基于 Fe(OH)₃-CaCO₃ 载带的 水中²²⁸Ra的 γ 能谱分析方法

夏明明1,2,梁永广1,於国兵3,陈 志1,*

(1.中国科学技术大学 物理学院,安徽 合肥 230027;
2.中国核动力研究设计院 核反应堆系统设计技术重点实验室,四川 成都 610213;
3.安徽省辐射环境监督站,安徽 合肥 230071)

摘要:建立了一种基于 Fe(OH)₃-CaCO₃ 载带的水中²²⁸ Ra的 γ 能谱分析方法,适用于环境水中²²⁸ Ra的 分析。采用 Fe(OH)₃-CaCO₃ 共沉淀法富集水中的²²⁸ Ra,将富集后的²²⁸ Ra采用 Ba(Ra)SO₄ 共沉淀法 进一步载带,¹³³ Ba示踪法确定²²⁸ Ra的全程回收率,使用高纯锗 γ 谱仪测量与²²⁸ Ra达到放射性平衡的衰 变子体²²⁸ Ac的特征 γ 能量,从而获得²²⁸ Ra的分析结果。通过对 5 L 水样的加标验证可知,²²⁸ Ra回收率 为 81.8%~87.5%,加标水样测量结果与添加量的相对偏差为 1.7%~5.3%,此方法的探测限为 57.2 mBq/L。

关键词:²²⁸ Ra;γ能谱分析;方法回收率;探测限
 中图分类号:TL99;O657.4
 文献标志码:A
 文章编号:1000-6931(2020)09-1699-05
 doi:10.7538/yzk.2019.youxian.0743

γ Spectrometry Analysis Method for ²²⁸Ra in Water Based on Fe(OH)₃-CaCO₃ Carrier

XIA Mingming^{1,2}, LIANG Yongguang¹, YU Guobing³, CHEN Zhi^{1,*}

 School of Physics Sciences, University of Science and Technology of China, Hefei 230027, China;
 Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China;
 Anhui Radiation Environment Supervision Station, Hefei 230071, China)

Abstract: The γ spectrometry analysis method for ²²⁸ Ra in water based on Fe(OH)₃-CaCO₃ carrier was developed, which is suitable for the analysis of ²²⁸ Ra in environmental water. The enrichment method of ²²⁸ Ra in water was carried out by Fe(OH)₃-CaCO₃ coprecipitation method. The enriched ²²⁸ Ra was further loaded by Ba(Ra)SO₄ co-precipitation method, and ²²⁸ Ra was determined by ¹³³ Ba tracer method. The full recovery rate was measured using high-purity Ge γ spectrometer to measure the characteristic γ energy of the decaying daughter ²²⁸ Ac, which reached the radioactive equilibrium with ²²⁸ Ra,

收稿日期:2019-10-09;修回日期:2019-12-20

作者简介:夏明明(1994一),女,河南周口人,硕士研究生,从事辐射防护与环境保护研究

^{*}通信作者:陈 志, E-mail: zchen@ustc. edu. cn

网络出版时间:2020-03-23;网络出版地址:http://kns.cnki.net/kcms/detail/11.2044.TL.20200320.1321.006.html

thereby obtaining the analysis result of ²²⁸Ra. Through the calibration of 5 L water sample, it is known that the recovery rate of ²²⁸Ra is in the range of 81.8%-87.5%. The relative deviation of the water sample measurement is 1.7%-5.3%, and the detection limit of this method is 57.2 mBq/L.

Key words: ²²⁸Ra; γ spectrometry analysis; method recovery rate; detection limit

Ra 与其他碱土金属(Ca、Sr、Ba)的化学性质 和生物学行为相似,通过饮用水获得的 Ra 易沉 积在人体骨骼,对人体进行持续内照射,增加人 体受照剂量。因此,水中 Ra 同位素的测定极为 重要^[1-2]。²²⁸ Ra是²³² Th衰变链的第 1 个子体, 为 β 放射性核素,半衰期较长($T_{1/2} = 5.75$ a), ²²⁸ Ra 所 在 衰 变 链 为 ²²⁸ Ra $\xrightarrow{\beta}_{5.75 a}$ ²²⁸ Ac $\xrightarrow{\beta}_{6.13 a}$ ²²⁸ Th $\xrightarrow{\alpha}_{1.91 a}$ ²²⁴ Ra $\xrightarrow{\alpha}_{3.66 d}$ ²²⁰ Rn $\xrightarrow{\alpha}_{55.6 s}$ ²¹⁶ Po $\xrightarrow{\alpha}_{0.15 s}$ ····。²²⁸ Ac为²²⁸ Ra的第 1 个衰变子体,也 是 β 放射性核素,其半衰期为 6.13 h,并伴随产 生特征 γ 射线,能量为 911.2 keV(25.8%)。 分离纯化后的²²⁸ Ra放置约 2 d 即能与²²⁸ Ac达 到放射性平衡。

我国目前发布的环境和生物样品中²²⁸ Ra 的分析方法标准,仅《GB 14883.6—2016 食 品中放射性物质镭-226 和镭-228 的测定》是有 关于²²⁸ Ra的分析方法^[3-5]。这种方法以 Pb、Ba 为载体,将分离出的²²⁸ Ra放置约 2 d,使²²⁸ Ra/ ²²⁸ Ac达到放射性平衡,萃取法分离出²²⁸ Ac,在 低本底 β 测量仪上测量,间接测定²²⁸ Ra的活 度,这种方法没有示踪剂,且²²⁸ Ac的半衰期很 短,分离出的²²⁸ Ac很快衰减。国内其他研究机 构提出的关于²²⁸ Ra的分析方法主要是针对于 海水中²²⁸ Ra的测量,采用 Mn 纤维富集大体积 (400 L 以上)海水中的 Ra,并在 γ 谱上测 量^[6-7]。这种方法富集效率较低,且需对大体积 的水样进行富集,不适用于实验室的常规分析。

国外对水中²²⁸ Ra的分析较多,多采用γ能 谱法和液态闪烁体法进行分析。Semkow等^[8] 采用γ能谱法,通过测量²²⁸ Ra的衰变子体 ²²⁸ Ac进行间接测定,¹³³ Ba 作示踪剂可获得较 低的探测限,但要求使用超低本底γ能谱仪, 对谱仪性能要求较高。Cook等^[9]采用液态闪 烁体分析²²⁸ Ra,但无回收率的测量和计算方 法。Nour等^[10]使用液态闪烁体分析²²⁸ Ac间 接测量²²⁸ Ra,¹³³ Ba 作示踪剂,但前处理方法较 复杂。

本研究提出基于 Fe(OH)₃-CaCO₃ 载带的 γ能谱分析水中²²⁸Ra的方法,优化样品的前处 理过程,建立1套合适的水样中²²⁸Ra的富集、 回收及测量的方法。

1 实验方法

1.1 试剂和仪器

试剂:¹³³Ba标准溶液,4 Bq/mL;标准稳定 Ba 溶液,10 mg/mL;Ca、Fe 混合载体溶液,称 取 14.5 g Fe(NO₃)₃和 20.8 g 无水 CaCl₂,溶 于 40 mL 水中,加入 40 mL HCl,并用水稀释 至 1 L;Na₂CO₃ 溶液,170 g/L^[3];HCl;H₂SO₄; 饱和 K₂SO₄ 溶液(25 ℃)。若无特别说明,所 用试剂均为分析纯,所用水均为去离子水。

仪器:美国 Canberra 公司生产的 GC4019 P型高纯锗 γ 谱仪,能量响应范围为 2 ~ 30 MeV,具有很好的能量分辨率和峰形;抽滤 装置,抽滤头直径为 42 mm。

1.2 样品前处理

 采用 Fe(OH)₃-CaCO₃ 载带法富集水中的²²⁸ Ra,沉淀用 HCl 溶解后,采用 Ba(Ra)SO₄ 共 沉淀法载带富集后的²²⁸ Ra,抽滤 Ba(Ra)SO₄ 共 沉淀制备样品;

2) 将过滤后的水样转移到烧杯中,加入 3 mL¹³³Ba溶液作示踪剂,加入 10 mL Ca、Fe 混合载体溶液,搅拌均匀;

3) 再加入 75 mL Na₂CO₃ 溶液,搅拌 3~
5 min,使溶液的 pH 为 9~10,将沉淀静置澄清后,倾倒出上层清液;

4) 将上述沉淀转移到 200 mL 烧杯中,再 次静置澄清后,倾倒出上层清液;

5) 往沉淀中加入 10 mL 浓 HCl, 使沉淀溶 解完全, 实现²²⁸ Ra的富集;

6) 在富集后的液体中加入1 mL 标准稳定 Ba 溶液; 7)不断搅拌加入2 mL H₂SO₄ 溶液与
 5 mL饱和 K₂SO₄,静置 30 min 以上;

8)将生成的沉淀在抽滤装置上进行抽滤 制样,将滤纸烘干后粘到不锈钢盘片上,将样品 放置约 2 d,待²²⁸Ra与²²⁸Ac达放射性平衡后再 在γ能谱仪上测量。

1.3 分析参数

1) 回收率

由于 Ra 与 Ba 的化学性质非常类似,¹³³ Ba 可作为测量²²⁸ Ra的产量示踪剂。¹³³ Ba的测量 值与添加量的比值是¹³³ Ba在样品前处理过程 中的回收率,¹³³ Ba的回收率等于²²⁸ Ra的回收 率。本研究中使用的¹³³ Ba特征 γ 射线能量为 356 keV,该能量的射线强度较高。回收率采 用式(1)进行计算。

$$Y_{^{133}Ba} = \frac{N_{^{133}Ba}}{\varepsilon^{^{133}Ba}\eta T A_{^{133}Ba}}$$
(1)

式中: Y^{133}_{Ba} 为¹³³Ba示踪法测得的回收率; N^{133}_{Ba} 为¹³³Ba γ 射线能量为 356 keV 的全能峰面积 的净计数; ϵ^{133}_{Ba} 为¹³³Ba γ 射线能量为 356 keV 的全能峰效率; η 为¹³³Ba γ 射线能量为 356 keV 的发射率,取 62.1%;T为样品谱的测量时间, s; A^{133}_{Ba} 为加入¹³³Ba的活度,Bq。

2) 活度

Table

²²⁸ Ra的活度是通过测量²²⁸ Ra/²²⁸ Ac平衡后 ²²⁸ Ra的衰变子体²²⁸ Ac发射的 γ 射线能量确定 的。本研究中采用的²²⁸ Ac特征 γ 射线能量为 911 keV,该能量射线的分支比较高,且附近没 有其他干扰核素的全能峰存在。样品中²²⁸ Ra 的活度计算如式(2)所示。

$$A = \frac{N}{\varepsilon \eta T Y f} \tag{2}$$

式中:A为待测样品中²²⁸Ra的活度,Bq;N为

²²⁸ Ac γ 射线能量为 911 keV 的全能峰面积的 净计数;ε 为²²⁸ Ac γ 射线能量为 911 keV 的全 能峰效率;η 为²²⁸ Ac γ 射线能量为 911 keV 的 分支比,取 27.7%;T 为样品谱的测量时间,s; Y 为回收率;f 为衰变修正因子。

3) 最小可探测活度浓度

最小可探测活度浓度是评价1个放射性分 析方法质量的重要参数,如果待测样品的活度浓 度低于最小可探测活度浓度,则分析结果不可 靠。最小可探测活度浓度采用式(3)计算^[11]。

MDA =
$$\frac{4.66\sqrt{B} + 2.71}{TE_{f}YVe^{-\lambda}}$$
 (3)

式中: MDA 为最小可探测活度浓度, Bq/L; T 为样品测量时间, s; B 为与样品相同测量时 间内本底的总计数; E_f 为仪器的探测效率; V 为水样的取样体积, L; $e^{-\varkappa}$ 为衰变修正因子, λ 为衰变常量, t 为衰变时间。

2 结果与讨论

2.1 加标量测量结果

采用 Fe(OH)₃-CaCO₃ 载带法富集水中的 ²²⁸ Ra,Ba(Ra)SO₄ 共沉淀法进一步载带富集后 的²²⁸ Ra,抽滤共沉淀制备样品源,测量结果列 于表 1。¹³³ Ba示踪法计算出的²²⁸ Ra回收率为 81.8%~87.5%,平均为 84.7%,²²⁸ Ra的测量 值与实际值之间的相对偏差为 1.7%~5.3%, 平均为 3.7%,其中测量值均略大于实际添加 量,分析其原因,可能与 Ra、Ba 两者在水中的 溶解度不同有关(BaSO₄ 在水中的溶解度大于 RaSO₄ 的),造成测得的回收率较实际的偏小, 测量结果略偏大。²²⁸ Ra的测量值与实际添加 量之间相对偏差较小,说明采用这种方法分析 水中的²²⁸ Ra结果较准确。

	表 1 Fe(OH) ₃ -CaCO ₃ 富集法对应抽滤制样的测量结果						
1	Measurement result of Fe(OH),-CaCO, enrichment method corresponding to suction filtration						

	()5	5	1 8	
样品编号	加入 ²²⁸ Ra活度/Bq	回收率/%	²²⁸ Ra活度测量值/Bq	相对偏差/%
1	12	87.5	12.6 \pm 1.2	4.9
2	12	85.6	12.2 \pm 1.1	1.7
3	12	85.1	12.6 \pm 1.2	5.3
4	12	81.8	12.3 ± 1.1	2.3
5	12	83.3	12.5 ± 1.0	4.4

2.2 水样检测结果

分析的废水样和环境水样为生产错系列新 材料公司的总排口废水、排口附近河流的水以及 深度处理废水等样品。这些水样中含有 U、Th、 Ba、Sr、Ca、Mg、Fe、K、Na 等元素,pH 为2~3。

取 5 L 水样, 过滤去除漂浮物及沉降性固体物。采用 Fe(OH)₃-CaCO₃ 载带法富集水中的²²⁸ Ra后, 再采用 Ba(Ra) SO₄ 共沉淀法载带²²⁸ Ra, 抽滤 Ba(Ra) SO₄ 共沉淀制备样品源, ¹³³ Ba作示踪剂。待²²⁸ Ra/²²⁸ Ac 达放射性平衡后, 在 γ 能谱上测量。水样中²²⁸ Ra的活度浓度结果列于表 2。采用 Fe(OH)₃-CaCO₃ 富集水中的 Ra, Ba(Ra) SO₄ 共沉淀法载带²²⁸ Ra的方 法探测限为 57.2 mBq/L, 当水中²²⁸ Ra的活度 浓度接近方法探测限时, 方法具有较高的不确定度。

表 2 水样中²²⁸ Ra活度浓度的测量结果 Table 2 Measurement result of ²²⁸ Ra activity

concentration	in	water	sample
concent ation	111	matti	sampic

采样地点	回收率/%	²²⁸ Ra活度浓度/ (Bq・L ⁻¹)
总排口	53.9	2.24±0.20
深度处理废水	59.5	9.82 \times 10 ⁻² \pm 3.60 \times 10 ⁻²
外排口下游 180 m	55.2	1.68×10 ⁻¹ ±9.00×10 ⁻²
外排口上游 250 m	52.3	<mda< td=""></mda<>

2.3 MDA

由于测量时间不同也会影响 MDA, 不同 测量时间与 MDA 的关系如图 1 所示。可看

出,在测量时间大于 20 h时, MDA 不再显著降低, 本研究中测量时间取 20 h。

本研究方法 MDA 为 54.7 mBq/L,低于刘 广山等^[7]在γ能谱上分析²²⁸Ra方法的探测限 (MDA=120 mBq/L)。刘广山等的方法适用 于大体积(400 L 以上)海水中²²⁸Ra的测量,但 样品的富集效率较低,MDA 也相对较高。本 方法优化样品的前处理方法,具有较低的 MDA,但不适用于大体积水的测量,只适用于 实验室的常规分析。

3 结论与展望

本文建立了基于 Fe(OH)₃-CaCO₃ 载带的 水中²²⁸ Ra的γ能谱分析方法。此方法相对于 国家标准中²²⁸ Ra的分析方法,样品前处理方 法简单,缩短了放化前处理周期,能避免复杂 的放化处理过程,提高了工作效率。本方法 回收率高,测量结果准确度高,能满足环境水 中²²⁸ Ra的分析测定需求。但采用这种方法分 析废水中的²²⁸ Ra,回收率偏低。下一步可开 展该方法对不同水样(如存在的核素种类和 含量等不同)在不同条件(如 pH 值不同)下的 回收率稳定性研究。

参考文献:

- [1] 沙连茂.环境样品中 Ra 分析的基本知识与实践 经验[J].辐射防护通讯,2016,36(2):1-16.
 SHA Lianmao. Basics and practical experience of radium analyses in environmental samples[J].
 Radiation Protection Bulletin, 2016, 36(2): 1-16 (in Chinese).
- [2] JIA G, TORRI G, OCONE R. Determination of radium isotopes in soil samples by alpha-spectrometry[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 273(3); 779-783.
- [3] 国家环境保护总局. GB/T 11214—1989 水中 Ra-226的分析测定[S]. 北京:中国标准出版社, 1989.
- [4] 国家环境保护总局. GB 11218—89 水中 Ra的 α放射性核素的测定[S].北京:中国标准出版 社,1989.
- [5] 国家环境保护总局. GB 14883.6-2016 食品 中放射性物质 Ra-226 和 Ra-228 的测定[S]. 北 京:中国标准出版社,1989.
- [6] 王芬芬,门武,刘广山. 北黄海水体的²²⁶ Ra和

²²⁸ Ra[J]. 台湾海峡,2010,29(2):265-276.
WANG Fenfen, MEN Wu, LIU Guangshan.
²²⁶ Ra and ²²⁸ Ra in seawater of the North Yellow
Sea[J]. Oceanography in Taiwan Strait, 2010,
29(2): 265-276(in Chinese).

[7] 门武,刘广山,陈敏,等. 中国东海的²²⁴ Ra[J]. 地 球科学:中国地质大学学报,2011,36(6):999-1 008.

> MEN Wu, LIU Guangshan, CHEN Min, et al. ²²⁴ Ra in the seawater of the East China Sea[J]. Earth Science: Journal of China University of Geosciences, 2011, 36(6): 999-1 008(in Chinese).

[8] SEMKOW T M, PAREKH P P, SCHWENKER C D, et al. Low-background gamma spectrometry for environmental radioactivity [J]. Applied Radiation and Isotopes, 2002, 57(2): 213-223.

- [9] COOK M, KLEINSCHMIDT R. Simultaneous determination of ²²⁶ Ra and ²²⁸ Ra in water by liquid scintillation spectrometry[J]. Australian Journal of Chemistry, 2011, 64(7): 880-884.
- [10] NOUR S, EL-SHARKAWY A, BURNETT W C, et al. Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin [J]. Applied Radiation and Isotopes, 2004, 61 (6): 1 173-1 178.
- [11] JIA G, JIA J. Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: A review of analytical methodology
 [J]. Journal of Environmental Radioactivity, 2012, 106: 98-119.