钒钛磁铁矿对烧结及炼铁的影响分析[®]

李 建, 毛晓明

(宝山钢铁股份有限公司中央研究院,上海 201900)

摘 要:研究了烧结配矿中钒钛磁铁矿用量对烧结利用系数、燃耗和低温还原粉化率的影响,结果表明,烧结矿中 TiO₂ 含量增加 1 个百分点,烧结产量下降 11.1%,固体燃耗增加 3.99%,*RDI*_{+3.15 mm}降低 3.96 个百分点;根据烧结低温还原粉化率与高炉产量和燃料 比的影响关系,将使得高炉铁水产量降低 3.04%,焦比增加 11.01 kg/tHM。通过本分析,可定量地评估钒钛磁铁矿对烧结、高炉炼铁 的影响。

关键词: 配矿; 钒钛磁铁矿; 烧结; 低温还原粉化; 高炉产量

中图分类号: TF046 文献标识码: A doi:10.3969/j.issn.0253-6099.2018.04.025 文章编号: 0253-6099(2018)04-0098-04

Effect of Vanadium Titanium Magnetite on Sintering and Iron Making

LI Jian, MAO Xiao-ming

(Research Institute, Baoshan Iron & Steel Co Ltd, Shanghai 201900, China)

Abstract: Effect of vanadium titanium magnetite on sintering productivity, fuel rate and low-temperature reduction degradation index (RDI) was studied. Results indicated that when TiO_2 content in sinter was increased by 1 percentage point, the sintering output was decreased by 11.1%, the solid fuel consumption rose by 3.99% and $RDI_{+3.15 \text{ mm}}$ fell by 3.96 percentage points. According to the correlation between RDI and fuel rate, the hot metal production from blast furnace will be reduced by 3.04% and coke rate will be increased by 11.01 kg/tHM. Based on such analysis, the effect of vanadium titanium magnetite on sintering and blast furnace iron-making can be quantitatively evaluated.

Key words: ore blending; vanadium titanium magnetite; sinter; low temperature reduction degradation; blast furnace production

随着钢铁市场回暖,高品位铁矿石价格重新上涨。 含一定量 TiO₂ 的钒钛磁铁矿价格相对较低,但其配入 烧结时,对烧结和高炉都将带来一定的影响,但目前对 具体影响程度缺乏定量分析。

国内学者对攀枝花、承德的钒钛磁铁矿烧结研究 较多^[1-6],烧结矿中 TiO₂ 含量达到 7%~10%,在该原 料条件下,烧结的技术指标及产质量与普通烧结矿存 在较大差异,高炉需匹配相应的冶炼制度。另有部分 学者对钒钛磁铁矿在直接还原和含碳球团方面的应用 开展了深入研究^[7-10]。传统钢厂在考虑配少量钒钛磁 铁矿降低配矿成本的同时需兼顾钛对高炉冶炼的影 响,烧结中 TiO₂ 含量通常在 1%左右。本文就钒钛磁 铁矿对烧结和高炉的影响进行了定量试验和分析。

1 原料性能及试验方法

试验所用原料化学成分如表1所示。

表1 原料化学成分(质量分数)/%

原料	TFe	FeO	SiO_2	Al_2O_3	CaO	MgO	TiO ₂
钒钛精粉	56.02	25.70	4.39	3.68	1.07	1.70	10.55
铁原料 A	64.70	27.49	4.54	1.54	1.48	1.14	0.28
铁原料 B	63.32	28.45	4.83	0.59	1.89	0.72	0.13
铁原料 C	57.23	4.67	6.47	1.96	2.50	1.05	0.31
铁原料 D	73.45	65.44	0.38	0.08	0.85	0.035	0.11
铁原料 E	38.11	24.41	6.05	2.18	6.22	1.05	0.51
生石灰	0.14	_	3.60	0.66	81.55	2.04	0.02
石灰石	0.20	_	1.51	0.45	51.78	2.53	0.03
焦粉	2.51	_	6.97	3.75	2.03	0.41	0.04
原料	MnO	Р	S	Na_2O	K_2O	烧失	水分
钒钛精粉	0.026	0.016	0.200	0.012	0.006	0.93	3.10
铁原料 A	0.018	0.012	0.024	0.015	0.012	0.96	3.70
铁原料 B	0.977	0.025	0.297	0.221	0.110	0.86	3.13
铁原料 C	0.016	0.032	0.193	0.013	0.007	5.58	3.80
铁原料 D	0.098	0.008	0.037	0.007	0.001	0.04	0.92
铁原料 E	0.020	0.045	0.370	0.001	0.051	29.49	1.46
生石灰	0.007	0.001	0.001	0.058	0.115	11.72	—
焦粉	0.029	0.034	0.110	0.036	0.042	82.91	6.77

分析结果表明,含铁原料中,钒钛精粉含 TiO₂ 最高;其次为铁原料 E;其它含铁原料 TiO₂ 含量均低于 0.5%。铁原料 A、B 铁品位较高,FeO 含量较高,均为 磁铁矿类型铁精矿。铁原料 D、E 为钢铁厂内部含铁 二次资源。从原料分析结果还能发现,铁原料脉石成 分中,均含有一定量的 CaO 和 MgO。

原料粒度组成如表 2 所示。可见铁原料 B 粒度 最细,其次为铁原料 B、E,其它几种铁原料粒度略粗。

百割		平均粒度						
15744	+8	5~8	3~5	1~3	$0.5 \sim 1$	$0.25 \sim 0.5$	-0.25	/mm
钒钛精粉	1.42	2.34	4.38	30.48	14.13	6.81	40.43	1.23
铁原料 A	0	1.08	3.06	4.10	2.05	0.86	88.85	0.40
铁原料 B	0	0	0	0	1.06	2.13	96.81	0.14
铁原料 C	0.00	2.14	9.47	26.40	9.67	3.04	49.28	1.19
铁原料 D	3.76	7.57	13.93	42.08	14.39	4.35	13.91	2.33
铁原料 E	1.58	1.25	0.72	2.19	6.32	6.06	81.89	0.45
生石灰	0	0	1.38	27.59	14.51	11.20	45.33	0.81
石灰石	0	0.18	8.20	46.74	19.99	3.66	21.23	1.46
焦粉	2.82	12.27	10.32	23.06	17.92	6.39	27.22	2.09

表 2 原料粒度组成及平均粒度

原料的制粒性与亲水性存在密切关系,通常用静态成球性指数表征亲水性的强弱。试验用原料成球性指数如表 3 所示。试验研究所用铁矿中,除铁原料 D 外,其余铁矿的静态成球性指数均在 0.36 以上。根据对成球性指数的定义及其对物料成球性难易程度的区分,铁原料 D 的成球指数在 0.2 以下,属无成球性物料,结合粒度分析,其细粒级部分含量较少,对烧结制粒影响不大。其余铁原料静态成球性指数大于 0.35 但小于 0.6,属弱成球性物料。铁原料 A 成球性指数大于 0.35

表 3 原料静态成球性指数

原料	最大毛细水/%	最大分子水/%	静态成球性指数
钒钛精粉	17.42	4.62	0.361
铁原料 A	17.63	6.71	0.614
铁原料 B	17.08	5.00	0.414
铁原料 C	16.25	4.40	0.372
铁原料 D	0.00	0.60	—
铁原料 E	26.69	8.16	0.441

烧结采用质量配料法配料,人工干混 3 次,加水湿 混 3 次,混匀后在 Φ 600 mm × 300 mm 的圆筒混合制 粒机内进行制粒。制粒完毕后,将混合料布料至直径 100 mm 的烧结杯中,杯底铺有 0.5 kg 铺底料,装料高 度 700 mm;采用天然气点火,点火时间 1.5 min,点火 温度 1 180±50 ℃,点火负压 6 kPa,烧结负压 13 kPa, 抽风负压 13 kPa。从点火至烧结废气温度达到最高后 开始降温时所需时间即为烧结时间。到达烧结终点 时,抽风负压调低至 6 kPa,冷却 5 min 后卸料,然后进 行落下,检测成品率、转鼓强度等冷态性能。取成品烧 结矿按 GB/T 24204-2009/ISO 13930:2007 检测其低 温还原粉化指数(*RDI*)。

2 试验结果及讨论

2.1 钒钛磁铁矿配比对烧结的影响

按照表4所示的配矿方案,通过烧结杯试验,研究 钒钛磁铁矿对烧结的影响。主要考察钒钛精粉 TiO₂ 含 量对烧结产质量的影响,以达到返矿平衡(1.00±0.05) 为前提,调整混合料的水和碳。

表 4 配矿方案及烧结矿主要成分

伯旦		配比/%	烧结矿成分/%			
细石	钒钛精粉	铁原料 B	生石灰	MgO	TiO_2	TFe
P6	0.00	60.95	7.65	0.92	0.17	58.97
P7	5.00	55.95	7.65	0.98	0.72	58.58
P8	15.00	45.95	7.65	1.08	1.82	57.81
Р9	20.00	40.90	7.70	1.13	2.38	57.40

注: ① 4 种配方的计划碱度均为 1.64; ② 4 种配方中铁原料 A、C、D 和 E 的配比均为 18.00% 、7.00% 、1.20% 和 1.20%; ③ 4 种配方中 焦粉的配比均为 4.00%。

随着钒钛精矿配比由 0%增加到 20%,烧结矿中 TiO₂含量由 0.17%增加到 2.38%。在确保返矿平衡 (1.00±0.05)的条件下,调整烧结过程燃料、水分含 量,钒钛磁铁矿配比对烧结指标的影响如表 5 所示。 可见,烧结成品率和转鼓强度变化无明显的规律性,但 利用系数显著下降,烧结固体燃耗明显增加。

将钒钛磁铁矿与烧结利用系数、固体燃耗的关系进行相关性分析,如图1所示。随着烧结矿中TiO₂含量增加,烧结利用系数显著下降,对其进行线性模拟,

表 5 钒钛磁铁矿配比对烧结指标的影响

钒钛精矿配比 /%	燃料 /%	水分 /%	成品率 /%	垂直烧结速度 /(mm・min ⁻¹)	利用系数 /(t・m ⁻² ・h ⁻¹)	固体燃耗 /(kg・t ⁻¹)	转鼓强度 /%	返矿平衡 系数
0	5.93	7.93	78.12	12.83	1.02	111.25	44.93	1.04
5	7.66	8.12	77.66	10.88	0.88	113.16	41.91	1.05
15	7.66	8.22	78.37	10.71	0.84	114.59	46.65	1.00
20	7.66	8.33	78.31	9.58	0.73	122.62	51.47	0.99

得到回归方程为:y = -0.112 4x + 1.0105,回归系数 R^2 达到 0.893 1,说明在本次烧结试验中,利用系数的变 化有 89.3%是由烧结矿中 TiO₂ 含量即钒钛磁铁矿配 比变化引起的。根据该回归方程可知,烧结矿中 TiO₂ 含量增加 1 个百分点,烧结产量下降 11.1%。随着烧 结矿中 TiO₂ 含量增加,烧结矿固体燃耗显著增加,得 到回归方程为:y = 4.386 4x + 109.82,回归系数 R^2 为 0.7814,即固体燃耗增加有 78.1%是由钒钛磁铁矿配 比增加导致的。烧结矿中 TiO₂ 每增加 1 个百分点,固 体燃耗增加 3.99%。

图 1 TiO₂ 含量对烧结利用系数及固体燃耗的影响

2.2 钒钛磁铁矿对高炉指标的影响

李涛^[11]介绍了钛矿对八钢高炉的影响:2014年, 八钢高炉入炉 TiO₂负荷为 10~15 kg,日本鹿岛 3[#]高 炉 5 050 m³操作实践表明,TiO₂负荷 15 kg,铁水和炉 渣的流动性并没有恶化到影响高炉操作的程度^[12]。 国内研究者也对含钛烧结矿的软熔性能进行了深入的 研究^[13-15],表明随着矿石 TiO₂含量提高,矿石的软化 温度升高,软熔区间变宽,但其研究的矿石含 TiO₂ 通 常达到 6%~14%,且未能得出软熔性能变化对高炉消 耗指标的影响。鉴于八钢所用烧结矿 TiO₂含量远低 于国内其它研究者的研究值,且软熔性能与高炉消耗 的指标缺乏量化的关系,故本文将研究重点放在不同 TiO₂含量烧结矿的低温还原粉化变化上,进而根据低 温还原粉化对高炉产量及消耗指标的影响,分析矿石 中TiO2含量变化对高炉指标的影响。

图 2 为不同 TiO₂ 含量烧结矿的低温还原粉化指标。研究结果表明,随着烧结矿中 TiO₂ 含量提高,烧结矿低温还原粉化指数显著恶化。这是由于随着钒钛 矿配比增加,烧结矿内钙钛矿、钛赤铁矿、钛磁铁矿等 含量增多,烧结矿矿相组成更加复杂,抵抗低温还原应 力能力变差,故粉化指数恶化。2 个回归方程的回归 系数 *R*² 均大于 0.9,表明低温还原粉化的变化与烧结 矿 TiO₂ 含量显著相关。烧结矿 TiO₂ 含量每增加 1 个百分点,*RDI*_{+6.3 mm}降低 4.269 7 个百分点,*RDI*_{+3.15mm}降低 3.964 5 个百分点。

国内炼铁工作者通过烧结矿喷洒 CaCl₂ 溶液工业 试验,研究了低温还原粉化与高炉操作指标之间的关 系^[16-19],表6为比较典型的研究结论。

表 6 低温还原粉化指标对高炉的影响

项目	炼钢 单位	产量增加 /%	焦比降低 /(kg・tHM ⁻¹)
$RDI_{+6.3 \text{ mm}}$	柳钢	2.07	8.58
增加10个百分点	湘钢	—	—
RDI _{+3.15 mm}	柳钢	5.02	20.76
增加10个百分点	湘钢	10.30	34.77

注:① 柳钢数据来源于文献[16],4[#]高炉,306 m³; ② 湘钢数据来源于文献[17],2[#]高炉,750 m³。

对比研究结论,可发现有如下规律:*RDI*+3.15 mm的变化对高炉消耗影响更为明显。取两者数据的平均值作

为参考,即 *RDI*_{+3.15 mm} 增加 10 个百分点,对产量的影响 为 7.66%,焦比为 27.77 kg/tHM,结合前面 *RDI*_{+3.15 mm} 研 究结果推算,烧结矿中 TiO₂ 含量增加 1 个百分点,高炉 产量降低 3.04%,焦比增加 11.01 kg/tHM。

3 结 论

综合上述研究和分析,烧结过程中增加钒钛磁铁 矿配比,虽然配矿成本降低,但烧结矿产量降低、固体 燃耗增加,且烧结矿低温还原粉化指数恶化,进而影响 高炉产量和燃料消耗。具体影响幅度为:烧结矿中 TiO₂含量在0.17%~2.38%之间,随着烧结矿中TiO₂ 含量增加1个百分点,烧结矿产量降低11.1%,固体燃 耗增加3.99%,低温还原粉化率*RDI*_{+3.15 mm}降低3.96个 百分点,高炉铁水产量预计降低3.04%,焦比增加 11.01 kg/tHM。

参考文献:

- 李凤臣,孙艳芹,孙丽芬,等. 承德钒钛磁铁矿低碱度烧结试验研究[J]. 钢铁研究, 2012,40(5):1-4.
- [2] 孙艳芹,王瑞哲,吕 庆,等. TiO₂ 质量分数对中钛型烧结矿质量 影响的研究[J].中国冶金, 2013,23(10):6-9.
- [3] 蒋大军,何木光,甘 勤,等. 钒钛磁铁精矿低硅烧结强化试验与应用[J]. 矿业工程, 2011,9(2):29-33.
- [4] 张义贤,何木光,饶家庭,等. 中钛型钒钛磁铁精矿烧结试验[J]. 四川冶金, 2011,33(5):18-21.
- [5] 刘 然,李 超,吕 庆,等.承德钒钛磁铁矿粉基础特性及烧结 试验研究[J].钢铁钒钛,2014,35(4):71-76.
- [6] 汪智德,石 军,何 群.不同富矿配比下钒钛磁铁矿烧结制度的

(上接第97页)

参考文献:

- [1] 林 梅,王湘平. 铅和镉胁迫对黄瓜种子萌发期间的毒害效应[J].
 湖南农业大学学报(自然科学版), 2012,38(1):41-45.
- [2] 舒 艳,李科林,宋金风,等. 狭叶香蒲活性炭对 Cd²⁺与 Pb²⁺的吸 附及机理分析[J]. 环境工程学报, 2016,10(1):181-188.
- [3] 晋玉秀,杨秀培,刘建军,等. 阴极还原法治理含铜废水的影响因 素[J]. 矿冶工程, 2005,25(6):55-56.
- [4] 程建国,林永树,阳华玲,等.石灰絮凝法去除矿坑废水中锰离子的研究[J].矿冶工程,2012,32(2):45-48.
- [5] 鲁雪梅,熊 鹰,张广之,等. 锰氧化物-阳离子交换树脂复合材料的制备及其对水中重金属的吸附性能[J].环境化学,2012,31 (10):1580-1589.
- [6] 张 蕊,葛 滢. 稻壳基活性炭制备及其对重金属吸附研究[J].
 环境污染与防治, 2011,33(1):41-45.
- [7] 谈 宇,付 旺,廖妤婕,等.复合改性膨润土固定尾矿中Zn的研究[J].环境工程学报,2015,9(1):381-386.
- [8] 官章琴,金春姬,任 娟,等. 松果对废水中 Cu²⁺、Pb²⁺、Zn²⁺的吸 附特性研究[J]. 工业用水与废水, 2010,41(4):59-63.
- [9] Md Juned K Ahmed, Ahmaruzzaman M. A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous

探讨[J]. 烧结球团, 1998,23(4):8-14.

- [7] 洪陆阔,武兵强,李鸣绎,等. 钒钛磁铁精矿含碳球团直接还原工 艺分析[J]. 矿冶工程, 2017,37(3):86-89.
- [8] 张 波,文 雯,张建良,等. 低镁钒钛磁铁矿内配碳球团还原控 制机制研究[J]. 矿冶工程, 2014,34(6):65-69.
- [9] 汪云华.内配碳固态还原钒钛磁铁矿试验研究[J].矿冶工程, 2013,33(4):91-93.
- [10] 李俊翰,邱克辉,杨绍利,等. 钒钛铁精矿内配碳球团强度性能研 究[J]. 矿冶工程, 2014, 34(1):57-60.
- [11] 李 涛,王宗乐,杜学义. 高炉配加钒钛矿的生产实践[J]. 新疆
 钢铁, 2011(2):28-29.
- [12] 小岛政辉. 鹿岛 3 号高炉操作状况[J]. 武钢技术, 1990(4):9-16.
- [13] 刁日升. 钒钛矿与普通矿在高炉各带行为差异的研究[J]. 钢 铁, 1996,31(2):12-16.
- [14] 杜 钢,杜鹤桂. 钒软磁铁矿的还原、软化和滴落特性的研究[J]. 钢铁钒钛, 1984(2):74-78.
- [15] 宋国才,苑天宇,陈小武. 高炉冶炼钒钦烧结矿软熔滴落带物相
 组成研究[J]. 钢铁钒钛, 1996,17(2):25-27.
- [16] 尹 怡,黄 宁,朱尚朴. 降低我厂烧结矿低温还原粉化的试验 研究[J]. 柳钢科技, 1998(z):16-20.
- [17] 王中一. 降低湘钢烧结矿低温还原粉化率的试验[J]. 烧结球团, 1997,22(3):27-29.
- [18] 金龙忠,张永中,文振国. 马钢一铁烧结矿喷洒新型抑制粉化剂 的效果[J]. 烧结球团, 2009,34(3):55-58.
- [19] 郑 皓,梁世标. 韶钢烧结矿喷洒 CaCl₂ 溶液工业试验[J]. 炼
 铁, 1999,18(5):20-22.

引用本文: 李 建, 毛晓明. 钒钛磁铁矿对烧结及炼铁的影响分析[J]. 矿冶工程, 2018, 38(4):98-101.

solutions [J]. Journal of Water Process Engineering, 2016,10(4): 39-47.

- [10] Ouyang X K, Yang L P, Wen Z S. Adsorption of Pb(II) from solution using peanut shell as biosorbent in the presence of amino acid and sodium chloride[J]. BioResources, 2014,9(2):2446-2458.
- [11] Ding Z H, Yu R, Hu X, et al. Graft copolymerization of epichlorohydrin and ethylenediamine onto cellulose derived from agricultural by-products for adsorption of Pb(II) in aqueous solution[J]. Cellulose, 2014,21(3):1459-1469.
- [12] 黄红丽,罗 琳,王 寒,等. 猪粪堆肥中铜锌与腐殖质组分的结 合竞争[J]. 环境工程学报, 2014,8(9):3978-3982.
- [13] 袁 宇,黄红丽,罗 琳. 堆肥对水体重金属铜和锌的吸附性能 研究[J]. 湖南农业科学, 2014(4):32-34.
- [14] 赵 玲, 尹平河, Yu Qi Ming, 等. 海洋赤潮生物原甲藻对重金属的富集机理[J]. 环境科学, 2001, 22(4): 42-45.
- Pehlivan E, Yanik B H, Ahmetli G, et al. Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp[J]. Bioresource Technology, 2008,99(9):3520-3527.

引用本文:魏东宁,杜淑雯,罗 琳,等.改性吸附剂对水中Cu(Ⅱ)的 去除效果研究[J].矿冶工程,2018,38(4):94-97.