・论著・

ALPPS 术后肝再生与内质网应激 IRE1a-XBP1 通路的关系研究

龚奇,徐锋,赵亮,戴朝六

中国医科大学附属盛京医院肝胆脾外科(沈阳 110004)

【摘要】目的 探讨内质网应激在联合肝脏分割和门静脉结扎二步肝切除术(ALPPS)一期手术后肝再生过 程中的作用。方法 将 72 只 C57bl/6 小鼠随机均分为 ALPPS 组、门静脉结扎组(PVL 组)和假手术组(Sham 组),每组 24 只,分别行 ALPPS 一期手术、单纯 PVL 和假手术。3 组小鼠分别在术后第 1、2、4 及 7 天各取材 6 只,检测各组小鼠的肝重体质量比,并取肝脏组织行免疫组织化学染色以计算 Ki-67 阳性细胞比,行 Western blot 法以检测肌醇酶 1a(IRE1a)和 X 盒连接蛋白 1(XBP1)蛋白的表达水平。结果 ① 肝重体质量比:术后第 4 天和第 7 天时,同时点下 Sham 组、PLV 组和 ALPPS 组的肝重体质量比依次增加,3 组间两两比较差异均有统计学意义(P<0.05)。② Ki-67 阳性细胞比:术后第 2 天时,Sham 组、PLV 组和 ALPPS 组的标。6 不同性细胞比Ki-67 阳性细胞比依次增加,3 组间两两比较差异均有统计学意义(P<0.05);术后第 4 天时,ALPPS 组的 Ki-67 阳性细胞比依次增加,3 组间两两比较差异均有统计学意义(P<0.05);术后第 4 天时,ALPPS 组的 Ki-67 阳性细胞比依次增加,3 组间两两比较差异均有统计学意义(P<0.05);术后第 7 天时,与 Sham 组和 PVL 组比较,ALPPS 组的 XBP1和 IRE1a的表达水平均较高(P<0.05);术后第 7 天时,与 Sham 组比较,ALPPS 组的 XBP1和 IRE1a的表达水平较高(P<0.05)。结论 在小鼠体内 ALPPS 术式诱导的肝再生较传统的 PVL 术式引起的肝再生更具有优势,这可能是因为 ALPPS 术后更为明显的内质网应激激活状态,导致 IRE1a-XBP1的表达上调,从而参与了肝细胞细胞周期的调控,进而促进了肝细胞的增殖,促进了快速肝再生。

【关键词】 肝再生;内质网应激;增殖;联合肝脏分割和门静脉结扎二步肝切除术;X-框结合蛋白1;肌 醇酶1a

Relationship between liver regeneration after ALPPS and endoplasmic reticulum stress IRE1a-XBP1 pathway

GONG Qi, XU Feng, ZHAO Liang, DAI Chaoliu

Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, P. R. China Corresponding author: DAI Chaoliu, Email: daicl@sj-hospital.org

[Abstract] Objective To investigate the role of endoplasmic reticulum stress in liver regeneration after associating liver partition and portal vein ligation for staged hepatectomy (ALPPS). **Methods** Seventy-two C57bl/6 mice were randomly divided into ALPPS group, portal vein ligation group (PVL group), and sham operation group (Sham group), 24 mice in each group. And then one-stage ALPPS operation, simple PVL, and sham operation will be performed. Six mice were randomized selected of the three groups on the 1st, 2nd, 4th, and 7th day after surgery, respectively, the liver weight to body weight ratio (FLR/BW) of each group was measured, and the liver tissues were taken for immunohistochemical staining to calculate the proportion of Ki-67 positive cells, Western blot was used to detect the expression levels of X-box binding protein 1 (XBP1) and inositol-requiring enzyme 1a (IRE1a) proteins. **Results** ① FLR/BW: On the 4th day and the 7th day after operation, the FLR/BW of the Sham group, PVL group, and ALPPS group increased in sequence at the same time, and the difference between the three groups was statistically significant (P<0.05). ② Ki-67 positive cell ratio: On the 2nd day after operation, the ratio of Ki-67 positive cells in the Sham group, PVL group, and

DOI: 10.7507/1007-9424.201905046

基金项目: 辽宁省科技厅科学计划项目(项目编号: 2017225032); 沈阳市科技局重点科技研发计划项目(项目编号: 17-230-9-16)

通信作者:戴朝六, Email: daicl@sj-hospital.org

ALPPS group increased sequentially, and the difference between the two groups was statistically significant (P<0.05). On the 4th day after operation, the ratio of Ki-67 positive cells in the PVL group and the ALPPS group were still higher than that of the Sham group (P<0.05). ③ Expression levels of XBP1 and IRE1 α : On the 2nd and 4th postoperative day, the expression levels of XBP1 and IRE1 α in the ALPPS group were higher than those in the Sham group and the PVL group (P<0.05). On the 7th day after surgery, the expression levels of XBP1 and IRE1 α in the ALPPS group were higher than those in the Sham group (P<0.05), while compared with the PVL group, the expression level of XBP1 in the ALPPS group was still higher (P<0.05). **Conclusions** ALPPS-induced liver regeneration is more advantageous than traditional PVL in mice. It may be attributed to the obvious endoplasmic reticulum stress activation after ALPPS leading to the up-regulation of IRE1 α -XBP1 expression, which is involved in the regulation of hepatocyte cell cycle and promotes hepatocyte proliferation, thus promoting rapid liver regeneration.

[Keywords] liver regeneration; endoplasmic reticulum stress; proliferation; associating liver partition and portal vein ligation for staged hepatectomy; X-box binding protein 1; inositol-requiring enzyme 1a

肝部分切除手术是治疗肝脏原发性肿瘤和部 分转移最主要的且行之有效的方式之一^[1-2]。但很 多患者限于手术后肝脏剩余体积的不足而得不到 有效救治,使得剩余肝体积不足成为肝脏外科手术 的有待解决的重要课题^[3-4]。联合肝脏分离和门静 脉结扎二步肝切除(associating liver partition and portal vein ligation for staged hepatectomy, ALPPS) 自从 2007 年被提出后,得到了业界的广泛关注^[5]。 临床数据显示,此种手术方式能在短时间提升肝脏 的剩余体积达 47%~93%^[6],从而为部分患者提供手 术机会,在其后的动物实验^[7]中也逐渐认识到 ALPPS 能有效地刺激肝脏再生,而满足个体的耐受 程度。因此,ALPPS 术式在未来可能是解决临床窘 境的主要方式之一,然而其快速增生的机制尚不明 确,了解并探索这一课题是十分必要。

肝脏作为人体主要的代谢器官,拥有强大的再 生能力,正常肝组织即使在70%的肝切除后仍有能 力恢复其体积,这是肝脏的代偿性过程,有赖于肝 细胞的增生和肝细胞肥大[®]。ALPPS 一期手术包括 2个主要任务:包括门静脉结扎和肝脏原位分离, 巨大的创伤给个体带来严重负荷的同时也明显地 提高了剩余肝体积的增生率。内质网应激和未折 叠蛋白反应从胚胎发育[9-11]到细胞增殖[12-13],从多能 分化¹⁴¹到细胞凋亡均扮演了重要角色。早先的肝损 伤动物模型显示,内质网应激的部分通路参与了肝 细胞的增殖活动,作为细胞中执行合成功能的重要 细胞器的内质网,其准确合成和折叠蛋白的能力对 细胞存活和维持正常功能至关重要15,多种刺激均 可诱导内质网的应激反应并启动未折叠蛋白反应[16], 其中肌醇酶 1-X 盒连接蛋白 1 (IRE1-XBP1) 途径是 最为保守的一条途径,同时也是在多种细胞的增殖 中发挥作用的一条途径^[10,17]。但 ALPPS 术式下, 快 速增生的机制是否与其相关是有待研究的,内质网 应激在快速增生的过程中发挥了何种作用也十分 值得研究。笔者团队渴望通过本研究,一方面明确 小鼠体内 ALPPS 在促进肝脏增生方面相较于其他 手术方式的优势,一方面初步地探索内质网应激在 这个过程中可能的作用机制。

1 材料与方法

1.1 主要动物和材料

健康雄性 C57bl/6 小鼠 72 只, SPF 级, 周龄约 8 周, 体质量 (24±2)g, 购买于辽宁长生生物有限公司。兔抗小鼠 Ki-67 抗体、山羊抗兔二抗、兔抗小 鼠 XBP1 及 IRE1α 抗体均购于 Abcam 公司。免疫 组织化学试剂盒和 DAB 显色试剂盒购于北京索莱 宝科技有限公司。

1.2 实验分组

72 只小鼠按随机数字表方法随机分为假手术 组(Sham 组)、单纯门静脉结扎组(PVL 组)和 ALPPS 组,每组 24 只。动物饲养于中国医科大学 SPF 级动物实验中心,自由饮食饮水,保持 12 h 光 照/12 h 黑暗交替。

1.3 手术方式

动物模型建立参考 Schlegel 等^[18]的方法并加以 改进。小鼠术前 12 h 禁食,保持正常饮水,所有小 鼠采用专用小动物麻醉机,快速麻醉后,给予 3% 的异氟烷+混合空气持续吸入。麻醉后小鼠固定于 专用手术台,用宠物剃毛机剃除腹部毛发,用爱尔 碘Ⅲ型消毒液(有效碘含量 4.5~5.5 g/L)消毒腹部 皮肤 3 次。取正中切口 1.5~2.0 cm 长,打开腹腔, 解剖分离镰状韧带和肝胃韧带,充分暴露肝脏,按 照 Schlegel 等^[18]的实验方案建模。在 3 组小鼠中, 本研究需要结扎并切除肝左外侧叶以实现小鼠整 个肝脏 90% 的门静脉结扎,并使得作为残余肝而保 留下来的肝左中叶体积占总肝体积的 9%~11% 以 模拟临床情况。再依次仔细分离尾状叶、右叶和中 叶的动脉、胆管和门静脉分支。假手术组小鼠经上 述操作后逐层缝合关腹; PVL 组在上述基础上用 5-0 丝线依次结扎尾状叶、右叶和右中叶对应的门 静脉分支,保留左中叶动脉、胆管和门静脉分支; ALPPS 组在上述基础上,沿中叶缺血线离断肝实 质,并用单极电刀充分止血,最后放入止血纱布于 断面防止出血和术后粘连。术后均采用 4-0 丝线逐 层缝合。

1.4 标本收集处理

3 组小鼠于术后 1、2、4 及 7 d 麻醉后收集标本,小鼠于取材后采用颈椎脱臼法处死。各时间点3 组均取材 6 只。小鼠的选择按照随机对照原则进行,先将小鼠按体质量编号,随后以随机数字表进行分组,最后按随机对照原则标号入组。下腔静脉采血 1 mL 后,3 500 r/min 离心 15 min (r=8.6 cm)后收集上清标本于-80 °C 保存。解剖肝脏,分离肝叶,称取左中叶重量,取约 60 mg 组织于液氮中速冻后-80 °C 保存,其余肝组织浸泡于 4% 的多聚甲醛中。

1.5 肝重体质量比计算

左中叶肝重体质量比通过以下公式计算:肝 重体质量比=剩余肝重量(mg)/体质量(mg)。小 鼠体质量在麻醉前进行称取。

1.6 肝脏病理及免疫组织化学检测

石蜡切片行 3.5 µm 连续切片、脱蜡、水化,进 行免疫组织化学染色。免疫组织化学染色按照试 剂盒说明书进行操作,脱蜡、水化后进行柠檬酸钠 缓冲液微波加热和抗原修复双重修复,使用兔抗小 鼠 Ki-67 单克隆抗体按照 1:200 稀释配置后孵育 标本,置于 4 ℃ 冷房过夜,次日使用山羊抗兔的二 抗于 37 ℃ 温箱中孵育 40 min,显色使用 DAB 显色 剂显色,使用苏木精复染于组化室脱水,透明后在 通风橱进行中性树胶封片。结果计算:高倍视野 内(200 倍)计算肝细胞数及 Ki-67 阳性细胞数,每 张切片随机选取 5 个视野,计算 Ki-67 阳性细胞比例。

1.7 Western blot 法检测蛋白表达

称取肝脏组织约 30 mg, 加入裂解液, 置于冰 上研磨匀浆, 静止 30 min, 超声破碎后 4 ℃ 离心, 12 000 r/min 持续 30 min (r=8.6 cm), 轻轻吸取上清 留作蛋白样本。BCA 法蛋白测定后与 LOADING 按 4:1 比例混匀, 100 ℃ 金属浴 5 min, 10% 十二 烷基硫酸钠聚丙烯酰胺凝胶电泳 (SDS-PAGE 上样 电泳)后电转至聚偏二氟乙烯膜 (PVDF 膜), 以 5% 脱脂牛奶室温封闭 2 h 后加入一抗 XBP1 与一抗 IRE1a,4℃ 孵育过夜。TBST 漂洗3次后加入山羊 抗兔的二抗室温孵育2h,TBST 洗涤3次后,于避 光条件下显影,定影。蛋白半定量的测定:使用 ImageJ 软件对同组多张 Western blot 图片的平均光 密度值进行测定,计算曲线下面积作为条带密度 值,其与内参条带密度值的比值作为蛋白的相对表 达量。

1.8 统计学方法

数据采用 SPSS 22.0 及 Graphpad Prism 6 统计 软件进行分析。实验数据以均数±标准差(x±s)表 示,统计方法采用 ANOVA 方差分析(两两比较采 用 Tukey 检验方法)。检验水准 α =0.05。

2 结果

预实验时,笔者团队对小鼠进行随机分组,然 后造模,造模过程中Sham组及PVL组小鼠死亡多 发生在术后第1天,死亡率为10%,通过对死亡小 鼠的解剖,笔者发现,手术操作过程结扎不牢固导 致的持续创面出血引起的失血性休克及腹腔感染 可能是其死亡的主要因素;而ALPPS组小鼠死亡 多发生在术后第2天,死亡率为20%,离断面止血 不充分以及腹腔感染是小鼠死亡的主要原因。因 此,正式实验时,本研究除采用常规术前术后切口 消毒外,尽可能保证手术在相对无菌的SPF级动物 实验室中进行,术中采用5-0手术缝合线进行结 扎,并采用电凝对创面充分止血以保证小鼠存活。 在正式实验中,各组小鼠在处死前均存活。

2.1 3 组小鼠的残余肝体积增生情况及肝重体质量比

3 组小鼠的肝脏增生结果见(图 1a-图 1m)。 小鼠肝体积在大体标本上呈现出明显差别,3组术 后各时间点肝再生情况变化呈现不同的增生速度, 尤其是 ALPPS 组在术后第 4 天和第 7 天表现出较 PVL 组更加明显的增生, ALPPS 组较其他 2 组优势 明显。由于各个小鼠体质量及肝体积大小存在一 定的个体差异,故本研究通过计算小鼠肝重体质量 比后量化作图(图 1m),结果显示:术后 ALPPS 组 和 PVL 组的肝重体质量比随时间逐步上升, 而 Sham 组变化不大; 在术后第1天和第2天时, 同 时点 Sham 组、ALPPS 组及 PVL 组的差异均无统计 学意义(P>0.05);在术后第4天时,3组间则表现 出明显的差异, ALPPS 组和 PVL 组的肝重体质量 比均高于 Sham 组, 差异均有统计学意义 (P<0.0001、 P=0.027 6), 且 ALPPS 组的肝重体质量比高于 PVL 组(P=0.0178);到术后第7天时,3组间的差异仍

然存在, ALPPS 组和 PVL 组的肝重体质量比均高 于 Sham 组,差异均有统计学意义(*P*<0.000 1、 *P*=0.002 5),且 ALPPS 组的肝重体质量比高于 PVL 组(*P*=0.001 5)。

2.2 免疫组织化学染色结果

Ki-67 检测结果显示, 术后 PVL 组和 ALPPS 组 的肝组织中均有明显 Ki-67 阳性表达, 而 Sham 组 各时间点内的 Ki-67 表达不明显, ALPPS 组术后第 2 天和第 4 天比 PVL 和 Sham 组有更多的增殖中的 细胞,多分布于门静脉胆管周围,到第7天增生趋 势减缓(图 1n-图 1z)。通过对 Ki-67 指标的检测, 笔者发现, 4个时间点 Sham 组的 Ki-67 阳性细胞比 无明显变化, 而 ALPPS 组和 PVL 组的 Ki-67 阳性细 胞比趋势为: 在术后第2天增加, 第4天有所下 降, 第7天降至第1天水平左右(图1n)。在术后 第1天和第7天,3组的Ki-67阳性细胞比的差异 均无统计学意义(P>0.05);但在第2天时,ALPPS 组则呈现出明显的细胞核增殖, Ki-67 阳性细胞比 相比于 Sham 组较高 (P<0.05), 此外第 2 天时 PVL 组在相对于 Sham 组来说其 Ki-67 阳性细胞比也较 高(P<0.05),但 ALPPS 组与 PVL 组相比较仍然存 在增殖速度上的优势(P<0.05)。这提示 ALPPS 导 致的快速增生过程启动阶段是发生在术后第2天; 而到术后第4天时,尽管 ALPPS 组与 PVL 组的 Ki-67 阳性细胞比相比于 Sham 组来说差异都存在 统计学意义(P<0.05),但 ALPPS 组与 PVL 之间已 无明显差异(P>0.05),这提示 ALPPS 导致的肝增 生速度减缓。

2.3 Western blot 检测结果

Western blot 结果提示, Sham 组 IRE1a 和 XBP1 的表达水平在 4 个时点间变化不大; PVL 组 IRE1a 和 XBP1 的表达水平在术后第 1 天和第 2 天 变化不大, 到第 4 天和第 7 天时呈现明显增高趋势; ALPPS 组 IRE1a 和 XBP1 的表达水平在 4 个时 点上呈现出逐渐增加的趋势(图 2)。

术后第 1 天时, 3 组的 XBP1 和 IRE1a 的表达 水平比较差异均无统计学意义(P>0.05);术后第 2 天时,与 Sham 组和 PVL 组比较,ALPPS 组的 XBP1 和 IRE1a 的表达水平均较高(P<0.05),但 Sham 组和 PVL 组比较差异无统计学意义 (P>0.05);术后第 4 天时,与 Sham 组比较,ALPPS 组和 PVL 组的 XBP1 和 IRE1a 的表达水平均较高 (P<0.05),且 ALPPS 组的 XBP1 和 IRE1a 的表达水 平均较 PVL 组高(P<0.05);术后第 7 天时,与 Sham 组比较,ALPPS 组和 PVL 组的 XBP1 和 IRE1a 的表达水平均较高(P<0.05), ALPPS 组的 XBP1 的 表达水平高于 PVL 组(P<0.05), 但 ALPPS 组的 IRE1α的表达水平与 PVL 组比较差异无统计学意 义(P>0.05)。具体见图 2。

3 讨论

肝切除术是目前治疗肝脏原发或转移肿瘤最 有效的方式,但是在实施过程中,很难达到 R0 切 除以保障生存预后,该问题的关键点在于残余肝体 积过小所导致的"肝脏切除术后肝功能衰竭" "小肝综合征"等一系列并发症[19-20]。对于正常的 成年人来说,可耐受的术后残余肝体积约为30%, 但对于有肝脏基础疾病、肝功能障碍或肝损伤的患 者而言,40%及以上的残余肝体积是十分必要的^[21]。 对于经典的 PVL 术式而言, 刺激肝再生的能力虽 然能满足部分患者的手术要求,但其缺点也是显而 易见的:一方面是需要 6~8 周的时间促进肝再生 以满足术后要求的残余肝体积,漫长的间期往往使 得患者在此期间失去手术机会;另一方面是其对 于肝脏再生刺激的不足, 使得肝脏即使长时间再生 也未能达到手术要求^[20,22]。ALPPS 手术从最初被提 出以来就受到世界肝脏外科专家的关注,因其在短 时内就能促进肝脏再生出足够的残余肝体积以满 足手术要求,同时也因其术后严重并发症、高死亡 率以及其尚不明确的快速增生的机制而饱受争议[23-24]。

肝脏作为人体主要的代谢器官,拥有强大的再 生能力,正常肝组织即使在切除70%的肝脏后仍有 能力恢复其原有体积,这种肝脏的代偿性过程,有 赖于肝细胞的增生和肝细胞肥大[8.25]。在受到手术 或药物等刺激后, 肝脏接受外源性和内源性信号刺 激, 启动内质网应激以调节细胞内合成和降解过 程,保证细胞存活并参与增生过程,其中同样涉及 到其他诸多信号通路、细胞因子、生长因子、补体 等多种因素,如白介素-6(IL-6)、信号传导与转录 激活因子 3(STAT3)、转化生长因子-a(TGF-a)等 不仅参与启动过程,促进肝细胞由 G。期转向 G, 期,同时提高了肝细胞对生长因子的应答,从而推 进肝细胞再生^[26-28]。而作为功能结构中重要成员的 蛋白质在再生过程中的大量合成是不可或缺的,作 为蛋白质加工厂的内质网在此过程中发生的应激 过程对其合成和再生具有重要作用[25,29]。

因此,本实验选定了内质网应激过程中最为保 守稳定的一条通路,通过建立小鼠模型模仿手术患 者接受 ALPPS 手术,发现术后结扎侧肝脏坏死、萎 缩,而保留侧肝叶得以增生。从本实验结果不难看

图 1 示 3 组小鼠各时间点的大体标本增生情况、术后各时间点肝重体质量比的变化及 Ki-67 阳性细胞比变化,以及 3 组各时点的免疫 组织化学染色结果(SP ×200)

a-l:示3组小鼠各时间点肝脏增生情况,见ALPPS组与PVL组在第2天起出现增生趋势,从第4天起增生愈发明显,且ALPPS组的增生速度更快,效果更明显;m:3组术后各时间点肝重体质量比的变化;n:3组术后各时间点的Ki-67阳性细胞比变化;同时点与Sham组比较,*P<0.05;同时点与PVL组比较,#P<0.05;o-z:示3组各时点的免疫组织化学染色结果

• 1167 •

中国普外基础与临床杂志 2019 年 10 月第 26 卷第 10 期

图 2 示 Western blot 法检测的 3 组术后各时点 IRE1a 及 XBP1 表达的电泳图及其半定量结果 a-d: 3 组术后第 1 (a)、2 (b)、4 (c)和 7 天 (d) IRE1a 及 XBP1 表达的电泳结果; e-h: 3 组术后第 1 (e)、2 (f)、4 (g)和 7 天 (h) XBP1 表达的半定量结果; i-l: 3 组术后第 1 (i)、2 (j)、4 (k)和 7 天 (l) IRE1a 表达的半定量结果

出,在小鼠体内,通过 ALPPS 术式在一定程度上刺 激了保留肝叶的增生,并成功地显示出较之经典 PVL 更为明显的体积优势和较大的肝重体质量比, 这与早先在临床上开展的人体手术结论相似^[20,30]。 作为内质网应激通路的标志蛋白,IRE1a-XBP1 途 径在肝受损后,由于内质网应激的发生,导致 IRE1a 的表达上调,并通过 IRE1a 对 XBP1 基因的 剪切作用使得 XBP1 的合成增多,使得该途径发挥 作用以控制蛋白的合成和降解,以参与再生的过 程。同时,从 Western blot 实验结果可以看出, PVL 一定程度上也有着内质网应激的存在,但其程度较 ALPPS 过程来说明显降低,这可能是 PVL 刺激再 生远不及 ALPPS 手术明显的部分原因。从本实验 免疫组织化学实验结果可以看到, ALPPS组的细胞 增殖因子 Ki-67 在术后第 2 天达到最高峰,与 IRE1α-XBP1 应激轴蛋白表达量增高的时间节点相 同,结合小鼠肝重体质量比在第 4 天才开始出现明 显增加的结果,证明在 ALPPS 手术早期,肝脏通过 内质网应激调节蛋白合成参与了肝细胞的快速增 殖,促进了肝组织的快速增生;而第 1 天和第 7 天 的 Ki-67 阳性细胞比在 3 组中比较差异无统计学意 义,这可能与肝脏增生的过程相关,笔者根据实验 结果可以解释为,肝在 1 周内增生速度快,故而在 第 2 天和第 4 天检测结果呈现明显增高,而在第 7 天增生速度减缓,故而 Ki-67 阳性细胞比恢复到 基线水平,表现的结果就是第1天第7天间无明显差异。

然而, 对于 ALPPS 术后内质网应激的调节与 其参与再生的机制仍有待进一步研究,在内质网应 激发生过程中, IRE1a-XBP1 分支通常是被激活以 控制过度的内质网应激,在决定细胞命运中起着重 要的保护作用^[31]。同时 IRE1a 在胰岛 B 细胞的增殖 过程中, 被证明是通过 XBP1 相关机制来起到促进 作用的^[32]。因此,在 ALPPS 促进肝再生的过程中, 内质网应激可能一方面通过促进内质网功能、缓解 内质网应激以保证细胞存活,一方面作为一个信号 分子与多种基因结合促进肝细胞增生^[33]。作为经典 的转录因子通路, STAT3 分子被证明不仅在胰岛细 胞增殖过程中起重要作用,而且在小鼠肝脏受到严 重的创伤后,由于肝细胞中发生内质网应激激活了 细胞增殖过程,而这个过程中STAT3通过与IRE1a 作用起到了促进肝细胞增殖的作用^[34]。另外在肝损 伤模型中,其修复应答过程更是与 STAT3 直接相 关,这为证明在 ALPPS 术后肝再生过程中内质网 应激通过 IRE1a 与 STAT3 的相互作用而发挥作用 提供了证据支持。同时, IRE1a 激活剪切的 XBP1, 也可能参与了细胞周期的调控以参与肝细胞的增 殖。在最新的研究^[35]中,在小鼠肝部分切除后检测 XBP1 在不同处理后早期的基因结合位点,发现自 术后 6 h 起, XBP1 与基因损伤修复、急性相反应及 肝生长代谢相关基因紧密结合以促进肝细胞增殖, 而在 48 h 后表现出与远端控制应激反应和蛋白质 稳态相关基因的密切关系而恢复稳态,控制内质网 应激反应趋于停止。这一过程接受了 IL-6 的调控 和 STAT3 非依赖型的调控, 从而作用于细胞周期 素 D1, 参与细胞周期的调控而促进了肝再生, 这种 IRE1a-XBP1-CyclinD1调控肝细胞增殖的结论与本 实验观测结果相一致,故更加有理由相信,在 ALPPS 术后肝再生的过程中, IRE1a-XBP1 参与并 起到了重要的作用^[35],但它们在 ALPPS 术后肝再生 过程中是如何作用的? 是否与血流重新分布刺激 所导致的细胞因子大量合成有关?这一系列问题 尚不明确,这将是我们未来的工作方向。

总而言之,本实验观察到, IRE1a-XBP1 反应轴 参与了 ALPPS 术后肝再生的促进过程,并初步探 讨了该过程可能的机制。但该实验仍存在不足: 一方面小鼠模型与人体模型存在差异,所用小鼠均 为正常雄性小鼠,不能完全模拟肝癌患者的病理条 件;另一方面,本实验对于再生涉及的机制研究只 是做了猜想研究,并未深入分子机制,也未明确内 质网的调控机制。但本实验证实了内质网应激在 ALPPS 再生机制中发挥重要的作用,并初步探索了 可能的机制,为进一步明确机制奠定了基础,为进 一步改善 ALPPS 在临床上的应用提供了证据。

重要声明

利益冲突声明:本文全体作者阅读并理解了《中国普 外基础与临床杂志》的政策声明,我们没有相互竞争的利益。

作者贡献声明:本研究由龚奇在戴朝六的指导下设计 完成;龚奇和赵亮参与了研究的具体实施和资料采集;徐锋 对本研究进行了质控并提供指导意见;龚奇对研究数据进 行分析总结并在戴朝六指导下完成文章撰写及修稿。

伦理声明:本研究已通过中国医科大学附属盛京医院的伦理审核批准(批准文号:2016PS205K)。

参考文献

- 1 Sun JY, Yin T, Zhang XY, *et al.* Therapeutic advances for patients with intermediate hepatocellular carcinoma. J Cell Physiol, 2019, 234(8): 12116-12121.
- 2 Agrawal S, Belghiti J. Oncologic resection for malignant tumors of the liver. Ann Surg, 2011, 253(4): 656-665.
- 3 Robles R, Parrilla P, López-Conesa A, et al. Tourniquet modification of the associating liver partition and portal ligation for staged hepatectomy procedure. Br J Surg, 2014, 101(9): 1129-1134.
- 4 Kikuchi Y, Hiroshima Y, Matsuo K, *et al.* Impact of associating liver partition and portal vein occlusion for staged hepatectomy on tumor growth in a mouse model of liver metastasis. Eur J Surg Oncol, 2018, 44(1): 130-138.
- 5 Schnitzbauer AA, Lang SA, Goessmann H, et al. Right portal vein ligation combined with *in situ* splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg, 2012, 255(3): 405-414.
- 6 Cai YL, Song PP, Tang W, *et al.* An updated systematic review of the evolution of ALPPS and evaluation of its advantages and disadvantages in accordance with current evidence. Medicine (Baltimore), 2016, 95(24): e3941.
- 7 Zhao J, Xu H, Li Y, *et al.* NAFLD induction delays postoperative liver regeneration of ALPPS in rats. Dig Dis Sci, 2019, 64(2): 456-468.
- 8 Tarlow BD, Pelz C, Naugler WE, *et al.* Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell, 2014, 15(5): 605-618.
- 9 Parker R, Phan T, Baumeister P, *et al.* Identification of TFII-I as the endoplasmic reticulum stress response element binding factor ERSF: its autoregulation by stress and interaction with ATF6. Mol Cell Biol, 2001, 21(9): 3220-3233.
- 10 Kratochvílová K, Moráň L, Paďourová S, et al. The role of the endoplasmic reticulum stress in stemness, pluripotency and development. Eur J Cell Biol, 2016, 95(3-5): 115-123.
- 11 Xu H, Tsang KS, Wang Y, *et al.* Unfolded protein response is required for the definitive endodermal specification of mouse embryonic stem cells via Smad2 and β-catenin signaling. J Biol Chem, 2014, 289(38): 26290-26301.
- 12 Guo FJ, Jiang R, Xiong Z, *et al*. Expression of concern to IRE1a constitutes a negative feedback loop with BMP2 and acts as a novel

mediator in modulating osteogenic differentiation. Cell Death Dis, 2018, 9(11): 1124.

- 13 Kawada K, Iekumo T, Saito R, *et al.* Aberrant neuronal differentiation and inhibition of dendrite outgrowth resulting from endoplasmic reticulum stress. J Neurosci Res, 2014, 92(9): 1122-1133.
- 14 Bickler PE, Clark JP, Gabatto P, *et al.* Hypoxic preconditioning and cell death from oxygen/glucose deprivation co-opt a subset of the unfolded protein response in hippocampal neurons. Neuroscience, 2015, 310: 306-321.
- 15 Chen L, Liu L, Xie ZY, *et al.* Endoplasmic reticulum stress facilitates the survival and proliferation of nucleus pulposus cells in TNF-α stimulus by activating unfolded protein response. DNA Cell Biol, 2018, 37(4): 347-358.
- 16 Fujimoto A, Kawana K, Taguchi A, *et al.* Inhibition of endoplasmic reticulum (ER) stress sensors sensitizes cancer stem-like cells to ER stress-mediated apoptosis. Oncotarget, 2016, 7(32): 51854-51864.
- 17 Blazanin N, Son J, Craig-Lucas AB, *et al.* ER stress and distinct outputs of the IRE1α RNase control proliferation and senescence in response to oncogenic Ras. Proc Natl Acad Sci U S A, 2017, 114(37): 9900-9905.
- 18 Schlegel A, Lesurtel M, Melloul E, *et al.* ALPPS: from human to mice highlighting accelerated and novel mechanisms of liver regeneration. Ann Surg, 2014, 260(5): 839-847.
- 19 Golriz M, Majlesara A, El Sakka S, *et al.* Small for Size and Flow (SFSF) syndrome: an alternative description for posthepatectomy liver failure. Clin Res Hepatol Gastroenterol, 2016, 40(3): 267-275.
- 20 Schadde E, Ardiles V, Slankamenac K, *et al.* ALPPS offers a better chance of complete resection in patients with primarily unresectable liver tumors compared with conventional-staged hepatectomies: results of a multicenter analysis. World J Surg, 2014, 38(6): 1510-1519.
- 21 Aghayeva A, Baca B, Atasoy D, *et al.* Portal vein ligation and *in situ* liver splitting in metastatic liver cancer. Turk J Surg, 2018, 34(4): 327-330.
- 22 Maggiori L, Bretagnol F, Sibert A, *et al.* Selective portal vein ligation and embolization induce different tumoral responses in the rat liver. Surgery, 2011, 149(4): 496-503.
- 23 Vennarecci G, Ferraro D, Tudisco A, *et al.* The ALPPS procedure: hepatocellular carcinoma as a main indication. An Italian single-

center experience. Updates Surg, 2019, 71(1): 67-75.

- 24 Huiskens J, Schadde E, Lang H, *et al.* Avoiding postoperative mortality after ALPPS-development of a tumor-specific risk score for colorectal liver metastases. HPB (Oxford), 2019, 21(7): 898-905.
- 25 Mao SA, Glorioso JM, Nyberg SL. Liver regeneration. Transl Res, 2014, 163(4): 352-362.
- 26 Kim AR, Park JI, Oh HT, et al. TAZ stimulates liver regeneration through interleukin-6-induced hepatocyte proliferation and inhibition of cell death after liver injury. FASEB J, 2019, 33(5): 5914-5923.
- 27 Schmidt-Arras D, Rose-John S. IL-6 pathway in the liver: from physiopathology to therapy. J Hepatol, 2016, 64(6): 1403-1415.
- 28 Liu Y, Yang F, Li J, *et al.* Mesenchymal stem cells enhance liver regeneration via improving lipid accumulation and hippo signaling. Stem Cells Int, 2018, 2018: 7652359.
- 29 Tao Y, Wang M, Chen E, *et al.* Liver regeneration: analysis of the main relevant signaling molecules. Mediators Inflamm, 2017, 2017: 4256352.
- 30 Tanaka K, Matsuo K, Murakami T, *et al.* Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): shortterm outcome, functional changes in the future liver remnant, and tumor growth activity. Eur J Surg Oncol, 2015, 41(4): 506-512.
- 31 Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011, 334(6059): 1081-1086.
- 32 Xu T, Yang L, Yan C, *et al.* The IRE1α-XBP1 pathway regulates metabolic stress-induced compensatory proliferation of pancreatic β-cells. Cell Res, 2014, 24(9): 1137-1140.
- 33 Liu Y, Shao M, Wu Y, *et al.* Role for the endoplasmic reticulum stress sensor IRE1α in liver regenerative responses. J Hepatol, 2015, 62(3): 590-598.
- 34 Qiu Q, Zheng Z, Chang L, *et al.* Toll-like receptor-mediated IRE1α activation as a therapeutic target for inflammatory arthritis. EMBO J, 2013, 32(18): 2477-2490.
- 35 Argemí J, Kress TR, Chang HCY, et al. X-box binding protein 1 regulates unfolded protein, acute-phase, and dna damage responses during regeneration of mouse liver. Gastroenterology, 2017, 152(5): 1203-1216.e15.

收稿日期: 2019-05-14 修回日期: 2019-08-12 本文编辑: 罗云梅