG C, DENG J M, et al. Factors influencing degradation of trichloroethylene by sulfidemodified nanoscale zero-valent iron in aqueous solution[J]. Water Research, 2018, 135: 1-10.
- [4] YU S J, WANG X X, PANG H W, et al. Boron nitridebased materials for the removal of pollutants from aqueous solutions: a review [J]. Chemical Engineering Journal, 2018, 333: 343-360.

- [5] JOHN N. H, COSTAS A. V, ROLAND W, et al. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344: 179-199.
- [6] ALEXANDER E B, EVGENY V G, IRINA V B, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review [J]. Ecotoxicology and Environmental Safety, 2018, 148; 702-712.
- [7] LI Y S, LIANG F Y, BUX H, et al. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation [J]. Journal of Membrane Science, 2010, 354(1): 48-54.
- [8] 李晓净. 基于沸石咪唑酯骨架-8 的室内甲醛快速灵 敏的检测[D]. 大连:大连理工大学,2015:1-18.
 LI Xiaojing. Rapid and sensitive detection of indoor formaldehyde based on zeolites imidazole framework-8[D]. Dalian: Dalian University of Technology, 2015: 1-18.
- [9] SIMON H. Nanoscale materials in water purification [M]. India: Elsevier, 2019: 759-781.
- [10] CHI H Y, HUNG S H, KAN M Y, et al. Metal-organic frameworks for dye sorption: structure-property relationships and scalable deposition of the membrane adsorber[J]. Cryst Eng Comm, 2018, 20(36): 5465-5474.
- [11] SUN J, DALIRI A, LU G X, et al. Tensile failure of fibre-metal-laminates made of titanium and carbon-fibre/ epoxy laminates [J]. Materials & Design, 2019, 183: 1-13.
- [12] KE Y, YU Y, WANG H Y, et al. Mondisperse Cu/ Cu₂O@ C core-shell nanocomposite supported on rGO
- (上接第141页)

[23] 宋扬,李方俊. 低温等离子体处理对纤维毡润湿性能的影响[J]. 功能材料, 2017, 48(4):4189-4193.
SONG Yang, LI Fangjun. Effect of low-temperature plasma treatment on wettability of fiber felt [J]. Journal of Functional Materials, 2017, 48(4): 4189-4193.

[24] REDDY N, SALAM A, YANG Y. Effect of structures and concentrations of softeners on the performance properties and durability to laundering of cotton layers as an efficient catalyst derived from a Cu-based MOF/GO structure [J]. Nanoscale, 2018, 10(37): 17647-17655.

- SHI X F, ZHANG J H, CUI G W, et al. Photocatalytic H₂ evolution improvement for H free-radical stabilization by electrostatic interaction of a Cu-BTC MOF with ZnO/GO[J]. Nano Research, 2018, 11(2): 979–987.
- [14] 吴娇,于湖生,万兴云,等. 抗菌防螨防霉功能改性粘 胶纤维的制备及其性能[J].纺织学报,2019,40(7): 19-23.

WU Jiao, YU Husheng, WAN Xingyun, et al.
Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J].
Journal of Textile Research, 2019, 40(7): 19-23.

- [15] 马君志,王冬,付少海.氧化石墨烯协同二硫代焦磷 酸酯[J]. 纺织学报,2020,41(3):15-19,38.
 MA Junzhi, WANG Dong, FU Shaohai. Preparation and properties of flame-retardant viscose fiber/ dithiopyrophosphate incorporated with graphene oxide[J]. Journal of Textile Research, 2020, 41(3): 15-19,38.
- [16] 谢梦玉,瞿建刚,胡啸林. 石墨烯印花导电储能织物的制备及性能[J]. 印染,2020,46(6):1-6.
 XIE Mengyu, QU Jiangang, HU Xiaolin. Preparation and properties of graphene printed fabric with electrical conductivity and energy storage [J]. China Dyeing & Finishing, 2020, 46(6): 1-6.
- [17] 范功端,林茹晶,苏昭越. 沸石咪唑酯骨架材料用于 水中污染物的去除[J]. 化学进展,2016,28(12): 1753-1761.

FAN Gongduan, LIN Rujing, SU Zhaoyue. Removing water contaminants using zeolitic imidazolate frame-works[J]. Progress in Chemistry, 2016, 28 (12): 1753-1761.

fabrics[J]. Industrial & Engineering Research, 2008, 47(8):2502-2510.

[25] 吴颖喆, 邵建中, 付国栋. 纤维素酶洗涤对提高涤棉 织物易去污性的作用机理[J]. 浙江理工大学学报, 2012(1):40-43.

> WU Yingzhe, SHAO Jianzhong, FU Guodong. Effect mechanism of cellulase washing on improving the decontamability of poly-cotton fabric [J]. Journal of Zhejiang Sci-Tech University, 2012(1):40-43.

Chemistry