DOI:10.13228/j.boyuan.issn1000-7571.010955

熔融制样-X 射线荧光光谱法测定 金红石中主次组分

黄 康¹,李仲夏²,朱文静²,刘二情²

(1.甘肃省有色金属地质勘查局天水矿产勘查院测试中心,甘肃天水 741025;2.河北省区域地质调查院测试中心,河北廊坊 065000)

摘 要:评价金红石品位时,常需要知道金红石的主次组分含量。金红石样品中二氧化钛含量 很高,属于难熔化合物,在采用熔融制样-X射线荧光光谱法测定时熔融片容易破碎和炸裂。 实验在对稀释比和熔融温度进行优化的基础上,通过加入合适质量的玻璃成型剂二氧化硅,成 功地制备了金红石熔融片,实现了X射线荧光光谱法(XRF)对金红石样品中Fe₂O₃、TiO₂、 MnO、SiO₂、Al₂O₃、CaO、MgO、K₂O等主次组分的测定。采用钛铁矿标准样品、辉长岩标准 物质及高纯试剂二氧化钛按一定比例研磨后混合均匀,配制成具有一定含量梯度的10个金红 石合成样品绘制校准曲线,采用数学校正公式进行基体效应和谱线重叠校正,各主次组分校准 曲线的相关系数均大于0.9979。按照实验方法对由钛铁矿标准样品和高纯试剂二氧化钛按 比例混合配制得到的金红石合成样品中的主次组分进行测定,计算测定结果的相对标准偏差 (RSD)为0.22%~1.6%。采用实验方法测定由钛铁矿标准样品和高纯试剂二氧化钛按比例 混合配制得到的2个金红石合成样品,主次组分的测定结果与理论值(由标准样品认定值计算 得到)基本一致。

关键词:金红石;X射线荧光光谱法(XRF);熔融制样;主次组分;玻璃成型剂 中图分类号:O657.34 文献标志码:A 文章编号:1000-7571(2020)03-0068-05

钛以氧化物和硅酸盐矿物的形式存在于岩石 中,主要含钛矿物有金红石和钛铁矿(FeO•TiO₂ 或 TiFeO₃)。金红石中二氧化钛的质量分数约为 95%,主要用于增白颜料、釉料、化妆品等。在评价 金红石品位时,常需要知道金红石的主次组分含量。 通常对金红石样品中主次组分进行测定的方法有重 量法[1]、光度法[1-2]和滴定法[1-3]。因二氧化钛不溶 于酸,因此常采用碱熔融法对金红石样品进行处理, 但该过程较为繁琐,且会产生大量的废液。X射线 荧光光谱法(XRF)因具有制样简单、分析速度快、 精密度高等优点,在地质[4]、冶金样品[5-6]、海洋沉积 物[4-7]等许多领域应用广泛。熔融制样-X射线荧光 光谱法测定钛铁矿样品中主次组分的报道[8-12] 较 多,但鲜见熔融制样-X射线荧光光谱法测定金红石 样品的报道,这主要是因为金红石样品中二氧化钛 含量很高,属于难熔化合物,在熔融制样时熔融片容

易破碎和炸裂。本文在前人工作的基础上,对熔融 条件进行了优化,制备出光亮平滑的玻璃熔片,实现 了熔融制样-X射线荧光光谱法对金红石样品中主 次组分的测定。

1 实验部分

1.1 仪器和工作条件

Axios X 射线荧光光谱仪(帕纳科公司):最高 功率为4.0kW,最大激发电压为60kV,最大电流为 125mA,高透过率,SST 超尖锐长寿命陶瓷端窗 (75µm),铑靶 X 光管;Dell optipex GX270 计算机; SuperQ 5.0软件;68 个位置(直径为32mm)的样品 交换器;上海宇索 DY521 型全自动熔样机:单锅,单 模(直径为33mm),最高熔样温度为1200℃;铂金 坩埚:95%(质量分数,下同)铂-5%金。X 射线荧光 光谱仪的工作条件见表1。

收稿日期:2019-11-19

作者简介:黄 康(1984—),男,工程师,大学本科,主要从事 X 射线荧光光谱分析;E-mail:277254725@qq.com

表1 X射线荧光光谱仪的测定条件

Table 1 Determination conditions of X-ray fluorescence spectrometer										
元妻	分析线	旦休	准直器	探测界	准不下	电压	电流 ′Current/ [′] mA	2θ/(°)		
Element	Analytical line	Crystal	Collimator/ μm	Detector	Filter	Voltage/ kV		峰位 Pea k	背景 1 Background 1	背景 2 Background 2
Cr	Κα	LiF200	150	FL		40	90	69.3630		1.2554
Mn	Κα	LiF200	150	FL		60	60	62.9748		1.5690
Si	Κα	PE002	300	FL		30	120	109.0846		2.3784
Al	Κα	PE002	300	FL		30	120	144.8950	-4.1692	
Fe	Κα	LiF200	150	FL	Al(200)µm	60	60	57.5070		1.3294
Ba	Lα	LiF200	300	FL		40	90	87.197	1.503	
Ti	Κα	LiF200	150	FL	Al(200)µm	40	90	86.1592	-1.1280	
Ca	Κα	LiF200	150	FL		30	120	113.1270		1.9636
Mg	Κα	PX1	700	FL		30	120	22.7028	-1.2308	1.5210
Κ	Κα	LiF200	150	FL		30	120	136.7060		2.2530
Br	Κα	LiF200	150	SC	$Al(200\mu m)$	60	60	29.9252		0.9902

注:FL为流气式正比计数器;SC为闪烁计数器;Br用于扣除对 Al的谱线重叠干扰;Cr,Ba用于扣除对 Mn、Ti的谱线重叠干扰。

1.2 主要试剂

二氧化钛(高纯试剂,天津致远化学试剂有限公司),在800℃灼烧4h后,放在干燥器中保存;二氧化硅(高纯试剂,天津致远化学试剂有限公司),在1000℃灼烧4h后,放在干燥器中保存;溴化锂溶液:500g/L,由溴化锂配制得到;硝酸铵饱和溶液;混合熔剂(洛阳特耐有限公司):四硼酸理(Li₂B₄O₇)和偏硼酸理(LiBO₂)按质量比为67 : 23 混合,经600℃灼烧4h后备用;金红石样品在105℃干燥2h,粒度为0.074mm(200目)。

实验用水为蒸馏水。

1.3 校准样品的制备

在我国无市售的具有一定主次组分含量梯度的 金红石标准样品系列,又不能从金红石样品中选用 到各主次组分含量具有合适梯度及其范围样品的情 况下,选用4个钛铁矿标准样品ZBK453、ZBK454、 ZBK457、ZBK458(济南众标科技有限公司研制),辉 长岩标准物质GBW07112(国家地质实验测试中心 研制),及高纯二氧化钛按一定比例研磨混合均匀, 配制成具有一定含量梯度及合适含量范围的10个 金红石合成样品S01~S10,组成校准样品系列,用 以绘制校准曲线,校准曲线的相关系数均大于 0.9979。校准样品系列中各组分的含量见表2。

1.4 实验方法

称取 0.2000g 金红石样品、7.0000g 混合熔剂、 15 mg 二氧化硅于铂金坩埚中,用玻璃棒充分搅拌均 匀,滴加 4 滴溴化锂溶液、3 滴硝酸铵饱和溶液,在熔 融温度到达 1100℃后,自动熔融搅拌 18 min,静止 20 s,自动浇铸到模中,冷却 3 min,熔融片与模自动

表 2 校准样品中各组分的含量

Table 2 Concent of each component in

	calibration sample						w/%	
样品编号 Sample No.	MgO	${ m SiO}_2$	$\mathrm{Al}_2\mathrm{O}_3$	$\mathrm{Fe}_2\mathrm{O}_3$	${\rm TiO}_2$	MnO	CaO	K ₂ O
S01	0.05	0.48	0.21	0.03	95.00		1.65	0.01
S02	0.05	0.59	0.25	0.52	96.50		0.03	0.02
S03	0.05	7.09	0.45	0.49	90.00		0.04	0.05
S04	0.05	1.18	0.32	0.79	94.14	0.08	0.02	0.07
S05	0.15	0.80	0.56	5.78	88.05	0.12	1.20	0.10
S06	1.74	1.13	0.73	7.20	82.96	0.17	1.50	0.12
S07	0.28	1.49	1.13	10.89	77.62	0.23	0.06	0.14
S08	0.45	2.08	1.99	14.88	74.09	0.22	0.11	
S09	0.52	3.22	3.02	26.46	60.00	0.24	0.17	
S10					100.00			

剥离,然后从模上取下,贴上标签,在选定的实验条 件下进行测定。

2 结果与讨论

2.1 熔样条件的优化

2.1.1 稀释比

按照 1.4 实验方法,固定其他实验条件,在样品 和混合熔剂的稀释比分别为 1:10、1:15、1:20、 1:25、1:30、1:35、1:45 的条件下进行试验。结 果表明,当稀释比为 1:10 时,熔融体粘稠,不宜脱 模;当稀释比为 1:15 时,个别样品脱模稍差;当稀 释比为 1:20~1:45 时,脱模效果好,均能制备出光 滑平整的玻璃片。考虑到稀释比为 1:40 和 1:45 时,虽能制备出平整光滑的玻璃片,但对含量较低的 元素分析误差较大,故实验选用稀释比为 1:35。

- 69 ---

rutile by X-ray fluorescence spectrometry with fusion sample preparation.

Metallurgical Analysis, 2020, 40(3):68-72

2.1.2 熔融温度

按照 1.4 实验方法,固定其他实验条件,分别在 熔融温度为 950、1000、1050、1100、1150℃进行制 备熔融玻璃片的试验。结果表明:当熔融温度为 950℃时,熔融体粘稠,不易脱模;当熔融温度为 1000℃时,熔融体流动性较好,个别样品不易脱模; 当熔融温度为 1050~1150℃,脱模效果好,熔制的 玻璃样片均匀透亮。实验选择 1100℃熔融制备玻 璃熔片。

2.1.3 二氧化硅的用量

按照常规的熔样方法,制备的玻璃片破碎炸裂。 这是因为金红石样品中二氧化钛含量高不易制备成 熔融玻璃片。为此,按照实验方法,分别加入5~ 20 mg 玻璃成型剂二氧化硅制备玻璃片,并考察了二 氧化硅用量对测定的影响。结果表明:当加入5 mg 二氧化硅时,制备的玻璃片炸裂;加入10 mg 二氧化 硅时,制备的熔融片完好,但个别样片会炸裂;加入 15 和 20 mg 二氧化硅时,制备的熔融片均光滑、完 好。考虑到制备的熔融片还要测定二氧化硅,而在 制备熔融片时加入 20 mg 二氧化硅对测定金红石样 品中低含量二氧化硅的精密度影响更大,故在熔融 制样时选择加入15 mg 二氧化硅。

2.2 基体效应和谱线重叠校正

采用熔融法制样能够消除样品的粒度效应和矿物效应,减小基体效应。但元素间的影响依然存在, 需采用数学校正公式(1)进行基体效应和谱线重叠 校正。

$$C_i = D_i - \sum L_{im} Z_m + E_i R_i \left(1 + \sum_{i=1}^N \alpha_{ij} \cdot Z_i\right) \quad (1)$$

式中: C_i 为校准样品中分析元素 i 的含量(在未知样 品分析中,为基体校正后分析元素 i 的含量); D_i 为 分析元素 i 的校准曲线截距; L_{im} 为干扰元素 m 对分 析元素 i 的诺线重叠干扰校正系数; Z_m 为干扰元素 m 的含量或计数率; E_i 为分析元素 i 校准曲线的斜 率; R_i 为分析元素 i 的计数率(或与内标线的强度比 值); Z_j 为共存元素 j 的含量;N 为共存元素的数 目; α 为校正基体效应的因子。

2.3 方法的检出限

因样品组成不同,分析元素的灵敏度、散射背景 强度、谱线重叠干扰程度都会发生变化,因而不同样 品的检出限是有差异的,所以用检出限公式(2)计算 出的检出限(L_D)与实际检出限也有较大差别。

$$L_{\rm D} = \frac{3}{m} \sqrt{\frac{I_b}{t}} \tag{2}$$

式中:m 是单位含量计数率(kcps/(μ g/g)); I_b 是背景计数率;t 是背景计数时间。

采用 10 个金红石校准样品 S01~S10 制备熔融 片,选用这 10 个校准样品中含量最低的组分,各重 复测定 10 次并计算标准偏差(SD),以其 3 倍标准偏 差的平均值计算得到各组分的方法检出限(L_D),结 果见表 3。用这种方法计算得到的方法检出限,考虑 了样品制备、仪器和计数统计所带来的误差,因而更 具有实用意义。

表 3 方法的检出限

Table 3 The limit of detection of the method

			$\mu { m g}/{ m g}$
组分 Component	$L_{\rm D}$	组分 Component	L_D
MnO	180	Fe_2O_3	180
SiO_2	750	TiO ₂	200
CaO	85	MgO	111
$\mathrm{Al}_2\mathrm{O}_3$	171	K_2O	70

2.4 方法的精密度

用钛铁矿标准样品 ZBK457 和高纯试剂二氧化 钛按比例混合配制得到金红石合成样品,按照实验 方法重复制备 6 个样片进行测定,计算得到测定结 果的相对标准偏差(RSD)为 0.22%~1.6%,具体见 表 4。

表 4 精密度试验结果 Table 4 Results of the precision test

	理论值	实验方法 Proposed method			
组分 Component	Theoretical value w/%	测定值 Found w/%	相对标准偏差 RSD (n=6)/%		
MnO	0.18	0.19	1.2		
SiO_2	29.37	29.15	0.22		
$\mathrm{Al}_2\mathrm{O}_3$	9.17	8.97	0.60		
Fe_2O_3	18.60	18.65	1.0		
TiO_2	16.63	16.71	0.64		
MgO	5.38	5.28	0.38		
CaO	6.50	6.41	0.44		
K_2O	0.06	0.07	1.6		

2.5 正确度试验

用钛铁矿标准样品 ZBK453 和 ZBK457(济南众标科技有限公司研制)和高纯试剂二氧化钛按比例 混合配制得到 2 个金红石合成样品,采用实验方法进行测定,并将测定结果与理论值(由标准样品认定值计算得到)进行比对,结果见表 5。由表 5 可见,合成样品的测定值与理论值相符。

— 70 —

表 5 金红石合成样品中主次量组分的测定结果

 Table 5
 Determination results of major and minor

components in rutile synthetic samples $w/\sqrt[9]{0}$

	合成样 Synthetic	羊品 1 sample 1	合成样品 2 Synthetic sample 2		
组分 Component	理论值 Theoretical value	实验方法 Proposed method	理论值 Theoretical value	实验方法 Proposed method	
MnO			0.23	0.22	
SiO_2	0.41	0.41	2.07	2.08	
$\mathrm{Al}_2\mathrm{O}_3$	0.26	0.29	2.03	2.01	
$\mathrm{Fe}_2\mathrm{O}_3$	8.65	8.69	15.25	15.50	
TiO_2	90.00	90.32	73.87	74.09	
MgO	0.31	0.30	0.44	0.45	
CaO			0.12	0.11	

参考文献:

- [1] 岩石矿物分析编写小组.岩石矿物分析[M].北京:地质出版社,1974.
- [2] 许春向,周学贤.现代卫生化学[M].北京:人民卫生出版 社,2000.
- [3] 叶家瑜,江宝林.区域地球化学勘察样品分析方法[M].北 京:地质出版社,2004.
- [4] 王柱命,刘民武,何克,等.X 射线荧光光谱法直接测定地 质样品中 10 种主量元素[J].理化检验:化学分册,2012, 48(增刊):8-10.

WANG Zhu-ming, LIU Min-wu, HE Ke, et al. Derict determination of 10 major elements in geological samples by X-ray fluorescence spectrometry[J]. Physical Testing and Chemical Analysis Part B; Chemical Analysis, 2012, 48(Supplement): 8-10.

 [5] 宫志爱.X 射线荧光光谱法测定锰铁、硅锰合金中硅、锰、 磷[J].理化检验:化学分册,2012,48(增刊):73-74.
 GONG Zhi-ai.Determination of silicon, manganese, phos-

phorus in manganese iron and silicon manganese alloy by X-ray fluorescence specrometry [J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2012, 48(Supplement): 73-74.

[6] 陈荣庆.粉末压片-X-射线荧光光谱法测定五氧化二钒 中主次成分[J].冶金分析,2008,28(4):8-12.

CHEN Rong-qing. Determination of major and minor component in vanadic oxide by the powder press slice—X-ray

fluorescence spectrometry[J]. Metallurgical Analysis 2008, 28(4):8-12.

 [7]徐亭亭,夏宁,张波.熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分[J].岩矿测试,2008,27(1): 74-76.

XU Ting-ting, XIA Ning, ZHANG Bo. Determination of major and minor elements in ilmenite samples by X-ray fluorescence spectrometry with fusion sample preparation technique[J]. Rock and Mineral Analysis, 2008, 27(1): 74-76.

[8] 袁家义,吕振生,姜云.X 射线荧光光谱熔融制样法测定 钛铁矿中主次量组分[J].岩矿测试,2007,26(2):158-159,162.

YUAN Jia-yi, LÜ Zhen-sheng, JIANG Yun. Determination of major and minor elements in titanic iron ore samples by X-ray fluorescence spectrometry with fusion sample preparation technique [J]. Rock and Mineral Analysis, 2007, 26 (2):158-159,162.

- [9] 朱忠平,李国会.熔融制样-X 射线荧光光谱法测定钛铁矿 中主次组分[J].冶金分析,2013,33(6):32-36.
 ZHU Zhong-ping,LI Guo-hui.Determination of major and minor elements in titanic iron ore samples by X-ray fluorescence spectrometry with fusion sample preparation technique[J].Metallurgical Analysis,2013,33(6):32-36.
- [10] 罗明荣,陈文静.X 射线荧光光谱法测定还原钛铁矿中 11种组分[J].冶金分析,2012,32(6):24-29.
 LUO Ming-rong, CHEN Wen-jing. X-ray fluorescence spectrometric determination of eleven components in reduced ilmenite[J]. Metallurgical Analysis 2012,32(6): 24-29.
- [11] 宫嘉辰,白小叶,姜炳南.熔融制样 X 射线荧光光谱法测 定钒钛磁铁矿中 12 种组分[J].冶金分析,2019,39(2): 66-70.

GONG Jia-chen, BAI Xiao-ye, JIANG Bing-nan. Determination of twelve compoments in vanadium-titanium magnetite ore by X-ray fluorescence spectrometry with fusion sample preparation [J]. Metallurgical Analysis, 2019,39(2):66-70.

[12] Duchesne J C, Guybologne.XRF major and trace element determination in Fe-Ti oxide minerals[J].Geologica Belgica,2009,12(3-4):205-212.

Determination of major and minor components in rutile by X-ray fluorescence spectrometry with fusion sample preparation

HUANG Kang¹, LI Zhong-xia², ZHU Wen-jing², LIU Er-qing²

 Testing Center of Tianshui Institute of Mineral Exploration of Gansu Nonferrous Metals Geological Survey Bureau, Tianshui 741025, China;
 Testing Center of Hebei Institute of Regional Geological Survey, Langfang 065000, China)

Abstract: During the evaluation of rutile grade, the contents of major and minor components in rutile

71 —

HUANG Kang,LI Zhong-xia,ZHU Wen-jing,et al.Determination of major and minor components in rutile by X-ray fluorescence spectrometry with fusion sample preparation. Metallurgical Analysis,2020,40(3):68-72

should be determined. The content of titanium dioxide in rutile sample was usually very high. Moreover, it belonged to refractory compound. Thus, the fused bead was easily broken and burst during the determination of rutile by X-ray fluorescence spectrometry (XRF) with fusion sample preparation. The dilution ratio and fusion temperature were optimized in experiments. The rutile fused bead was successfully prepared by adding suitable amount of glass molding agent SiO₂. Then, the determination of major and minor components (including Fe2O3, TiO2, MnO, SiO2, Al2O3, CaO, MgO, K2O) in rutile by XRF was realized. The standard sample of ilmenite, the certified reference material of gabbro and titanium dioxide of high purity reagent were ground and uniformly mixed in a certain proportion to prepare 10 rutile synthetic samples with certain content gradients. Then the calibration curves were drown. The correction of matrix effect and spectral overlapping were carried out with mathematical correction formula. The correlation coefficients of calibration curves of major and minor components were all greater than 0. 9979. The contents of major and minor components in rutile synthetic sample (which was prepared by proportional mixing of ilmenite standard sample and titanium dioxide of high purity reagent) were determined according to the experimental method. The relative standard deviations (RSD) of determination results were between 0.22% and 1.6%. Two rutile synthetic samples (which were prepared by proportional mixing of ilmenite standard sample and titanium dioxide of high purity reagent) were determined according to the experimental method. The determination results for the major and minor components were in good agreement with the theoretical values (calculated based on the certified values of standard samples).

Key words:rutile; X-ray fluorescence spectrometry; fusion sample preparation; major and minor component; glass molding agent

"测试分析"微信公众平台欢迎您的关注

《冶金分析》《物理测试》杂志官方微信"测试分析"公众共享平台欢迎广大分析测试领域相关人员的加入,您可以通过扫描二维码进行关注。

公众平台名称:测试分析 公众平台微信号:ceshifenxi 公众平台二维码:

