DOI:10.13671/j.hjkxxb.2019.0321

陈丽红,张翔凌,何春艳,等.2019.Zn-LDHs覆膜改性麦饭石对 Cd(II)吸附性能及其作用机理研究[J].环境科学学报,39(12):4004-4014 Chen L H, Zhang X L, He C Y, *et al.* 2019.Adsorption behavior and mechanisms for Cd(II) by modified maifanite coated with Zn-LDHs[J].Acta Scientiae Circumstantiae, 39(12):4004-4014

Zn-LDHs覆膜改性麦饭石对 Cd(II)吸附性能及其作 用机理研究

陈丽红,张翔凌*,何春艳,高静湉,赵双杰,薛钰,姬筠森,窦琰开

武汉理工大学土木工程与建筑学院,武汉 430070

摘要:采用水浴共沉淀法在碱性条件下制备两种 Zn 系层状双金属氢氧化物(Zn-LDHs),并对天然麦饭石进行覆膜改性得到Zn-LDHs覆膜改性 麦饭石.运用能谱分析仪(EDS)配合场发射扫描电子显微镜(FE-SEM)检测改性前后麦饭石,及吸附试验后 ZnFe-LDHs 覆膜改性麦饭石的形貌 和元素变化;采用 X 射线衍射仪(XRD)对天然麦饭石和 ZnFe-LDHs 覆膜改性麦饭石的结构进行表征;通过等温吸附试验、解吸附试验、吸附动 力学试验、吸附热力学试验、不同 pH 值条件下的吸附试验和竞争离子吸附试验,探究Zn-LDHs覆膜改性麦饭石对 Cd(II)的吸附效果及其作用 机理.结果表明,Zn-LDHs覆膜改性麦饭石对 Cd(II)的吸附性能显著提升,其中 ZnFe-LDHs 覆膜改性麦饭石饱和吸附容量(2500 mg·kg⁻¹)较天 然麦饭石(714.29 mg·kg⁻¹)提高了 3.5 倍;吸附时间、pH 值和温度条件均对吸附容量产生影响;Zn-LDHs覆膜改性麦饭石吸附过程更符合 Langmuir等温模型、准二级动力学模型、Elovich模型,为均匀的单分子层化学吸附,而天然麦饭石吸附过程符合 Freundlich 等温模型和准一级 动力学模型,吸附类型为非均匀多分子层物理吸附;Zn-LDHs覆膜改性麦饭石热力学参数 $\Delta G^{\theta} < 0, \Delta H^{\theta} < 0, \Delta S^{\theta} > 0, 说明Zn-LDHs覆膜改性麦饭石$ 对 Cd(II)的吸附是自发放热过程,天然麦饭石吸附则为自发的吸热过程.研究结果可为 ZnFe-LDHs 覆膜改性麦饭石有效应用于生态工程除Cd(II)提供理论依据和技术参考.

关键词:吸附;麦饭石;Zn-LDHs;Cd(II);改性

文章编号:0253-2468(2019)12-4004-11 中图分类号:X703 文献标识码:A

Adsorption behavior and mechanisms for Cd(II) by modified maifanite coated with Zn-LDHs

CHEN Lihong, ZHANG Xiangling^{*}, HE Chunyan, GAO Jingtian, ZHAO Shuangjie, XUE Yu, JI Yunsen, DOU Yankai

School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070

Abstract: Two kinds of Zn-layered double hydroxides (Zn-LDHs) were synthesized by co-precipitation method under alkaline conditions and in situ coated on natural maifanite to obtain Zn-LDHs modified maifanite. The morphology structure and chemical composition of the maifanite before and after modification, and adsorbed ZnFe-LDHs modified maifanite were characterized with Energy Dispersive Spectroscopy (EDS) and Field Emission Scanning Electron Microscopy (FE-SEM). In addition, the crystal structure of the natural and ZnFe-LDHs modified maifanite were analyzed by using X-ray diffraction (XRD). The adsorption, desorption, adsorption kinetics, adsorption thermodynamic tests, adsorption by natural maifanite and Zn-LDHs modified maifanite. The results were carried out to investigate the adsorption effects and mechanisms of Cd(II) adsorption by natural maifanite and Zn-LDHs modified maifanite. The results showed that the Cd(II) adsorption performance of Zn-LDHs modified maifanite (714.29 mg·kg⁻¹). The adsorption capacity of ZnFe-LDHs modified maifanite (2500 mg·kg⁻¹) was 3.5 times higher than that of natural maifanite(714.29 mg·kg⁻¹). The adsorption time, pH values and temperature had certain influence on the adsorption capacity of maifanite. The adsorption process of Zn-LDHs modified maifanite conformed to Freundlich model and pseudo-first-order kinetic model, and the adsorption type was attributed to be heterogeneous multilayer physical adsorption. The thermodynamic parameters of Zn-LDHs modified maifanite ($\Delta G^{\theta} < 0$, $\Delta H^{\theta} < 0$, $\Delta S^{\theta} > 0$) indicated that the adsorption of Cd(II) by Zn-LDHs modified maifanite was a spontaneous exothermic process, while the natural maifanite adsorption was a spontaneous endothermic process. The research results could provide theoretical basis and technical support for the effective application of Cd(II) in ecological engineering.

Keywords: adsorption; maifanite; Zn-LDHs; Cd(II); modification

1 引言(Introduction)

近年来,随着我国工业的快速发展及人口数量 的不断增加,水体重金属污染问题越发严重,其中 镉(Cd(II))对人体健康有着极大的危害(杨林等, 2016).镉是一种高毒性重金属,生物半衰期达10~ 30 a,能在人体肾脏中积聚,过量时甚至导致人类死 亡(Nawrot et al., 2006),联合国环境规划署和国际 劳动卫生重金属委员会已把镉列为第六位危害人 体健康的有毒物质(周宏光, 2017).镉主要通过作 为电子产品、镍镉电池、金属冶炼、合成颜料、金属 涂层中的稳定剂和固体废物焚烧等方式进入环境 中(Patar et al., 2016).目前国内外处理含镉废水的 方法主要有吸附法、离子交换法、化学氧化还原法、 膜分离法以及化学沉淀法等(Karami et al., 2013). 其中吸附法因其高效经济、操作简便,在实际工程 中得到了广泛的应用(Zhou et al., 2018).

麦饭石是一种具有良好的矿物质溶出、杂质吸附功能的环境友好型复合矿物材料,呈多孔性海绵状特殊结构,对生物无毒无害,比表面积大、吸附效果好(Gao et al., 2012),且在我国资源丰富,价格低廉,因此常被用于给水处理领域(汪碧华等,1988; 李娟等,2008).有研究表明麦饭石对Pb(II)、Cd(II)、Ni(II)、Zn(II)、Hg(II)、Co(II)金属离子具有一定的去除效果(汪碧华等,1988),但天然麦饭石表面呈叠状结构,通透性差,且空隙中填充了很多杂质,其离子交换性能表现出一定的局限性,对重金属离子去除效果有限.为提高天然麦饭石对Cd(II)的吸附效果,可将其进行适当改性处理,例如去除孔道的部分杂质,使孔道和孔隙结构得到改善(陈琳荔等,2015).

层状双金属氢氧化物(Layered Double Hydroxides, LDHs)由带正电的混合金属氢氧化物 组成,是一种具有大孔容积和高比表面积的特殊层 状结构复合无机材料(González et al., 2015).前期 研究表明(张翔凌等, 2016;向洋等, 2018;Fang et al., 2018;Gao et al., 2018;张翔凌等, 2019), Zn-LDHs覆膜改性填料对污水中的氮、磷等水体富 营养化污染物及 Cr(VI)均有良好的去除效果.因此 本次试验尝试采用 ZnCl₂溶液分别与 AlCl₃和 FeCl₃ 溶液合成ZnAl-LDHs及 ZnFe-LDHs,并覆膜于天然麦 饭石表面;以制备的改性麦饭石为吸附剂,天然麦 饭石为对照组,通过等温吸附试验、解吸附试验、吸 附热力学试验、吸附动力学试验、不同 pH 值条件下 的吸附试验和竞争性吸附试验,对比天然麦饭石与 覆膜改性麦饭石的吸附性能,探究Zn-LDHs覆膜改性对麦饭石吸附Cd(II)的影响因素及作用机理,并筛选出较好吸附效果的Zn-LDHs覆膜类型,为改性麦饭石有效应用于吸附Cd(II)提供参考.

2 材料与方法(Materials and methods)

2.1 改性试验

2.1.1 试验材料 试验所用天然麦饭石购自河南 省巩义市,其表面粗糙不平,呈不透明的青褐色.天 然麦饭石的主要物化特性为:粒径为 2~4 mm,表观 密度为 2.715 g·cm⁻³,堆积密度为 1.206 g·cm⁻³,空 隙率为 55.6%,所含主要化学成分为 Si、O、Al 等.

2.1.2 改性试剂 改性试验所用试剂为: ZnCl₂ (AR)、AlCl₃·6H₂O(AR)、FeCl₃·6H₂O(AR)、NaOH (AR),均购自国药集团化学试剂有限公司;Cd(II) 标准溶液采用 CdSO₄·3/8H₂O(AR)加超纯水(UPT-11-10T 超纯水机)配制.

2.1.3 改性方法 碱性条件下采用水浴-共沉淀法 制备Zn-LDHs(ZnAl-LDHs、ZnFe-LDHs)并覆膜改性 麦饭石.以制备ZnAl-LDHs覆膜改性麦饭石为例:取 800g洗净的天然麦饭石放入2L烧杯中,置于80 ℃的恒温水浴锅中(SHZ-84,江苏常州国华电器有 限公司)加热,加入25%NaOH溶液调节pH值,使 其维持在11左右;将配制的2mol·L⁻¹ZnCl₂溶液和 1mol·L⁻¹AlCl₃溶液同时加入装有天然麦饭石的烧 杯中;持续搅拌2h后取出固液混合物,将其放入80 ℃烘箱陈化16h;用去离子水清洗混合物至洗涤水 为中性后,置于60℃烘箱干燥,即得ZnAl-LDHs覆 膜改性麦饭石.

采用美国 EDAX 公司 GENESIS 系列能谱分析 仪(EDS) 配合场发射扫描电子显微镜(Field Emission Scanning Electron Microscope, FE-SEM)检 测覆膜改性麦饭石和天然麦饭石的形貌和元素变 化;采用德国 AXS 公司 D8 Advance 型号 X 射线衍 射仪进行样品晶体材料和结构分析.

2.1.4 检测方法 检测所用化学试剂为浓硫酸、碘 化钾、抗坏血酸、聚乙烯醇-1750、罗丹明 B,以上试 剂均为分析纯,购自国药集团化学试剂有限公司.采 用以上试剂配制 1.0 mol·L⁻¹硫酸溶液、1.0 mol·L⁻¹ 碘化钾-抗坏血酸溶液、10 g·L⁻¹聚乙烯醇-1750 溶 液、0.5 g·L⁻¹罗丹明 B 溶液、10 mg·L⁻¹的硫酸镉溶 液、绘制标准曲线:取 6 个 50 mL 的容量瓶,分别加 入 0、1.00、2.00、3.00、4.00、5.00 mL 的 10 mg·L⁻¹的 硫酸镉溶液;依次加入 3 mL 1.0 mol·L⁻¹硫酸溶液、 4 mL 1.0 mol·L⁻¹碘化钾-抗坏血酸溶液、2 mL 10 g·L⁻¹聚乙烯醇-1750 溶液、1.8 mL 0.5 g·L⁻¹罗丹 明 B 溶液; 摇匀后静置 10 min,使用分光光度计 (UV-1100,MAPADA)在最大吸收波长 600 nm 时测 定吸光度值,并根据测定结果绘制标准曲线;根据 标准曲线与Cd(II)溶液中测定的分光光度值计算待 测溶液中Cd(II)的质量浓度(沈昱等, 2016).

2.2 吸附试验

2.2.1 等温吸附试验 对天然麦饭石及两种 Zn-LDHs覆膜改性麦饭石进行等温吸附试验:分别 称取 0.5 g 填料置于 8 个 250 mL 具塞锥形瓶中,同 时各自加入不同质量浓度(0、1、2、4、8、16、32、64 mg·L⁻¹)的Cd(II)标准溶液 100 mL,具塞放入恒温 水浴振荡器中,在温度为(25±1)℃、转速为 160 r·min⁻¹、pH 值为7 的条件下振荡 24 h,静置、过滤后 测定上清液中Cd(II)的质量浓度.

2.2.2 解吸附试验 将上述等温吸附试验后的各 填料用去离子水洗涤,重新放入 250 mL 具塞锥形瓶 中,同时加入 3 mol·L⁻¹的 NaCl 溶液 100 mL,置于恒 温水浴振荡器中,在温度(25±1) ℃、转速 160 r·min⁻¹的条件下振荡 6 h,静置、过滤后测定上清液 中Cd(II)的质量浓度.

2.2.3 吸附热力学试验 分别在 298.15、308.15、
318.15 K 等 3 个热力学温度下进行等温吸附试验,
试验步骤同 2.2.1 节等温吸附试验.

2.2.4 吸附动力学试验 配制不同初始质量浓度

(0、1、4、8、16 mg·L⁻¹)的Cd(II)标准溶液;分别称取 0.5g天然麦饭石及两种Zn-LDHs覆膜改性麦饭石于 250 mL 具塞锥形瓶,准确量取 100 mL Cd(II)标准 溶液加入锥形瓶中并置于恒温水浴振荡器,在温度 (25±1)℃、转速 160 r·min⁻¹的条件下振荡,于设置 的一系列时间点后取出不同锥形瓶,静置、过滤,测 定上清液中Cd(II)的质量浓度.

2.2.5 不同 pH 值条件下的吸附试验 分别称取 0.5 g天然麦饭石和 ZnFe-LDHs 覆膜改性麦饭石于 250 mL 具塞锥形瓶中,设置 Cd(II) 初始浓度为 8 mg·L⁻¹,在初始溶液 pH 值分别为 6、7、8,温度为 (25±1) ℃,转速 160 r·min⁻¹条件下,置于恒温水浴 振荡器振荡 24 h,静置、过滤取上清液测定Cd(II)的 质量浓度.

2.2.6 竞争离子吸附试验 称取 0.5 g ZnFe-LDHs 覆膜改性麦饭石置于 250 mL 具塞锥形瓶中,同时加 入不同初始质量浓度($0,2,4,8,16,32 \text{ mg} \cdot \text{L}^{-1}$)的 Cd(II)标准溶液和 16 mg $\cdot \text{L}^{-1}$ 的竞争离子(Mg²⁺、 K⁺、PO₄³⁻、NH⁺₄、NO₃)各 50 mL.其它试验步骤同2.2.1 节等温吸附试验.

- 3 结果及讨论 (Results and discussions)
- 3.1 覆膜改性前后麦饭石的表观特性及化学成分 变化

图 1 为利用场发射扫描电子显微镜(FE-SEM)

图 1 天然麦饭石与覆膜改性麦饭石的 FE-SEM 图(a. ZnAl-LDHs覆膜改性麦饭石; b. ZnFe-LDHs 覆膜改性麦饭石; c. 天然麦饭石) Fig. 1 FE-SEM images of natural and modified Maifanite (a. ZnAl-LDHs modified maifanite, b. ZnFe-LDHs modified maifanite, c. natural maifanite) 对改性前后麦饭石表面形貌的检测结果.可以发现, 天然麦饭石(图1c)表面不规整,其凹层空隙有利于 覆膜改性;而Zn-LDHs覆膜改性麦饭石(图1a、1b) 表面相对平整,有明显晶体附着物;通过Zn-LDHs覆 膜改性,填料表面的形态结构有很大的变化,天然 麦饭石表面的空隙为覆膜物质所填充而变得较为 光滑.结合天然麦饭石和 ZnFe-LDHs 覆膜改性麦饭 石的能谱分析仪(EDS)检测结果(图 2)可以发现, 相较于天然麦饭石,ZnFe-LDHs 覆膜改性麦饭石中 Zn 元素的质量分数从0增至3.18%,Fe 元素的质量 分数由0.6%增至3.92%;即ZnFe-LDHs 的覆膜改性 增加了麦饭石填料中元素的种类及某些特定元素 的质量分数.

图 2 天然麦饭石(a)与 ZnFe-LDHs 覆膜改性麦饭石(b)的 EDS 分析结果

Fig.2 $\,$ EDS analysis results of natural (a) and ZnFe-LDHs modified Maifanite (b) $\,$

图 3 a、3b 分别为吸附试验后 ZnFe-LDHs 覆膜 麦饭石的 FE-SEM 和 EDS 检测结果.从图 3 可知,吸 附Cd(II)后的 ZnFe-LDHs 覆膜麦饭石表面仍有明 显晶体附着物,且通过 EDS 检测发现,在 ZnFe-LDHs 覆膜麦饭石表面有镉的存在,说明Cd(II)确 为 ZnFe-LDHs 覆膜改性麦饭石所吸附.

采用 X 射线衍射(XRD)分别对本试验中的纯 ZnFe-LDHs、天然麦饭石和 ZnFe-LDHs 覆膜改性麦 饭石进行分析,结果如图 4 所示.可以发现,纯 ZnFe-LDHs 约在 11°、23°、35°、39°、47°、60°和 62°处有 7 个衍射峰,分别对应 LDHs 典型特征峰(003)、 (006)、(012)、(015)、(018)、(110)和(113),与层 状双氢氧化物的标准 JCPDS 38-0715 相匹配 (Rajeshkhanna *et al.*, 2018);且较明显看出,ZnFe-LDHs 覆膜改性麦饭石的 XRD 图谱不仅有天然麦饭 石的衍射峰,而且还有强度减弱的 LDHs 的 7 个特 征峰,说明本试验确能制备 ZnFe-LDHs 并将其覆膜 于天然麦饭石表面.

Fig.4 XRD patterns of natural maifanite and ZnFe-LDHs modified maifanite

3.2 等温吸附试验

吸附等温线常用以描述一定温度下吸附剂最 大饱和吸附容量及吸附机理(Acar et al., 2015);本 研究采用 Langmuir 和 Freundlich 等温吸附模型,对 Zn-LDHs覆膜改性麦饭石和天然麦饭石在不同初始 浓度下吸附平衡后的试验数据进行拟合.

$$q_{e} = \frac{(C_{0} - C_{e})V}{m}$$
(1)

式中, C_e 为吸附平衡时Cd(II)浓度(mg·L⁻¹); C_0 为 初始Cd(II)浓度(mg·L⁻¹); q_e 为平衡吸附量 (mg·kg⁻¹);V为溶液体积(L);m为填料质量(g).

Langmuir 等温吸附模型:

$$\frac{C_{\rm e}}{q_{\rm e}} = \frac{1}{q_{\rm m} \cdot K_{\rm L}} + \frac{C_{\rm e}}{q_{\rm m}} \tag{2}$$

式中, C_e 和 q_e 同上; q_m 为理论最大饱和吸附容量 (mg·kg⁻¹); K_L 为 Langmuir 平衡常数(L·mg⁻¹).

Freundlich 等温吸附模型:

$$\lg q_e = \frac{1}{n} \lg C_e + \lg K_F \tag{3}$$

式中, C_e 和 q_e 同上; 1/n 为非线性系数; K_F 为 Freundlich 常数($mg^{1-n} \cdot L^n \cdot kg^{-1}$).其中 1/n 值表示吸 附作用强度,其值越小则吸附质与吸附剂的结合越 稳定; lgK_F 能够表示填料吸附能力大小,其值越大, 吸附能力越好(Carja *et al.*, 2005).

对 等 温 吸 附 试 验 数 据 进 行 Langmuir 和 Freundlich 等温吸附模型拟合,其结果如表 1 所示.

Table 1 Adsorption isothermal parameters of natural and Zn-LDHs Modified Maifanite						
	Langmuir 模型				Freundlich 模型	
改性方式	R^2	$K_{\rm L}/$	$q_{\rm m}$ / (mg·kg ⁻¹)	R^2	$\frac{\lg K_{\rm F}}{(mg^{1-n} \cdot L^n \cdot kg^{-1})}$	1/n
ZnAl-LDHs 覆膜改性麦饭石	0.9911	0.3704	1000.00	0.8231	2.3565	0.3266
ZnFe-LDHs 覆膜改性麦饭石	0.9923	0.1481	2500.00	0.8780	2.4883	0.5124
天然麦饭石	0.9079	1.0000	714.29	0.9478	2.1371	0.6190

表 1 Zn-LDHs覆膜改性麦饭石和天然麦饭石的等温吸附模型拟合参数

在 Langmuir 等温吸附模型中,相较于天然麦饭 $石(714.29 \text{ mg} \cdot \text{kg}^{-1})$ 的理论最大饱和吸附容量, ZnFe-LDHs 覆膜改性麦饭石(2500 mg·kg⁻¹)提高了 3 倍以上, ZnAl-LDHs 覆膜改性麦饭石(1000 mg·kg⁻¹)也增大了 50%;对理论最大饱和吸附容量 进行排序: ZnFe-LDHs 覆膜改性麦饭石 > ZnAl-LDHs覆膜改性麦饭石 > 天然麦饭石.可见, Zn-LDHs覆膜改性能有效提高麦饭石对Cd(II)的理 论最大饱和吸附容量,且改性方式不同,饱和吸附 容量的提升程度也不同.究其原因,一方面由于覆膜 改性麦饭石表面稳定附着 Zn-LDHs, 溶液中的 Cd(II)可与麦饭石表面 LDHs 中的 Zn 发生同晶替 代,形成新的 LDHs 覆膜在填料表面 (Zhou et al., 2018):另一方面,LDHs 晶体表面存在大量与八面 体金属原子键结合的羟基,带有相反电荷的表面羟 基与Cd(II)形成外层表面络合物(Shan et al., 2015).除此之外, ZnFe-LDHs 覆膜改性麦饭石最大 饱和吸附容量是ZnAl-LDHs覆膜改性麦饭石的 2.5 倍,有研究发现 LDHs 形成分为两步,先结晶成不稳 定的 LDHs, 在随后陈化阶段中, 逐渐形成稳定的

LDHs 结晶体(Carja *et al.*, 2005); 对于不同类型的 LDHs, Fe³⁺半径小于 Al³⁺的离子半径, Fe³⁺极化能强 于 Al³⁺, 由 FeCl₃参与合成的 ZnFe-LDHs 增加了对 LDHs 层间 Cl⁻的吸引力(Bruna *et al.*, 2009), 因此 ZnFe-LDHs 的结晶效果优于 ZnAl-LDHs, 相应地, ZnFe-LDHs 覆膜改性麦饭石的吸附性能优于 ZnAl-LDHs覆膜改性麦饭石.

R²是衡量模型拟合程度的重要参数;如表1所示,Zn-LDHs覆膜改性麦饭石 Langmuir 等温吸附模型中的 R²均高于 Freundlich 模型,且 R²均大于0.99, 说明 Langmuir 模型能更好地描述Zn-LDHs覆膜改性 麦饭石对Cd(II)的吸附过程,即更趋向于单分子层 吸附(孔旺盛等,2007).对于天然麦饭石,Langmuir 模型和 Freundlich 模型 R²分别为 0.9079 和 0.9478, 说明天然麦饭石更符合 Freundlich 模型,即趋向于 非均匀吸附剂表面多分子层吸附.由此推断,填料表 面的Zn-LDHs覆膜改性改变了麦饭石对Cd(II)的吸 附类型.

1/n 值是与吸附强度和吸附剂表面不均匀性有 关的常数,1/n 值越小,吸附性能越好;一般情况下,

当0<1/n<0.5 时为容易吸附,0.5<1/n<1 为优惠吸 附,1<1/n 时为难于吸附(Arfaoui et al., 2008);由 表1可知,ZnAl-LDHs覆膜改性麦饭石和 ZnFe-LDHs 覆膜改性麦饭石的 1/n 值分别为 0.3266 和0.5124, 而天然麦饭石为 0.6196.同时, lgK, 能够间接反映填 料吸附能力大小,其值越大,吸附能力越好; ZnAl-LDHs覆膜改性麦饭石、ZnFe-LDHs 覆膜改性麦 饭石和天然麦饭石的 lgK_x分别为 2.3565、2.4883、 2.1371,其大小排序与 Langmuir 模型中理论最大饱 和吸附容量一致, ZnFe-LDHs 覆膜改性麦饭石 > ZnAl-LDHs覆膜改性麦饭石 > 天然麦饭石.由此可 见,经Zn-LDHs覆膜改性,填料的吸附能力由优惠吸 附向容易吸附转化,更有利于填料对Cd(II)的吸附, 因而Zn-LDHs覆膜改性麦饭石表现出更佳的吸附 性能.

3.3 解吸附试验

为探究Zn-LDHs覆膜改性麦饭石的回收再利用 性能,对Zn-LDHs覆膜改性麦饭石在不同初始浓度 等温吸附试验结束后进行解吸附试验;解吸率计算 公式见式(4).

$$E = \frac{C_2 \cdot V_2}{(C_0 - C_1) \cdot V_1} \times 100\%$$
(4)

式中,E为解吸率; C_0 为溶液中Cd(II)的初始浓度 $(mg \cdot L^{-1}); C_1$ 为吸附平衡时溶液中 Cd(II)的浓度 $(mg \cdot L^{-1}); C, 为解吸试验后平衡溶液中Cd(II)的浓$ 度 $(mg \cdot L^{-1})$; V_1 , V_2 分别为吸附液和解吸液的体积 (L).

经计算可得, ZnAl-LDHs覆膜改性麦饭石的解 吸率为 64.01%~95.99%、ZnFe-LDHs 覆膜改性麦饭 石解吸率为 69.52%~98.50%, 天然麦饭石的解吸率 略低,为61.25%~92.93%,说明两种覆膜改性麦饭 石填料较天然麦饭石的可重复利用率提高,有利于 延长使用周期,节约运行和再生成本.

3.4 吸附热力学试验

采用 Langmuir 等温吸附方程对 298.15、308.15、 318.15 K 等 3 个热力学温度下的吸附平衡数据进行 拟合,并绘制填料对Cd(II)的理论最大吸附容量随 温度变化的折线图,如图5所示.3个不同热力学温 度下的理论最大饱和吸附容量排序均为: ZnFe-LDHs 覆膜改性麦饭石 > ZnAl-LDHs覆膜改性麦饭 石 > 天然麦饭石,这也与等温吸附试验排序一致.并 且,随着温度的升高,天然麦饭石的理论最大饱和 吸附容量略有增大,在温度 298.15 K 时最小;而对

于Zn-LDHs覆膜改性麦饭石,随着温度升高,理论最 大饱和吸附容量不断减小,降低温度有利于提升改 性麦饭石对Cd(II)的吸附性能.由此可知,Zn-LDHs 覆膜改性麦饭石受温度的影响不同于天然麦饭石.

图 5 天然麦饭石和Zn-LDHs覆膜改性麦饭石理论最大饱和吸 附容量随温度的变化

Fig.5 Theoretical maximum saturation adsorption capacities of natural maifanite and Zn-LDHs modified maifanite vary with temperatures

为进一步探究填料吸附Cd(II)的热力学特性, 采用热力学参数吉布斯自由能(ΔG^{θ})、焓变(ΔH^{θ}) 和熵变(ΔS^{θ})来反应热力学效应.

对热力学参数进行计算,公式如下:

$$\ln(q_e/C_e) = \alpha q_e + K \tag{5}$$

$$\Delta G^{\theta} = -RT \ln K \tag{6}$$

$$\ln K = -\frac{\Delta H^{\theta}}{R} \cdot \frac{1}{T} + \frac{\Delta S^{\theta}}{R}$$
(7)

$$\Delta G^{\theta} = \Delta H^{\theta} - T \Delta S^{\theta} \tag{8}$$

式中, q_{a} 、 C_{a} 、T同上; ΔG^{θ} 、 ΔH^{θ} 、 ΔS^{θ} 分别为标准吉布 斯自由能、焓、熵;R为气体常数 8.314 J·mg⁻¹·K⁻¹;K 为热力学平衡常数.

n m

表 2 为 298.15、308.15、318.15 K 等时各麦饭石 对Cd(II)吸附的热力学方程拟合参数.其中,吉布斯 自由能 $\Delta G^{\theta} < 0$. 说明 3 种麦饭石填料对Cd(II) 的吸 附均可自发进行; 熵变 $\Delta S' > 0$, 说明吸附过程固-液 系统中混乱度增加;天然麦饭石 ΔH^θ>0,说明反应 为吸热过程,随着温度的降低,反应向负方向进行, 而Zn-LDHs覆膜改性麦饭石 $\Delta H^{\theta} < 0$,说明反应为放 热过程,温度越低,反应向正方向进行,这也与 Zn-LDHs覆膜改性麦饭石的饱和吸附量随温度降低 而增大的结论相吻合.同时,天然麦饭石焓变 $\Delta H^{\theta} >$ 0,而Zn-LDHs覆膜改性麦饭石焓变 $\Delta H^{\theta} < 0$,说明经 LDHs 覆膜改性, 麦饭石对Cd(II) 的吸附特性发生 了变化.有研究表明 LDHs 能与水体中Cd(II) 发生 同晶替代、离子交换、化学吸附等反应(Shan *et al.*, 2015; Zhou *et al.*, 2018), 相比于天然麦饭石, Zn-LDHs覆膜改性麦饭石对Cd(II) 的吸附增加了不 同类型的反应机制, 因此其吸附更为复杂, 导致吸 附类型从吸热逐渐转化成放热过程;且可以从表 2 看出,ZnFe-LDHs 覆膜改性麦饭石的放热量远高于 ZnFe-LDHs 覆膜改性麦饭石,这可能是由于拥有更 好结晶效果的 ZnFe-LDHs 在吸附过程中反应(同晶 替代、离子交换、化学吸附)更加完全(Bruna *et al.*, 2009),从而增大了对Cd(II)的吸附容量.

表 2 填料吸附Cd(II)热力学拟合参数

	Table 2 Thermodynar	nics parameters of Co	f(II) adsorption		
请料	_	$\Delta G^{ heta}/(\mathrm{J}\cdot\mathrm{mol}^{-1})$			$\Delta S^{ heta}$
	298.15 K	308.15 K	318.15 K	$(\mathbf{J} \boldsymbol{\cdot} \mathrm{mol}^{-1})$	$(\mathbf{J} \boldsymbol{\cdot} \mathrm{mol}^{-1} \boldsymbol{\cdot} \mathbf{K}^{-1})$
ZnAl-LDHs覆膜改性麦饭石	-4391.29	-4533.18	-4614.64	-160.54	14.19
ZnFe-LDHs 覆膜改性麦饭石	-4532.21	-4570.41	-4608.61.	-3393.28	3.82
天然麦饭石	-4332.79	-4686.99	-5044.19	6227.68	35.42

3.5 吸附动力学试验

为探究Zn-LDHs覆膜改性麦饭石对Cd(II)的吸附机理,开展吸附动力学试验并对试验数据分别采用准一级动力学模型、准二级动力学模型、Elovich模型和颗粒内扩散模型进行拟合.拟合公式见(9)~(12).

准一级动力学和准二级动力学模型:

$$\ln(q_{e1} - q_t) = \ln q_{e1} - k_1 t$$
(9)
$$\frac{t}{q_t} = \frac{1}{k_2 q_{e2}^2} + \frac{t}{q_{e2}}$$
(10)

式中, q_{e1} 为准一级动力学平衡吸附量(mg·kg⁻¹); q_{e2} 为准二级动力学平衡吸附量(mg·kg⁻¹);t为吸附时间(min); q_i 为t时刻的吸附量(mg·kg⁻¹); k_1 为准一级动力学吸附速率常数(min⁻¹); k_2 为准二级动力学吸附速率常数(g·mg⁻¹·min⁻¹).

Elovich 模型:

$$+Blnt$$
 (1)

1)

式中, q_t 和 t同上; $A \setminus B$ 为 Elovich 方程吸附速率 常数.

 $q_{L} = A$

颗粒内扩散模型:

$$q_t = k_s \times t^{\frac{1}{2}} + C \tag{12}$$

式中, q_t 和 t同上; k_s 为颗粒内扩散速率常数 (mg·kg⁻¹·min^{-0.5}); C为常数, 表示吸附剂的边界 层数.

表 3 为天然麦饭石和Zn-LDHs覆膜改性麦饭石 各吸附动力学拟合模型的相关系数 R²值.从表 3 可 知,天然麦饭石的准一级动力学模型拟合效果优于 准二级动力学模型,其吸附类型趋于物理吸附;对 于 LDHs 覆膜改性麦饭石,准一级动力学模型 R²在 不同初始浓度条件下呈不稳定的趋势且其值不高; 而准二级动力学模型的 R²均在 0.99 以上,符合准二 级动力学模型.

表 3 不同浓度下天然麦饭石和Zn-LDHs覆膜改性麦饭石吸附动力 学模型的相关系数 R²

Table 3 Correlation coefficient of adsorption kinetics at different concentrations

模型	初始浓度/ (mg·L ⁻¹)	ZnAl-LDHs 覆膜改性 麦饭石	ZnFe-LDHs 覆膜改性 麦饭石	天然 麦饭石
	1	0.9371	0.9097	0.9964
准一级动	4	0.9122	0.9299	0.9868
力学模型	8	0.9154	0.9335	0.9956
	16	0.9429	0.9543	0.9968
	1	0.9946	0.9901	0.9786
准二级动	4	0.9906	0.9911	0.9794
力学模型	8	0.9919	0.9910	0.9877
	16	0.9934	0.9981	0.9957
	1	0.9841	0.9927	0.9363
Elovich 模型	4	0.9845	0.9855	0.9858
	8	0.9807	0.9859	0.9452
	16	0.9833	0.9817	0.9227

同时,如图6所示,在不同初始Cd(II)浓度下各 麦饭石的平衡吸附量对比中,LDHs 覆膜改性麦饭 石准一级方程所拟合的平衡吸附量与试验数据结 果相差较大,准二级方程拟合的平衡吸附量与计算 所得的吸附量较为吻合,从另一个角度反映了LDHs 覆膜改性麦饭石填料的吸附过程更符合准二级动 力学模型,即准二级动力学模型能更好地描述改性 填料的吸附行为.这也说明LDHs 覆膜改性麦饭石

对Cd(II)的吸附是以化学吸附为控制步骤的吸附过

程(Lyu et al., 2019).

Fig.6 Adsorption capacity of three adsorbents at different concentrations of $Cd(\Pi)$ in equilibrium time (a. 1 mg·L⁻¹, b. 4 mg·L⁻¹, c. 8 mg·L⁻¹, d. 16 mg·L⁻¹)

注:图中 q_e为吸附试验所得平衡吸附量,q_{el}为拟合准一级动力学模型计算所得平衡吸附量,q_{e2}为拟合准二级动力学模型计算所得平衡吸附量

颗粒内扩散模型是根据 Weber 和 Morris 所提出 的理论形成的(Weber et al., 1962), 一般认为, 填料 对Cd(II)的吸附可分为4个步骤:① Cd(II)从溶液 中转移到填料表面附近;② Cd(II)通过扩散作用穿 过液膜到达填料颗粒的表面,这一步通常被称为外 扩散或传质:③填料表面的Cd(II)通过扩散作用到 达填料颗粒内部:④ Cd(II)被填料内部吸附活性位 点所吸附(周宏光, 2017).步骤①和④反应速率很 快,不是速率控制步骤,吸附过程的速度取决于步 骤②和③中最慢的一步;通过拟合内扩散模型可以 确定吸附过程的控速步骤,揭示吸附机理.表4为填 料的颗粒内扩散模型拟合参数.本实验中的颗粒内 扩散模型拟合直线没有过原点,说明颗粒扩散为吸 附速率的限速因素,但不是唯一限速因素,可能还 有其他过程共同控制吸附速率(Kumar et al., 2014);另外,由表4可知,ZnFe-LDHs 覆膜改性麦饭 石的内扩散模型的线性关系不如天然麦饭石,说明 LDHs 覆膜改性之后的麦饭石对Cd(II)吸附过程更为复杂,为多种吸附机理共同作用.

表 4 填料的颗粒内扩散模型拟合参数

1 1 6 6 11

Table 4 Fitting parameters of intraparticle diffusion model of fillers						
填料种类	初始浓度/ (mg·L ⁻¹)	$k_{\rm s}/({ m mg}\cdot{ m kg}^{-1}\cdot{ m min}^{-0.5})$	<i>C</i> ∕ (mg⋅kg ⁻¹)	R^2		
7.411011	1	4.35	38.27	0.8574		
ZnAI-LDHs 覆膜改性麦饭石	4	9.77	59.00	0.9151		
	8	11.96	462.81	0.7891		
ZnFe-LDHs 覆膜改性麦饭石	1	4.88	13.29	0.8320		
	4	11.58	7.53	0.9281		
	8	16.41	304.72	0.8155		
天然麦饭石	1	2.49	60.39	0.9298		
	4	8.86	49.09	0.9316		
	8	11.70	194.35	0.9113		

同时,本试验中的 Elovich 模型能更好地拟合 Zn-LDHs覆膜改性麦饭石对Cd(II)的吸附过程, R² 均在 0.98 以上,表明覆膜改性麦饭石在整个吸附过 程中具有均匀分布的表面吸附性能(常春等, 2016).而天然麦饭石拟合的 Elovich 模型的 *R*²为 0.92~0.98,拟合度不高,说明天然麦饭石对Cd(II) 表面吸附性能不均匀,这与天然麦饭石在等温吸附 中拟合结果符合 Freundlich 模型一致,天然麦饭石 为非均质的多分子层吸附.这也验证了 LDHs 覆膜 改性后能够改善麦饭石表面结构,使其吸附位点更 均匀,有利于吸附的进行.

3.6 不同 pH 值条件下的吸附试验

由于 LDHs 是在碱性条件下形成的,pH 值过低 易破坏 LDHs 结构,pH 值过高则会产生 Cd(OH)₂沉 淀,不利于研究其吸附性能.因此本次实验选定初始 Cd(II)溶液的 pH 值为 6、7、8 的条件下进行等温吸 附试验,图 7 为不同 pH 值条件下 ZnFe-LDHs 覆膜 改性麦饭石的平衡吸附量.

图 7 不同 pH 值条件下 ZnFe-LDHs 覆膜改性麦饭石的平衡吸 附量

Fig.7 Cd(II) adsorption of ZnFe-LDHs modified maifanite under different of pH

如图 7 所示, 天然麦饭石在 pH 值为 6 时平衡 吸附量最高, 在弱酸性条件下可能会促进天然麦饭 石的吸附作用; 在 pH 值为 7~8 时, 平衡吸附量无明 显变化, 原因可能是天然麦饭石对溶液中 pH 的调 节作用.高效江等发现麦饭石对重金属吸附前 pH 为 7.82、8.81 时, 而吸附后 pH 值都在 7 左右(高效江 等, 1997), 因此, 溶液中麦饭石的 pH 值变化不大, 对其产生影响较小.同时, 试验结果表明, ZnFe-LDHs 覆膜改性麦饭石的平衡吸附量随着 pH 升高呈逐渐 降低的趋势; 随着溶液中 OH⁻含量逐渐增多, 由 ZnCl₂、FeCl₃等参与合成的 LDHs 金属离子(如 Zn²⁺,

Fe³⁺)会与 OH⁻产生化学沉淀, 堵塞 LDHs 改性麦饭 石表面 的孔 道, 不利于其对 Cd(II) 的吸附作用 (Soltani *et al*, 2018), 而在 pH 值为 6 时能够抑制这 种金属沉淀行为, 因此在 pH 值为 6 时, ZnFe-LDHs 覆膜改性麦饭石对Cd(II)吸附效果最佳, 吸附性能 最好.

3.7 竞争离子吸附试验

为探究水体中常见离子对 ZnFe-LDHs 覆膜改 性麦饭石吸附的影响,选择 Mg^{2+} 、 K^+ 、 PO_4^{3-} 、 NH_4^+ 、 NO_3^- 等5种常见阴阳离子进行竞争性吸附试验;图 8为不同竞争离子条件下,ZnFe-LDHs 覆膜改性麦 饭石对Cd(II)的平衡吸附量变化趋势图.

图 8 不同竞争离子条件下 ZnFe-LDHs 覆膜改性麦饭石平衡吸 附量变化

Fig.8 Cd(II) adsorption of ZnFe-LDHs modified maifanite under different competitive ions

由图 8 可知,各平衡吸附量均随Cd(II)初始浓 度升高而逐渐增大;当Cd(II)初始浓度较低时, Mg^{2+} 、 K^+ 、 PO_4^{3-} 、 NH_4^+ 、 NO_3^- 等5种竞争离子对Cd(II) 的吸附效果无明显影响.究其原因,在低浓度时 ZnFe-LDHs 覆膜改性麦饭石表面有足够的吸附位 点,此时竞争性离子对Cd(II)吸附的影响也较小.当 Cd(II)初始浓度逐渐变大时, Mg^{2+} 、 K^+ 、 PO_4^{3-} 这3种 离子对Cd(II)吸附无明显抑制作用,含有 Mg^{2+} 的平 衡吸附量最大.而 NO_3^- 对Cd(II)吸附具有一定的抑 制,可能与 ZnFe-LDHs 覆膜改性麦饭石表面的 LDHs 结构有关;对于一价阴离子的交换能力而言, NO_3^- >Cl⁻, NO_3^- 容易将 LDHs 中的 Cl⁻交换出来,因此 部分 NO_3^- 可能会通过离子交换作用进入 LDHs 层间 (王卫东等, 2017),从而导致 LDHs 的结构发生不 利于Cd(II)吸附的变化.同时, NH_4^+ 在高Cd(II)浓度 下也会产生抑制作用,这应可归结于麦饭石本身的 特性,麦饭石对极性分子较高的 NH₄ 有很强的吸附 作用(李娟等,2008),因此 NH₄ 会优先吸附在填料 表面,占据填料的吸附位点,从而导致麦饭石填料 对Cd(II)吸附效果变弱.

4 结论(Conclusions)

1)Zn-LDHs覆膜改性有效提升麦饭石对Cd(II) 的吸附效果,其中 ZnFe-LDHs 覆膜改性麦饭石的吸 附效果最佳,最大饱和吸附容量达到了 2500 mg·kg⁻¹;Zn-LDHs覆膜改性麦饭石对Cd(II)的吸附 过程为以化学吸附为主的单分子层吸附,天然麦饭 石为以物理吸附为主的多分子层吸附.

2) 麦饭石对Cd(II) 的吸附为表层扩散和内部 扩散共同作用, Zn-LDHs覆膜改性麦饭石比天然麦 饭石表面吸附性能更均匀, 扩散作用更为明显; 且 Zn-LDHs覆膜改性麦饭石对Cd(II) 的吸附为自发的 放热过程; 天然麦饭石为自发的吸热过程.

3)综合来看,Zn-LDHs覆膜改性麦饭石去除水中Cd(II)的机理主要为化学吸附、离子交换、同晶替 代等;相较于天然麦饭石,ZnFe-LDHs覆膜改性麦饭 石的最大饱和吸附量提升了3.5倍,表明ZnFe-LDHs覆膜改性麦饭石是一种具有应用潜力的重金 属Cd(II)吸附剂.

责任作者简介:张翔凌(1976—),男,博士,教授,博士生导师,主要从事水污染控制工程、水环境生态修复研究. E-mail: ZXLCL@126.com.

参考文献(References):

- Arfaoui S, Frini-Srasra N, Srasra E. 2008. Modelling of the adsorption of the chromium ion by modified clays [J]. Desalination, 222(1/3): 474-481
- Acar E T, Ortaboy S, Atun G. 2015. Adsorptive removal of thiazine dyes from aqueous solutions by oil shale and its oil processing residues: Characterization, equilibrium, kinetics and modeling studies [J]. Chemical Engineering Journal, 276: 340-348
- Bruna F, Celis R, Pavlovic I, et al. 2009. Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA): Systems Mg-Al, Mg-Fe and Mg-Al-Fe [J]. Journal of Hazardous Materials, 168(2/3): 1476-1481
- Carja G, Niiyama H. 2005. From the organized nanoparticles of copper and vanadium containing LDHs to the small nanoparticles of mixtures of mixed oxides: A simple route [J]. Materials Letters, 59(24/25):

3078-3080

- 常春, 王胜利, 郭景阳, 等. 2016.不同热解条件下合成生物炭对铜 离子的吸附动力学研究[J]. 环境科学学报, 36(7): 2491-2502
- 陈琳荔, 邹华. 2015. 改性麦饭石对水中氮磷的去除[J]. 食品与生物技术学报, 34(3): 283-290
- Fang C J, Zhang X L, Lei Y, et al. 2018. Nitrogen removal via coreshell bio-ceramic/Zn-layer double hydroxides synthesized with different composites for domestic wastewater treatment [J]. Journal of Cleaner Production, 181: 618-630
- Gao C G, Zhang X L, Yuan Y, et al. 2018. Removal of hexavalent chromium ions by core-shell sand/Mg-layer double hydroxides (LDHs) in constructed rapid infiltration system [J]. Ecotoxicology and Environmental Safety, 166: 285-293
- Gao G H, Lei Y H, Dong L H, et al. 2012. Synthesis of nanocomposites of silver nanoparticles with medical stone and carbon nanotubes for their antibacterial applications [J]. Materials Express, 2(2): 85-93
- 高效江, 戎秋涛. 1997. 麦饭石对重金属离子的吸附作用研究[J]. 环境污染与防治, 19(4): 4-7
- González M A, Pavlovic I, Barriga C. 2015. Cu (II), Pb (II) and Cd(II) sorption on different layered double hydroxides. A kinetic and thermodynamic study and competing factors [J]. Chemical Engineering Journal, 269: 221-228
- Karami H. 2013. Heavy metal removal from water by magnetite nanorods [J]. Chemical Engineering Journal, 219(3): 209-216
- 孔旺盛, 刘燕. 2007. 生物污泥对染料的吸附及胞外聚合物的作用 [J]. 环境科学, 28(12): 2716-2721
- Kumar P S. 2014. Adsorption of lead(II) ions from simulated wastewater using natural waste: A kinetic, thermodynamic and equilibrium study [J]. Environmental Progress & Sustainable Energy, 33(1): 55-64
- 李娟, 张盼月, 高英, 等. 2008. 麦饭石的理化性能及其在水质优化 中的应用[J]. 环境科学与技术, 31(10): 63-66
- Lyu F, Yu H, Hou T, et al. 2019. Efficient and fast removal of Pb²⁺ and Cd²⁺ from an aqueous solution using a chitosan/Mg-Al-layered double hydroxide nanocomposite [J]. Journal of Colloid and Interface Science, 539: 184-193
- Nawrot T, Plusquin M, Hogervorst J, et al. 2006. Environmental exposure to cadmium and risk of cancer: A prospective populationbased study [J]. Lancet Oncology, 7(2): 119-126
- Patar A, Giri S, Giri A, et al. 2016. Cadmium pollution and amphibians-Studies in tadpoles of Rana immocharis [J]. Chemosphere, 144: 1043-1049
- Rajeshkhanna G, Kandula S, Shrestha K R, et al. 2018. A new class of Zn1-xFex-Oxyselenide and Zn1-xFex-LDH nanostructured material with remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities for overall water splitting [J]. Small, 14: 1803638

沈昱,吴艳波,刘淑红,等. 2016. 污水中镉含量的分光光度法测定[J].大连交通大学学报,37(1):78-81

Shan R R, Yan L G, Yang K, et al. 2015. Adsorption of Cd (II) by Mg-Al-CO₃-and magnetic Fe₃ O₄/Mg-Al-CO₃-layered double hydroxides: kinetic, isothermal, thermodynamic and mechanistic studies [J]. Journal of hazardous materials, 299: 42-49

Soltani R, Dinari M, Mohammadnezhad G. 2018. Ultrasonic-assisted synthesis of novel nanocomposite of poly(vinyl alcohol) and aminomodified MCM-41: A green adsorbent for Cd(II) removal. [J]. Ultrasonics Sonochemistry, 40: 533-542

- 汪碧华,马凯林,王璞君,等. 1988. 麦饭石的净化机理[J]. 长春地 质学院学报,18(4):423-430
- 王卫东. 2017. 改性类水滑石制备及其氮磷吸附特性研究[D]. 北京: 北京工业大学
- Weber W J, Morris J C. 1962. Removal of biologically resistant pollutant

from waste water by adsorption [J]. Advances in Water Pollution Research, 2: 231-266

- 向洋,张翔凌,雷雨,等.2018.不同合成条件对ZnAl-LDHs覆膜改性 生物陶粒除磷效果的影响[J].环境科学,39(5):2184-2194
- 杨林,吴平霄,刘帅,等. 2016.两性修饰蒙脱石对水中镉和四环素 的吸附性能研究[J].环境科学学报,36(6):2033-2042
- 张翔凌,邓礼楚,方晨佳,等. 2019. 不同类型 LDHs 负载改性麦饭 石对 Cr(Ⅵ)吸附性能[J]. 环境科学,40(1): 300-309
- 张翔凌,黄华玲,郭露,等. 2016. Zn 系 LDHs 覆膜改性人工湿地沸石基质除磷机制[J].环境科学, 37(8): 3058-3066
- Zhou H G, Jiang Z M, Wei S Q, et al. 2018. Adsorption of Cd(II) from aqueous solutions by a novel layered double hydroxide FeMnMg-LDH [J]. Water Air & Soil Pollution, 229(3): 78-93
- 周宏光. 2017. FeMnMg-LDH 的制备及其对环境铅镉污染的钝化效 应研究[D]. 重庆: 西南大学