14.581 MIT International Trade —Lecture 1: Gains from Trade and the Law of Comparative Advantage (Theory)—

Dave Donaldson

Spring 2011

Today's Plan

- Course logistics
- A Brief History of the Field
- Neoclassical Trade: Standard Assumptions
- Neoclassical Trade: General Results
 - Gains from Trade
 - 2 Law of Comparative Advantage

Today's Plan

- Course logistics
- A Brief History of the Field
- Neoclassical Trade: Standard Assumptions
- Neoclassical Trade: General Results
 - Gains from Trade
 - 2 Law of Comparative Advantage

• Lecture: Monday, Wednesday 2:30PM-4:00PM, E52-398

• Instructor: Dave Donaldson

• Office: E52-243g

• Email: ddonald@mit.edu

Office hours: by appointment

• TA: Sahar Parsa

• Office: E51-090

Email: sparsa@mit.edu

· Office hours: by appointment

- Recitations: TBA
- No required textbooks, but we will frequently use:
 - Avinash Dixit and Victor Norman, (DN)
 - Robert Feenstra, Advanced International Trade: Theory and Evidence (F)
 - Elhanan Helpman and Paul Krugman, Market Structure and Foreign Trade (HKa)
- Relevant chapters of all textbooks will be available on Stellar

• Course requirements:

- Four problem sets: 50% of the course grade
- One referee report: 15% of the course grade
- One research proposal: 35% of the course grade

Course outline:

- Neoclassical Trade (4 weeks)
 - General Model
 - 2 Special Cases: Ricardo, Ricardo-Viner, Heckscher-Ohlin
- "New" trade (4 weeks)
 - 1 Increasing Returns and Monopolistic Competition
 - Monopolistic Competition with Firm Heterogeneity
 - Gravity models and gravity equations.
- Topics:
 - Trade and Growth (1 week)
 - Trade and Labor Markets (1 week)
 - International Organization of Production (outsourcing, fragmentation of production, multinational firms) (2 weeks)
 - 4 Trade Policy (political economy, WTO) (1 week)
- Under every topic we will have one lecture on the theory and then one
 on the empirics; the goal is to learn as much as possible about each,
 and about their interaction.

Today's Plan

- Course logistics
- A Brief History of the Field
- Neoclassical Trade: Standard Assumptions
- Neoclassical Trade: General Results
 - Gains from Trade
 - 2 Law of Comparative Advantage

A Brief History of the Field

Two hundred years of theory

- 1830-1980: Neoclassical trade theory
 - \Rightarrow Ricardo
 - ⇒ Heckscher-Ohlin-Samuelson
 - ⇒ Dixit-Norman
- 2 1980-1990: New trade theory
 - \Rightarrow Krugman-Helpman
 - ⇒ Brander-Krugman
 - \Rightarrow Grossman-Helpman

A Brief History of the Field

The discovery of trade data; tighter integration of theory and empirics

- **1990-2000:** Empirical trade
 - ⇒ Leamer, Trefler, Davis-Weinstein
 - \Rightarrow Bernard, Tybout
- 2000-2010: Firm-level heterogeneity
 - \Rightarrow Melitz
 - ⇒ Eaton-Kortum
- Where are we now?

Today's Plan

- Course logistics
- A Brief History of the Field
- **10** Neoclassical Trade: Standard Assumptions
- Neoclassical Trade: General Results
 - Gains from Trade
 - 2 Law of Comparative Advantage

International Trade: Standard Assumptions

- What distinguishes trade theory from abstract general-equilibrium analysis is the existence of a hierarchical market structure:
 - **1** "International" good markets
 - 2 "Domestic" factor markets
- Typical asymmetry between "goods" and "factors":
 - Goods enter consumers' utility functions directly, are elastically supplied and demanded, and can be freely traded internationally.
 - Factors only affect utility through the income they generate, they are in fixed supply domestically, and they cannot be traded at all.

Central Issues:

- How does the integration of good markets affect good prices?
- How do changes in good prices, in turn, affect factor prices, factor allocation, production, and welfare?

International Trade: Standard Assumptions (Cont.)

- While these assumptions are less fundamental, we will also often assume that:
 - Consumers have identical homothetic preferences in each country (representative agent).
 - Model is static (long-run view).
- Many of these assumptions look very strong, but they can be dealt with by clever reinterpretations of the model:
 - Transport costs could be handled by interpreting one of the good as transportation services.
 - Factor mobility could be dealt with by defining as a good anything that can be traded.
 - Goods and factors can be distinguished by locations, time, and states
 of nature.

Neoclassical Trade: Standard Assumptions

- "Neoclassic trade models" characterized by three key assumptions:
 - Perfect competition
 - 2 Constant returns to scale (CRS)
 - No distortions

Comments:

- We could allow for decreasing returns to scale (DRS) by introducing hidden factors in fixed supply.
- Increasing returns to scale (IRS) are a much more severe issue, which was (partially) addressed by "New" trade theory.

Today's Plan

- Course logistics
- A Brief History of the Field
- Neoclassical Trade: Standard Assumptions
- Meoclassical Trade: General Results
 - Gains from Trade
 - 2 Law of Comparative Advantage

Neoclassical Trade: General Results

- Not surprisingly, there are few results that can be derived using only Assumptions 1-3.
- In the next three classes, we will derive sharp predictions for special cases of the neoclassical trade: Ricardo, Ricardo-Viner, and Heckscher-Ohlin.
- Today, we'll stick to the general case and show how simple revealed preference arguments can be used to establish two important results:
 - Gains from trade (Samuelson 1939)
 - 2 Law of comparative advantage (Deardorff 1980)

Basic Environment

- Consider a world economy with n = 1, ..., N countries, each populated by $h = 1, ..., H_n$ households.
- There are g = 1, ..., G goods:
 - $y^n \equiv (y_1^n, ..., y_G^n) \equiv \text{Output vector in country } n$
 - $c^{nh} \equiv (c_1^{nh}, ..., c_G^{nh}) \equiv$ Consumption vector of household h in country n
 - $p^n \equiv (p_1^n, ..., p_G^n) \equiv$ Good price vector in country n
- There are f = 1, ..., F factors:
 - $v^n \equiv (v_1^n, ..., v_F^n) \equiv \text{Endowment vector in country } n$
 - $w^n \equiv (w_1^n, ..., w_F^n) \equiv$ Factor price vector in country n

- We denote by Ω^n the set of combinations (y, v) feasible in country n.
 - CRS $\Rightarrow \Omega^n$ is a convex cone
- Revenue function in country n is defined as

$$r^n(p, v) \equiv \max_{y} \{py | (y, v) \in \Omega^n\}$$

- Comments (see Dixit-Norman pp. 31-36 for details):
 - Revenue function summarizes all relevant properties of technology.
 - Under perfect competition, yⁿ maximizes the value of output in country n:

$$r^n(p^n, v^n) = p^n y^n \tag{1}$$

Demand

The expenditure function

- We denote by u^{nh} the utility function of household h in country n.
- **Expenditure function** for household h in country n is defined as

$$e^{nh}(p, u) = \min_{c} \left\{ pc | u^{nh}(c) \ge u \right\}$$

- Comments (see Dixit-Norman pp. 59-64 for details):
 - Here factor endowments are in fixed supply, but easy to generalize to case where households choose factor supply optimally.
 - Holding p fixed, $e^{nh}(p, u)$ is increasing in u.
 - · Household's optimization implies

$$e^{nh}(p^n, u^{nh}) = p^n c^{nh}, (2)$$

where c^{nh} and u^{nh} are the consumption and utility level of the household in equilibrium, respectively.

One household per country

- In the next propositions, when we say "in a neoclassical trade model," we mean in a model where equations (1) and (2) hold in any equilibrium.
- Consider first the case where there is just one household per country.
- Without risk of confusion, we drop h and n from all variables.
- Instead we denote by:
 - (y^a, c^a, p^a) the vector of output, consumption, and good prices under autarky.
 - (y, c, p) the vector of output, consumption, and good prices under free trade.
 - u^a and u the utility levels under autarky and free trade.

- **Proposition 1** In a neoclassical trade model with one household per country, free trade makes all households (weakly) better off.
- Proof:

$$e(p, u^a) \le pc^a$$
, by definition of e
 $= py^a$ by market clearing under autarky
 $\le r(p, v)$ by definition of r
 $= e(p, u)$ by equations (1) , (2) , and trade balance

Since $e(p, \cdot)$ increasing, we get $u \ge u^a$

Gains from Trade One household per country

Comments:

- Two inequalities in the previous proof correspond to consumption and production gains from trade.
- Previous inequalities are weak. Equality if kinks in IC or PPF.
- Previous proposition only establishes that households always prefer "free trade" to "autarky." It does not say anything about the comparisons of trade equilibria.

Multiple households per country (I): domestic lump-sum transfers

- With multiple-households, moving away from autarky is likely to create winners and losers.
 - How does that relate to the previous comment?
- In order to establish the Pareto-superiority of trade, we will therefore need to allow for policy instruments. We start with *domestic* lump-sum transfers and then consider more general policies.
- We now reintroduce the index h explicitly and denote by:
 - c^{ah} and c^h the vector of consumption of household h under autarky and free trade.
 - v^{ah} and v^h the vector of endowments of household h under autarky and free trade.
 - u^{ah} and u^h the utility levels of household h under autarky and free trade.
 - τ^h the lump-sum transfer from the government to household h ($\tau^h \leq 0 \Leftrightarrow \text{lump-sum tax and } \tau^h \geq 0 \Leftrightarrow \text{lump-sum subsidy}$).

Multiple households per country (I): domestic lump-sum transfers

- **Proposition 2** In a neoclassical trade model with multiple households per country, there exist domestic lump-sum transfers such that free trade is (weakly) Pareto superior to autarky in all countries.
- Proof: We proceed in two steps. Step 1: For any h, set the lump-sum transfer τ^h such that

$$\tau^h = (p - p^a) c^{ah} - (w - w^a) v^h.$$

Budget constraint under autarky implies $p^a c^{ah} \leq w^a v^h$. Therefore

$$pc^{ah} \leq wv^h + \tau^h$$
.

Thus c^{ah} is still in the budget set of household h under free trade.

Multiple households per country (I): domestic lump-sum transfers

- Proposition 2 In a neoclassical trade model with multiple households per country, there exist domestic lump-sum transfers such that free trade is (weakly) Pareto superior to autarky in all countries.
- Proof (Cont.):

Step 2: By definition, government's revenue is given by

$$\begin{split} -\sum \tau^h &= (p^a-p)\sum c^{ah} - (w^a-w)\sum v^h &: \text{definition of } \tau_h \\ &= (p^a-p)\,y^a - (w^a-w)v &: \text{mc autarky} \\ &= -py^a + wv &: \text{zp autarky} \\ &\geq -r\,(p,v) + wv &: \text{definition } r\,(p,v) \\ &= -(py-wv) = 0 &: \text{eq. } (1) + \text{zp free trade} \end{split}$$

Multiple households per country (I): domestic lump-sum transfers

Comments:

- Good to know we don't need international lump-sum transfers.
- Domestic lump-sum transfers remain informationally intensive (where to find data on c^{ah} ?)

Multiple households per country (II): commodity and factor taxation

- With this last comment in mind, we now restrict the set of instruments to commodity and factor taxes/subsidies.
- More specifically, suppose that the government can affect the prices faced by all households under free trade by setting $\tau^{\rm good}$ and $\tau^{\rm factor}$ according to:

$$p^{\text{household}} = p + \tau^{\text{good}}$$

 $w^{\text{household}} = w + \tau^{\text{factor}}$

Multiple households per country (II): commodity and factor taxation

- **Proposition 3** In a neoclassical trade model with multiple households per country, there exist commodity and factor taxes/subsidies such that free trade is (weakly) Pareto superior to autarky in all countries.
- **Proof:** Consider the two following taxes:

$$au^{\text{good}} = p^a - p$$
 $au^{\text{factor}} = w^a - w$

By construction, household is indifferent between autarky and free trade. Now consider government's revenues. By definition

$$-\sum \tau^{h} = \tau^{\text{good}} \sum c^{ah} - \tau^{\text{factor}} \sum v^{h}$$
$$= (p^{a} - p) \sum c^{ah} - (w^{a} - w) \sum v^{h} \ge 0,$$

for the same reason as in the previous proof.

Multiple households per country (II): commodity and factor taxation

Comments:

- Previous argument only relies on the existence of production gains from trade.
- If there is a kink in the PPF, we know that there aren't any...
- Similar problem with "moving costs" (see Feenstra p.185).
- Factor taxation still informationally intensive: need to know endowments per efficiency units, may lead to different business taxes.

Today's Plan

- Course logistics
- A Brief History of the Field
- Neoclassical Trade: Standard Assumptions
- Meoclassical Trade: General Results
 - Gains from Trade
 - 2 Law of Comparative Advantage

Law of Comparative Advantage Basic Idea

- The previous results have focused on normative predictions.
- We now demonstrate how the same revealed preference argument can also be used to make positive predictions about the pattern of trade.
- Principle of comparative advantage:
 Comparative advantage—meaning differences in relative autarky prices—is the basis for trade.
- Why? If two countries have the same autarky prices, then after opening up to trade, the autarky prices remain equilibrium prices. So there will be no trade....
- The law of comparative advantage (in words):
 Countries tend to export goods in which they have a CA, i.e. lower relative autarky prices compared to other countries.

Dixit-Norman-Deardorff (1980)

- Let $t^n \equiv (y_1^n \sum c^{nh}, ..., y_G^n \sum c^{nh})$ denote net exports in country n.
- Let u^{an} and uⁿ denote the utility level of the representative household in country n under autarky and free trade.
- Let p^{an} denote the vector of autarky prices in country n.
- Without loss of generality, normalize prices such that:

$$\sum p_g = \sum p_g^{an} = 1$$
,

Notations:

$$cor(x,y) = \frac{cov(x,y)}{\sqrt{var(x) var(y)}}$$

$$cov(x,y) = \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Dixit-Norman-Deardorff (1980)

• **Proposition 4** In a neoclassical trade model, if there is a representative household in country n, then $cor(p - p^a, t^n) \ge 0$.

Proof: Since $(y^n, v^n) \in \Omega^n$, the definition of r implies

$$p^{a}y^{n} \leq r(p^{a}, v^{n}).$$

Since $u^n(c^n) = u^n$, the definition of e implies

$$p^a c^n \ge e(p^a, u^n)$$
.

The two previous inequalities imply

$$p^{a}t^{n} \leq r\left(p^{a}, v^{n}\right) - e\left(p^{a}, u^{n}\right). \tag{3}$$

Since $u^n \ge u^{an}$ by Proposition 1, $e\left(p^a,\cdot\right)$ increasing implies

$$e(p^a, u^n) \ge e(p^a, u^{na}) \tag{4}$$

Dixit-Norman-Deardorff (1980)

• **Proposition 4** In a neoclassical trade model, if there is a representative household in country n, then $cor(p - p^a, t^n) \ge 0$.

Proof (Cont.): Combining inequalities (3) and (4), we obtain

$$p^{a}t^{n} \leq r\left(p^{a}, v^{n}\right) - e(p^{a}, u^{na}) = 0,$$

where the equality comes from market clearing under autarky. Because of balanced trade, we know that

$$pt^n=0.$$

Hence

$$(p-p^a) t^n \geq 0.$$

Dixit-Norman-Deardorff (1980)

• Proposition 4 In a neoclassical trade model, if there is a representative household in country n, then $cor(p-p^a,t^n) \ge 0$ Proof (Cont.): By definition,

cov
$$(p-p^a$$
, $t^n)=\sum_g \left(p_g-p_g^a-\overline{p}+\overline{p}^a\right)\left(t_g^n-\overline{t}^n\right)$,

which can be rearranged as

$$cov\left(p-p^{a},t^{n}\right)=\left(p-p^{a}\right)t^{n}-G\left(\overline{p}-\overline{p}^{a}\right)\overline{t}^{n}.$$

Given our price normalization, we know that $\overline{p}=\overline{p}^a$. Hence

$$cov(p - p^a, t^n) = (p - p^a) t^n \ge 0.$$

Proposition 4 derives from this observation and the fact that

$$sign\left[cor\left(p-p^{a},t^{n}
ight)
ight]=sign\left[cov\left(p-p^{a},t^{n}
ight)
ight].$$

Dixit-Norman-Deardorff (1980)

Comments:

- With 2 goods, each country exports the good in which it has a CA, but with more goods, this is just a correlation.
- Core of the proof is the observation that $p^a t^n \leq 0$.
- It directly derives from the fact that there are gains from trade. Since free trade is better than autarky, the vector of consumptions must be at most barely attainable under autarky $(p^a y^n \le p^a c^n)$.
- For empirical purposes, problem is that we rarely observe autarky...
- In future lectures we will look at models which relate p^a to (observable) primitives of the model: technology and factor endowments.