【信息科学与控制工程】

doi: 10.11809/bqzbgcxb2019.07.031

三轴转台粗瞄控制系统非脆弱鲁棒滤波

李月芳1,周振华1,王 茂2

(1. 常州轻工职业技术学院,常州 213164; 2. 哈尔滨工业大学 空间控制与惯性技术研究中心,哈尔滨 150000)

摘要:提出一种基于广义分段仿射系统理论的非脆弱鲁棒滤波算法,解决一类参数不确定性体现为范数有界形式的 连续广义分段仿射系统具有 H_s性能指标且渐近稳定的弹性滤波器的设计问题。通过采用广义分段仿射 Lyapunov 函数、投影定理以及几个基本引理,提出了对于由所设计弹性滤波器构成的滤波误差动态系统满足鲁棒 H_s性能指 标的反馈控制器设计方法。通过求解一组包含参变量的 LMIs,可以得到保证广义分段仿射系统具有 H_s性能的反馈 控制器增益和渐进稳定弹性滤波器的待定系统矩阵,以及具有鲁棒控制性能的干扰抑制度 γ = 21.425 4。

关键词:粗瞄控制系统;分段仿射 Lyapunov 函数;非脆弱;鲁棒滤波;LMIs

本文引用格式:李月芳,周振华,王茂.三轴转台粗瞄控制系统非脆弱鲁棒滤波[J]. 兵器装备工程学报,2019,40(7): 153-158.

Citation format: LI Yuefang, ZHOU Zhenhua, WANG Mao. Non-Fragile Robust Filtering for Three-Axis Turntable Coarse Aiming Control System[J]. Journal of Ordnance Equipment Engineering, 2019, 40(7):153 – 158.

中图分类号:TH13 文献标识码:A 文章编号:2096-2304(2019)07-0153-06

Non-Fragile Robust Filtering for Three-Axis Turntable Coarse Aiming Control System

LI Yuefang¹, ZHOU Zhenhua¹, WANG Mao²

(1. Changzhou Vocational Institute of Light Industry, Changzhou 213164, China;

2. Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150000, China)

Abstract: A non-fragile robust filtering algorithm based on the theory of generalized piecewise affine system was proposed to solve the problem of designing an elastic filter for a class of discrete generalized H-infinite piecewise affine systems whose parameter uncertainties are expressed in the form of norm bounded. By using the generalized piecewise affine Lyapunov function, projection theorem and several basic lemmas, a feedback controller design method was proposed for the filtering error dynamic system consisting of the designed elastic filter, which satisfies the H-infinite robustness performance index. By solving a set of LMIs with parameters, the undetermined system matrix guaranteeing the performance of the generalized piecewise affine system, the gain of the feedback controller, the asymptotically stable elastic filter and the disturbance rejection degree $\gamma = 21.4254$ with robust H-infinite control performance can be obtained. The

simulation results show that the proposed design method is effective and excellent.

Key words: coarse aiming control system; piecewise affine Lyapunov function; non-fragile; robust filtering; LMIs

收稿日期:2019-01-02;修回日期:209-02-11

基金项目:江苏省专业带头人研修计划(2017TDFX002)

作者简介:李月芳(1975—),女,硕士,教授,主要从事电机拖动及仿真研究,E-mail:2460576884@qq.com;王茂 (1964—),男,教授,博士生导师,主要从事三轴转台控制系统研究及应用研究,E-mail:191439371@qq.com。 通讯作者:周振华(1983—),男,博士,副教授,主要从事复杂系统理论及其控制策略的选择研究,E-mail:zhouzhenhuazzh

由于星地通讯具有实时性和精准性,被广泛应用于军事 领域,而在众多星地通讯方式中激光通讯仍是行之有效的解 决方案。伴随超光谱成像技术和合成孔径雷达在卫星平台 上的应用^[1],如何准确且高速捕捉和瞄准链路目标成为星地 激光通讯领域研究的热点^[2-4]。这一过程的实现依赖于粗 瞄控制系统控制策略的选择以及实现,因此,粗瞄控制系统 性能将直接影响激光通讯对焦的速率和质量^[5]。

自1945年,世界上首个采取传统滚珠式轴承的仿真转 台在美国麻省理工学院诞生^[6],到我国现代新型三轴转台雏 形的出现,这一过程伴随技术更新和几代人的不懈努力^[7]。 2005年,哈尔滨工业大学自主研发的三轴飞行仿真转台 ET313A,准静态瞄准精度高、飞行速度适应范围广,相关技 术参数达到国际领先水平^[8]。基于控制理论与相关技术的 不断发展,近年来有关三轴转台的报道多集中在控制算法选 择与模拟实现上,文献[9]通过对测量模型、结构参数模型及 外参数模型的建模及优化整合提出一种基于三轴转台的多 视场星敏感器标定方法。用于地面卫星整星级姿态动力学 试验的三轴气浮台参数辨识方法由文献[10]给出,采用剩余 误差法可以直接作为二阶电子稳定方程的替代方案,成功应 用于三轴稳定转台雷达[11]。此外,文献[12-13]在转台结 构以及控制策略选择上也做了相应的研究。不难发现,今年 来对三轴转台控制算法的研究均没有给出消除子系统切换 所造成延时以及如何抵消外部扰动的方法,本文在前人所做 研究的基础上,研究三轴转台粗瞄控制系统既能消除切换延 时以及外部扰动,又满足一定鲁棒性能指标的控制方法。

本文基于广义分段仿射系统理论提出一种非脆弱鲁棒 滤波算法,针对粗瞄控制系统位移状态切换存在延时且抗扰 动能力较弱,解决一类参数不确定性体现为范数有界形式的 离散广义分段仿射系统具有 H。性能指标且渐近稳定的弹性 滤波器的设计问题,并将结果转换为包含参变量的 LMIs 约 束条件,得到欲寻求使闭环系统容许的反馈控制器增益。本 文所考虑星地激光通讯粗瞄控制系统整体框架如图 1。

图1 星地激光通讯粗瞄控制系统整体框架

1 数学建模

本文所考虑三轴转台的三个自由轴都采用传统直流力 矩电机驱动,三轴之间关系如图2。

图 2 方位轴与俯仰轴位置示意图

其中:控制方位轴采用一个电机(101),而俯仰轴采用两 个电机(102,103),且俯仰轴的两个电机绕组在接线时采用 串联方式,以保证其同步性。

本文对此类三轴转台的数学建模采用物理推导的方法 进行,被控对象为转台台面轴,其负载部分的数学模型可以 根据三轴转台力学原理推导,其动力学方程如下式所示:

$$T_m - T_l = (J_m + J_l) \frac{d\theta_0^2}{dt^2} + (B_m + B_l) \frac{d\theta_0}{dt}$$

式中: T_m 为电机的输出转矩, T_l 为对转台台面轴的干扰力 矩, J_m 为电机转子的转动惯量, J_l 为负载的转动惯量, θ_0 为 转台转角, B_m 为电机转子阻尼系数, B_l 为负载的阻尼 系数^[14]。

其中:电机的自由转子以及其负载所产生的额外力矩由 $(B_m + B_l) \frac{d\theta_0}{dt}$ 表示,又称为电机干扰力矩,此后用 T_c 代替,从 而得到简化后的结果:

$$T_{em} = J \frac{\mathrm{d}\theta_0^2}{\mathrm{d}t^2} + T_c$$

其中: $T_{em} = T_m - T_l, J = J_m + J_l, T_c = (B_m + B_l) \frac{\mathrm{d}\theta_0}{\mathrm{d}t}$ 。

通过推导,得到三个电机的输出力矩,以此类推,还可以 通过负载动力学方程推导出电机自身内部系统的电气方程 式,具体操作过程如下:

直流力矩电机作为驱动系统的元件,根据电气原理将电机的模型归纳如下:

$$\begin{cases} T_m = K_i i_a \\ u_a = e_a + L_a \frac{\mathrm{d}i_a}{\mathrm{d}t} + i_a R \\ e_a = K_e \frac{\mathrm{d}\theta_0}{\mathrm{d}t} \end{cases}$$

由此得到电机自身内部系统的电气方程式,其中各个物 理量的具体含义如表1所示。

表1 各物理量的具体含义

K_{t}	电磁转矩的系数	e_a	感应电动势
i_a	电机电枢回路的电流	K_{e}	反电动势系数
u_a	电机输入电压	R_a	电枢回路的电阻
L_a	方位轴转动角速度 θ_0		

接下来,采用 Laplace 变换对以上电机自身内部系统电 气方程和电机输出力矩进行处理,可以得到如下平衡方程:

$$\begin{cases} T_{em}(s) = K_{t}I_{a}(s) \\ T_{em}(s) = T_{c}(s) + Js \dot{\theta}_{0}(s) \\ U_{a}(s) = E_{a}(s) + L_{a}sI_{a}(s) + R_{a}I_{a}(s) \\ E_{a}(s) = K_{e} \dot{\theta}_{0}(s) \end{cases}$$

在此假设三轴转台方位轴所转动的方向角可以通过测量得到,将三轴转台所受台面垂直方向的力矩 *T* 作为系统输入,一段时间以后,对系统实施控制策略的最终目的在于保持方位轴转动角速度 θ_0 恒定的前提下,使得:*y* = 0(103 位移), φ = 0。

进一步,通过反拉氏变换,将该类系统状态空间描述归 纳为一类参数不确定性体现为范数有界形式的时变参数连 续时滞广义分段仿射系统:

$$\begin{cases} E\dot{x}(t) = (A_{i} + \Delta A_{i})x(t) + \\ (A_{di} + \Delta A_{di})x(t - \tau(t)) + \\ B_{i}u(t) + E(b_{i} + \Delta b_{i}) \\ x(t) = \varphi(t) \end{cases}$$
(1)

$$t \in \lfloor -h, 0 \rfloor \tag{2}$$

其中: $x(t) \in R^{n_x}$ 为系统状态变量; $u(t) \in R^{n_u}$ 为控制输入向 量; $y(t) \in R^{n_y}$ 为系统输出向量; $\varphi(t)$ 是初始条件, $\tau(t)$ 系统 的变时滞,并且 $0 \le \tau(t) \le h, \dot{\tau}(t) \le \eta \le 1; A_i, A_{di}, B_i, b_i, E$ 为 第 i 个子系统的已知线性定常系数矩阵; Eb_i 是偏置项;索引 集合是 $I = \{1, 2, \dots, N\}$; $E \in R^{n_x \times n_x}$ 是广义矩阵,且 rank(E) = $r \le n_x$; ΔA_i , ΔA_{di} 和 Δb_i 代表系统的不确定项,且满足如下 形式:

$$\begin{bmatrix} \Delta A_i & \Delta A_{di} & E \Delta b_i \end{bmatrix} = W_{i1} \Delta_i(t) \begin{bmatrix} E_{i1} & E_{i2} & E_{i3} \end{bmatrix}, \ i \in I$$
(3)

注:本文中只考虑矩阵 A_i , A_{di} 和 b_i 带有不确定项的情况。本文处理不确定项的方法同样可以应用于其他系统矩阵,例如 B_i , $i \in I_o$

其中: W_a , E_a , E_a 和 E_a 是预先指定的定常实数矩阵, $\Delta_i(t)$: $Z^+ \rightarrow R^{*1 \times *2}$ 是一个未知的实值时变矩阵函数,并且包含 Lebesgue 可测量元素,具有如下形式;

$$\Delta_i^T(t)\Delta_i(t) \leqslant I_{s_2} \tag{4}$$

如果式(3)和式(4)同时成立,则称系统具有容许的参数不确定性。

在子系统中,将多面体区域 *R_i* 过渡到区域 *R_j* 的集合用 Ω表示,可以描述为:

$$\Omega = \{(i, j) | y(t) \in R_i, y(t + \tau(t)) \in R_j, i, j \in I\}$$
(5)

本文假设多面体区域 R_i , $i \in I$ 具有形式:

$$R_i = \{ y \mid \alpha_i \leq y \leq \beta_i, y = C_i x \}, \ i \in I$$
(6)

该多面体区域可以进一步描述为一个椭圆集合,其中 $F_i = 2C_i/(\beta_i - \alpha_i), f_i = -(\beta_i + \alpha_i)/(\beta_i - \alpha_i);$

$$\varepsilon_i = \{x \mid ||F_i x + f_i|| \le 1\}, i \in I$$
(7)
对于每个椭圆区域,可以得到;

$$\begin{bmatrix} x(t) \\ 1 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} F_i^{\mathrm{T}} F_i & F_{i,f_i}^{\mathrm{T}} \\ * & f_i^{\mathrm{T}} f_i - 1 \end{bmatrix} \begin{bmatrix} x(t) \\ 1 \end{bmatrix} \leqslant 0, \ i \in I$$
 (8)

进一步将状态空间分为两类区域 $I = I_0 \cup I_1, I_0$ 代表包含 原点的 $f_i^T f_i \leq x(t)^T H x(t)$,并且, $H = H_1^T H_1$ 索引集合区域, I_1 则代表其余的索引集合区域。

2 预备知识

定义1^[15]考虑参数不确定体现为范数有界形式的离 散广义分段仿射系统(1),其中*u*(*t*)=0;

① 如果 deg(det($zE - A_i$)) = rank(E), $i \in I$ 则称式(1) 所表示的系统是因果广义系统。

② 如果式(1)所表示的广义系统是容许的,则系统(1) 必定正则、因果,而且是稳定的。

③ 用 ν^1 表示矩阵束 (E, A_i) 的一阶向量,且非零向量 ν^1 满足 $E\nu^1 = 0$,对于满足 $E\nu^k = A_i v^{k-1}$ 的非零特征向量 $\nu^k (k \ge 2)$,则称为矩阵束 (E, A_i) 的k阶特征向量。

定义2 在本文中,设计弹性状态反馈控制器: $u(t) = \bar{K}_i(t)x(t) = (K_i + \Delta K_i(t))x(t), i \in I, 其中: K_i \in R^{n_u \times n_x}$ 是控制器的增益矩阵, $\Delta K_i(t)$ 是控制器中的不确定项, $\Delta K_i(t) = M_k F_k(t) N_k, M_k, N_k$ 是已知的适当维数线性矩阵,并且 $F_k(t)^T F_k(t) \leq I_o$

引理1 对于适当维数实矩阵 $M = M^T \langle S \rangle N$ 和 $\Delta(t)$,若 满足 $\Delta^T(t)\Delta(t) \leq I$,则当且仅当存在某个标量 $\varepsilon > 0$ 时: $M + S\Delta(t)N + N^T\Delta^T(t)S^T < 0$ 等价于 $M + \varepsilon SS^T + \varepsilon^{-1}N^TN < 0$ 。

引理 2^[16] 若 $\psi_0(\xi), \psi_1(\xi), \dots, \psi_p(\xi)$ 为 $\xi \in R^n$ 的二次 仿射函数,其中 $\psi_i(\xi) = \xi^T Q_i \xi, i = 0, 1, \dots p, \square Q_i = Q_i^T$ 。对于 一组正数 $\mu_1, \mu_2, \dots, \mu_p \ge 0$,若对任意 $\xi \in R^n$,式 $\psi_0(\xi) = \sum_{i=1}^p \mu_i \psi_i(\xi) \ge 0$ 成立,则对于满足 $\psi_1(\xi) \ge 0, \psi_2(\xi) \ge 0, \dots, \psi_p(\xi) \ge 0$ 的所有 $\xi \in R^n$,有 $\psi_0(\xi) \ge 0$ 。 对于系统式(1),考虑性能指标:

 $J = \int_0^\infty (x^T(t) Qx(t) + u(t)^T Ru(t)) dt$ (9)

本文中,考虑如下弹性状态反馈控制器:

$$u(t) = \overline{K}_i(t)x(t) =$$

$$(K_i + \Delta K_i(t)) x(t), K_i \in R^{m_u \wedge n_x}, i \in I$$
 (10)
有此状态反馈控制器(9)和连续广义分段仿射系统(1)

有此状态反馈控制器(9)和连续) 又分段仿射系统(1) 构成的闭环系统可以描述如下:

$$\begin{cases} E\dot{x}(t) = (A_{i}(t) + B_{i}K_{i}(t))x(t) + \\ A_{di}(t)x(t - \tau(t)) + E(b_{i} + \Delta b_{i}) \\ x(t) = \varphi(t), t \in [-h, 0] \end{cases}$$
(11)

其中: $A_i(t) = A_i + \Delta A_i, A_{di}(t) = A_{di} + \Delta A_{di}, \overline{K}_i(t) = K_i + \Delta K_i(t)_{\circ}$

3 主要结果

定理 若存在对称正定矩阵 0 < $P_i = P_i^T \in R^{n_x \times n_x}$, $i \in I, 0 < \vartheta = \vartheta^T \in R^{n_x \times n_x}$, 和一系列实数 $\varepsilon_{ij}, i \in I, (i, j) \in \Omega$,有如下不等式组成立:

$$E^T P_i E \ge 0 \tag{12}$$

$$\begin{bmatrix} \Xi & P_i A_{di}(t) & H_1' \\ * & (\eta - 1)\vartheta & 0 \\ * & * & -\varepsilon_{ij}I \end{bmatrix} < 0$$

$$i \in I_0, (i, j) \in \Omega$$
(13)

$$\begin{bmatrix} \Xi & P_{i}\pi & P_{i}A_{di}(t) & H_{1}^{T} \\ * & \pi^{T}(-\varepsilon_{1}^{-1}I)\pi & 0 & 0 \\ * & * & (\eta-1)\vartheta & 0 \\ * & * & * & -\varepsilon_{ij}I \end{bmatrix} < 0$$
(14)

 $i \in I_1, (i, j) \in \Omega$

其中:π = $E(b_i + \Delta b_i)$; $\Xi = T + Q + \bar{K}_i(t)^T R \bar{K}_i(t) + \vartheta$; $T = (A_i(t) + B_i \bar{K}_i(t))^T P_i + P_i(A_i(t) + B \bar{K}_i(t))$,则由连续时间 广义分段仿射系统(1)和非脆弱状态反馈控制器(10)构成 的闭环系统(11)是容许的,且由此反馈控制器构成的闭环系 统存在一个性能上届,

$$J \leq J^* = \varphi^T(0) E^T P_i E \varphi(0) + \int_{-d}^0 \varphi^T(s) \vartheta(s) ds$$

证明 在本文中,考虑如下连续时间广义分段仿射李雅 普诺夫函数:

$$V(x,t) = x^{T}(t)E^{T}P_{i}Ex(t) +$$

$$\int_{t-\tau(t)}^{t} x^{T}(s) \vartheta x(s) ds, \quad i \in I$$
(15)

根据连续时间时滞广义分段仿射李雅普诺夫函数(15) 的定义,为使闭环系统(11)是容许的,只需保证如下不等式 成立,具体做法是对连续时间广义分段仿射李雅普诺夫函数 (15)式两边同时沿闭环系统(11)求导,得到如下不等式:

$$\dot{V}(x,t) = x^{T}(t) \Psi_{11}x(t) + 2\pi^{T}P_{i}x(t) + x^{T}(t)P_{i}\pi + \pi^{T}(-\varepsilon_{ij}^{-1}I)\pi < 0$$
(16)

其中:

$$\begin{split} \Psi_{11} &= (A_{i}(t) + B\bar{K}_{i}(t))^{T}P_{i} + P_{i}(A_{i}(t) + B_{i}\bar{K}_{i}(t)) + \\ \vartheta &+ \frac{1}{1 - \eta}P_{i}A_{di}(t)\vartheta^{-1}A_{di}(t)^{T}P_{i} + \varepsilon_{ij}^{-1}H_{1}^{T}H_{1} \end{split}$$

 $\pi = E(b_i + \Delta b_i)$,式(16)可进一步改写为如下形式,其中 (*i*, *j*) $\in \Omega$:

$$\dot{V}(x,t) = \begin{bmatrix} x^{T}(t) & 1 \end{bmatrix} \begin{bmatrix} \Psi_{11} & P_{i}\pi \\ \pi^{T}P_{i} & \pi^{T}(-\varepsilon_{ij}^{-1}I)\pi \end{bmatrix} \begin{bmatrix} x(t) \\ 1 \end{bmatrix} < 0$$
(17)

从式(16)可以看到:

$$A_{i}(t)^{T}P_{i}A_{i}(t) - E^{T}P_{i}E + B_{i}^{T}B_{i} < 0$$
(18)
很容易得到如下不等式:

$$A_{i}(t)^{T}P_{i}A_{i}(t) - E^{T}P_{i}E < 0$$
(19)

假设矩阵束(E, $A_i(t)$)是非因果的。用一阶特征向量 ν^1 和它的 Hermitian 矩阵 ν^{1*} 分别左乘和右乘式(19)。用 $E\nu^2$ 代替 $A_i(t)\nu^1$,并注意到 $E\nu^1=0$,得到:

$$\nu^{2*}E^{T}P_{i}E\nu^{2} < 0 \qquad (20)$$

与条件(12)相矛盾。所以得到矩阵束($E, A_i(t)$)是因果的。 显然,证明因果性的同时也证明了矩阵束($E, A_i(t)$)的正则性。

进一步将式(17)改写为如下形式:

$$\begin{bmatrix} \Psi_{11} & P_i \pi \\ \pi^T P_i & \pi^T (-\varepsilon_{ij}^{-1} I) \pi \end{bmatrix} < 0, (i, j) \in \Omega$$
 (21)

考虑系统性能指标(9),为了使闭环系统(11)满足预先 指定的保性能控制律,只需要令 $\dot{V}(x,t) + x^{T}(t)Qx(t) + u(t)^{T}Ru(t) \leq 0,$ 然而 $u(t) = (K_{i} + \Delta K_{i}(t))x(t),$ 因此得到如 下不等式:

$$\begin{bmatrix} \Psi_{11} + Q + \overline{K}_i(t)^T R \overline{K}_i(t) & P_i R \\ R^T P_i & R^T (-\varepsilon_{ij}^{-1} I) R \end{bmatrix} < 0$$
(22)

 $(\,i\,,\,j)\,\,\in\,\varOmega$

应用引理2,可以得到如下不等式:

$$\begin{bmatrix} \Phi & P_{i}\pi & H_{1}^{T} \\ * & \pi^{T}(-\varepsilon_{ij}^{-1}I)\pi & 0 \\ * & * & -\varepsilon_{ij}I \end{bmatrix} < 0$$
(23)

其中:

$$\Phi = T + Q + \bar{K}_{i}(t)^{T}R\bar{K}_{i}(t) + \vartheta + \frac{1}{1 - \eta}P_{i}A_{di}(t)\vartheta^{-1}A_{di}(t)^{T}P_{i}$$
$$T = (A_{i}(t) + B_{i}\bar{K}_{i}(t))^{T}P_{i} + P_{i}(A_{i}(t) + B_{i}\bar{K}_{i}(t))$$
再次应用引理 2,可以得到如下不等式:

$$\begin{bmatrix} \Delta & P_{i}\pi & P_{i}A_{di}(t) & H_{1}^{T} \\ * & \pi^{T}(-\varepsilon_{ij}^{-1}I)\pi & 0 & 0 \\ * & * & (\eta-1)\vartheta & 0 \\ * & * & * & -\varepsilon_{ij}I \end{bmatrix} < 0 \quad (24)$$

其中: $\Delta = T + Q + \overline{K}_i(t)^T R \overline{K}_i(t) + \vartheta$ 。由于不等式 $V(x,t) + x^T(t) Q x(t) + u(t)^T R u(t) \leq 0$ 成立,对上式进行移相处理后, 所以可以进一步得到: $\dot{V}(x,t) \leq -x^T(t) Q x(t) - u(t)^T R u(t)$,将此式两端对时间 *t* 从 0 到∞ 积分,得到:

$$\begin{aligned} I &= \int_0^\infty \left(x^T(t) Q x(t) + u(t)^T R u(t) \right) \mathrm{d}t \le V(x(0)) \\ &= \varphi^T(0) E^T P_i E \varphi(0) + \int_{-d}^0 \varphi^T(s) \vartheta(s) \mathrm{d}s = J^* \end{aligned}$$

定理得证。

注:定理的证明没有考虑 $b_i + \Delta b_i = 0, i \in I_0$ 的情况,即 $\pi = E(b_i + \Delta b_i) = 0, \exists I_0$ 所代表的区域表述为如下形式时: $f_i^T f_i \leq x(t)^T H x(t), 并且, H = H_1^T H_1, 考虑此区域信息的定理$ 就应该具有如下形式:

$$\begin{bmatrix} \Delta & P_i A_{di}(t) & H_1^T \\ * & (\eta - 1) \vartheta & 0 \\ * & * & -\varepsilon_{ij}I \end{bmatrix} < 0$$
(25)

定理给出了连续时间时滞广义分段仿射系统式(1)的保 性能控制器存在的充分条件,但是通过观察可以看到所得不 等式中还含有不确定项,因此该结果不能用 Matlab 中 LMI 工 具箱求解,故下面将定理的结果转化为与其等价的线性矩阵 不等式。不考虑 $\bar{K}_i(t) = K_i + \Delta K_i(t)$ 中的不确定项,即 $\bar{K}_i(t) = K_i$,也不考虑 $\pi = E(b_i + \Delta b_i)$ 中的不确定项,即: $\pi = Eb_i$ 。

4 数值仿真

本文所考虑三轴转台的三个自由轴都采用传统直流力 矩电机驱动。根据状态空间描述法给出的系统式(1),每个 自由轴的电机对应一个广义分段子系统,则各自的参数矩阵 赋值如下:

$$A_{1} = \begin{bmatrix} 0.231 \ 2 & 0.363 \ 4 \\ 0.382 \ 3 & 0.595 \ 6 \end{bmatrix} \quad A_{2} = \begin{bmatrix} 0.187 \ 7 & 0.145 \ 5 \\ 0.182 \ 1 & 0.244 \ 5 \end{bmatrix}$$
$$A_{3} = \begin{bmatrix} 1.164 \ 5 & 0.984 \ 5 \\ 1.984 \ 5 & 2.001 \ 5 \end{bmatrix} \quad B_{1} = \begin{bmatrix} 0.6 \\ 0.6 \end{bmatrix} \quad B_{2} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
$$B_{3} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \quad D_{11} = \begin{bmatrix} 0.3 \\ 0.5 \end{bmatrix} \quad D_{12} = 0.6C_{1} = \begin{bmatrix} 1 & -1 \end{bmatrix}$$
$$C_{2} = \begin{bmatrix} -0.5 & 1.25 \end{bmatrix} \quad C_{3} = \begin{bmatrix} -1.2 & 0.15 \end{bmatrix}$$
$$b_{1} = \begin{bmatrix} 0.05 \\ 0.05 \end{bmatrix} \quad b_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad b_{3} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} \quad E = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
$$E' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \delta_{1} = 0.1 \quad W_{11} = \begin{bmatrix} 0 \\ 0.03 \end{bmatrix} \quad W_{21} = \begin{bmatrix} 0 \\ 0.02 \end{bmatrix}$$
$$W_{31} = \begin{bmatrix} 0.2 \\ 1.6 \end{bmatrix} \quad E_{11} = \begin{bmatrix} 0 \\ 0.02 \end{bmatrix} \quad E_{12} = 0.03$$
$$E_{21} = \begin{bmatrix} 0 \\ 0.01 \end{bmatrix} \quad E_{22} = 0.04 \quad D_{21} = \begin{bmatrix} 1.1 \\ 2.1 \end{bmatrix} \quad D_{22} = 1.5$$
$$D_{31} = \begin{bmatrix} 2.1 \\ 0.1 \end{bmatrix} \quad D_{32} = 1.9 \quad E_{31} = \begin{bmatrix} 1.2 \\ 0.91 \end{bmatrix} \quad E_{32} = 1.44$$

具有范数有界参数不确定性的离散广义分段仿射系统 区域信息式中各项的赋值情况如下:

$$F_{1} = 2 \times \frac{C_{1}^{T}}{(\beta_{1} - \alpha_{1})} = \left[\frac{2}{7} - \frac{2}{7}\right]^{T}$$

$$f_{1} = -\frac{\beta_{1} + \alpha_{1}}{\beta_{1} - \alpha_{1}} = -\frac{13}{7}$$

$$F_{2} = 2 \times \frac{C_{2}^{T}}{(\beta_{2} - \alpha_{2})} = \left[-\frac{1}{5} - \frac{1}{2}\right]^{T}$$

$$f_{2} = -\frac{\beta_{2} + \alpha_{2}}{\beta_{2} - \alpha_{2}} = -\frac{13}{5}$$

$$F_{3} = 2 \times \frac{C_{3}^{T}}{(\beta_{3} - \alpha_{3})} = \left[-\frac{2}{5} - \frac{1}{20}\right]^{T}$$

$$f_{3} = -\frac{\beta_{3} + \alpha_{3}}{\beta_{3} - \alpha_{3}} = -\frac{5}{3}$$

其中:

 $\alpha_1 = 3, \beta_1 = 10, \alpha_2 = 4, \beta_2 = 9, \alpha_3 = 2, \beta_3 = 8_{\circ}$

二次型性能指标式中的加权矩阵: $R = 5, Q = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$ 。 另外,选取三轴转台粗瞄控制系统初始状态为:

 $x_0 = [0.5 \quad 0.9]^{\mathrm{T}}$

并且给定范数有界参数不确定性的离散广义分段仿射 系统扰动信号具有形式: $w(k) = 10e^{-k}$ 。通过数值仿真得到 带跟踪值与预先指定期望之间的关系曲线,由于引入非脆弱 鲁棒 H_x 滤波器而产生的闭环系统状态跟踪值是基于本文所 提定理而产生的,可以通过应用 Matlab 7.0 软件中的 minex 求解器得到。 应用本文所提三轴转台粗瞄控制系统设计方法得到欲 寻求的状态反馈控制器增益矩阵:

$$\begin{split} K_1 &= \begin{bmatrix} 5.237 \ 3 & 1.591 \ 6 \end{bmatrix}, \ K_2 &= \begin{bmatrix} -6.184 \ 8 & -3.953 \ 0 \end{bmatrix} \\ K_3 &= \begin{bmatrix} 0.154 \ 2 & -5.453 \ 6 \end{bmatrix} \\ & \ B_F &= \begin{bmatrix} 7.770 \ 3 & -8.081 \ 6 \\ 1.688 \ 0 & 7.007 \ 8 \end{bmatrix}, \ B_f &= \begin{bmatrix} 5.072 \ 1 & -7.102 \ 8 \\ 5.324 \ 0 & 3.203 \ 3 \end{bmatrix} \\ & \ C_f &= \begin{bmatrix} 7.142 \ 7 & 1.241 \ 3 \\ -8.466 \ 1 & 14.357 \ 8 \end{bmatrix}, \ D_f &= \begin{bmatrix} 8.097 \ 6 & -0.040 \ 3 \\ 4.032 \ 4 & 6.213 \ 3 \end{bmatrix} \end{split}$$

此时,离散广义分段仿射系统鲁棒 H_x 性能指标 $\gamma = 21.4254_{\circ}$

另一方面,本文所设计滤波误差动态跟踪系统中预先指 定期望值和被跟踪值之间的关系曲线见图3、图4。

图3 根据定理得到的滤波系统状态X₁误差响应曲线

图4 根据定理得到的滤波系统状态 X2 误差响应曲线

其中,虚线表示被跟踪信号状态响应曲线,实线表示预 先指定期望值。显而易见,两条曲线之间伴随跟踪较好。

针对传统三轴转台粗瞄控制系统子系统相互切换存在 系统输出延时的情况,本文所提算法同样给出了解决方案。 应用本文定理,基于以上给出的数值仿真结果,绘制系统输 出响应曲线,如图5所示。

其中,右边的曲线(横坐标从0到0.045)表示实际系统 输出曲线,而左边的曲线(横坐标从0.045到0.05)表示传统 控制方法作用下的系统输出曲线。通过观察可知,本文所提 算法成功消除了传统控制方法给整体系统带来的系统延时。

根据仿真结果绘制实际三轴转台粗瞄控制系统中台面 方位角以及俯仰角的误差跟踪曲线,具体见图6所示。

图5 根据定理得到的滤波系统输出响应曲线

图6 台面角以及俯仰角牵引偏差曲线

图 6 中上图曲线代表台面方位角牵引偏差曲线,下图曲 线代表俯仰角牵引偏差曲线。

本文所提控制系统的设计方法源于实际项目需求,为了 验证本文所提控制方法在实际转台控制系统中的可行性以 及卓越性,需要对硬件系统中主控板、故障保护电路装置以 及高速串行通讯板°三部分进行分别配置。在实际测试时, 现场所得实验数据根据不同速率分组进行记录,实验数据中 分别给定速度为0.01(°)/s,定时1000 s取值,完成10°停顿 的取值;指定速度取30(°)/s记,间隔12 s,停顿12 s取值, 完成360°间隔的读数;迭代取值11 次。

通过试验可知,本文所提三轴转台粗瞄控制系统设计方 法可以解决实际问题。

5 结论

本文针对现有星地激光通讯粗瞄控制系统,在未知外部 干扰和测量噪声存在的前提下,提出了一种基于线性矩阵不 等式 LMI 算法的 H-infinite 非脆弱保性能控制方法,成功消除位移状态切换时存在的内部系统延时。通过采用广义分段仿射 Lyapunov 函数、投影定理以及几个处理线性矩阵不等式的基本引理,使得由所设计弹性控制器构成的反馈系统同时满足鲁棒 H-infinite 性能指标和二次型性能指标。通过求解一组包含参变量的 LMIs,得到保证此类连续广义分段仿射系统具有 H-infinite 性能的反馈控制器增益以及滤波器待定矩阵,通过仿真证明所提方法有效。

参考文献:

- [1] 芮道满,刘超,陈莫,等. 自适应光学技术在星地激光通
 信地面站上的应用[J]. 光电工程,2018,45(3):55-63.
- [2] 郑伟,刘弘度,崔健永,等. 宇航光电子激光通信技术进展和发展建议[J]. 空间电子技术,2018,15(5):1-12.
- [3] 韩慧鹏.国外卫星激光通信进展概况[J].卫星与网络, 2018(8):44-49.
- [4] 曾智龙,刘兴,孙晖,等.空间激光通信最新进展及发展 建议[J].光通信技术,2017,41(6):1-5.
- [5] 武凤,于思源,马仲甜,等.星地激光通信链路瞄准角度 偏差修正及在轨验证[J].中国激光,2014,41
 (6):0605008.
- [6] ANDOH F. Inertia identification method based on the product of the integral of torque reference input and motor speed [J]. 2008:1151-1158.
- [7] BEYHAN S, ALCI M. A New RBF Network Based Sliding-Mode Control of Nonlinear Systems [C]//International Multiconference on Computer Science and Information Technology. 2009:11-16.
- [8] 程伟光.哈工大研制成功新型仿真转台[N/OL].[2005-01-10]. http://today. hit. edu. cn/articles/2005/01-10/01093002. htm.
- [9] 熊琨,王春喜,吴跃,等.基于三轴转台的多视场星敏感器标定方法[J/OL].红外与激光工程,2018(12):1-7.
- [10] 林海奇. 三轴气浮台质量特性优化设计及其参数辨识方 法研究[D]. 哈尔滨:哈尔滨工业大学,2018.
- [11] 吕向阳. 舰载雷达天线电子稳定方程在三轴稳定转台雷 达上的应用分析[J]. 雷达与对抗,2017,37(4):54-57.
- [12] 王雅雄,邵雅男,王璞.星载小型二轴稳瞄转台结构设计[J].装备制造技术,2018(5).
- [13] 张华强,刘永钦,史普帅,等.舰载稳定平台的非奇异终端滑模控制[J].舰船科学技术,2018(3).
- [14]魏代芹.转台控制系统设计与实现及基于神经网络的参数优化[D].哈尔滨:哈尔滨工业大学,2017.
- [15] BOYD S, EL GHAOUI L, FERON E. Linear matrix inequality in systems and control theory [J]. SIAM: Philadelphia, PA. 1994.
- [16] RODRIGUES L, BOYD S. Piecewise-affine state feedback for piecewise-affine slab systems using convex optimization [J]. Systems and Control Letters, 2005, 54(9):835-853.