# 基于模糊综合评判和层次分析法的 中子管故障风险评估

雷柏茂<sup>1,2,3</sup>,李江燕<sup>1,2,3</sup>,梁佩博<sup>1,2,3</sup>,杨林森<sup>4</sup>,孙 强<sup>4</sup>

(1.工业和信息化部电子第五研究所,广东广州 510610;
2.广东省电子信息产品可靠性技术重点实验室,广东广州 510610;
3.电子信息产品可靠性分析与测试技术国家地方联合工程中心,广东广州 510610;
4.北京信成科技集团,北京 100038)

摘要:中子管是一种用途广泛的关键部件,然而目前国产中子管的可靠性水平与国外相比还有一定差距,难以满足各行业的使用需求。本文分析了中子管的主要故障模式,采用模糊综合评判和层次分析法 对中子管故障进行了多级模糊综合评判,并对中子管故障风险进行了评估。结果表明,中子管总体故障 风险水平中等,故障风险前3位的部件为靶、氘氚储存器和加速极,在设计和使用中应重点关注靶释放 氦气,靶膜氧化,氘氚储存器吸气剂局部破损,绝缘瓷管破损,加速极离子加速、聚焦不稳定等故障。 关键词:中子管;模糊综合评判;层次分析法;故障风险 中图分类号:TL816 文献标志码:A 文章编号:1000-6931(2019)11-2247-10

doi:10.7538/yzk.2018.youxian.0788

# **Risk Assessment of Neutron Tube Failure Based on Fuzzy Comprehensive Evaluation and Analytic Hierarchy Process**

LEI Baimao<sup>1,2,3</sup>, LI Jiangyan<sup>1,2,3</sup>, LIANG Peibo<sup>1,2,3</sup>, YANG Linsen<sup>4</sup>, SUN Qiang<sup>4</sup>

(1. The Fifth Electronics Research Institute of Ministry of Industry and Information Technology, Guangzhou 510610, China; 2. Guangdong Provincial Key Laboratory of Electronic Information Products Reliability Technology, Guangzhou 510610, China;

3. National Joint Engineering Research Center of Reliability Test and Analysis for Electronic Information Products, Guangzhou 510610, China;

4. Beijing Century Science & Technology Group, Beijing 100038, China)

**Abstract**: The neutron tube is a key component with a wide range of use. However, the reliability level of domestic neutron tube is still far from that of foreign countries, and it is difficult to meet the need of various industries. In this paper, the main failure mode of neutron tube was analyzed. The fuzzy comprehensive evaluation and analytic hierarchy

网络出版时间:2019-03-18;网络出版地址:http://kns.cnki.net/kcms/detail/11.2044.TL.20190315.0956.002.html

收稿日期:2018-10-29;修回日期:2019-01-08

基金项目:国家重点研发计划资助项目(2017YFF0104203);广东省省级科技计划资助项目(2017B090903006);工业装备环境 可靠性设计与试验军民融合创新中心能力建设资助项目(2017KZ010107)

作者简介:雷柏茂(1987一),男,湖南郴州人,高级工程师,博士,从事结构力学、疲劳耐久性及可靠性分析研究

process were used to evaluate the neutron tube failure in multiple stages, and the risk of neutron tube failure was evaluated. The results show that the overall risk of neutron tube failure is medium, and the top three components of failure risk are target, D-T storage and acceleration pole. The focus on the failure modes, such as target helium release, target membrane oxidation, partial damage of the D-T storage, porcelain tube break, unstable accelerating and focusing of the acceleration pole, should be paid during design and use.

**Key words:** neutron tube; fuzzy comprehensive evaluation; analytic hierarchy process; failure risk

中子管作为可控中子源的核心关键部件, 在石油测井、在线成分分析、中子照相、爆炸物 与毒品检测等领域得到了广泛的应用<sup>[1-5]</sup>。由 于国外在高性能长寿命中子管技术上对我国实 行严格的技术封锁,国产中子管技术在中子产 额、高温稳定性和可靠性等方面与国外相比还 具有一定差距,国产中子管的可靠性尚不能完 全满足各行业的使用需求<sup>[6-9]</sup>。因此,对中子管 的潜在故障风险进行分析评估,针对中子管薄 弱环节进行设计改进,对提高中子管的可靠性 水平具有重要的参考价值。

影响中子管可靠性的因素较多,故障模式 及影响分析是一种重要的可靠性分析方法,该 方法通过分析系统所有可能的故障模式、故障 发生的原因及故障产生的影响,对故障严酷度、 发生度和检测度进行评分,从而求出风险顺序 数<sup>[10-12]</sup>。然而,对于不同的系统和部件,故障严 酷度、发生度和检测度对风险的贡献程度不尽 相同,系统中不同部件的故障对系统风险的贡 献程度也不同。传统故障模式及影响分析方法 无法体现贡献程度的差别,对故障严酷度、发生 度和检测度进行评分的主观性较大,存在一定 的局限性。

模糊综合评判法采用模糊数学的分析方法,将风险数据采用模糊集进行描述,并结合层次分析法考虑部件和评判因素对系统风险的贡献程度,采用加权方法对故障风险进行模糊综合分析,能有效解决传统故障模式及影响分析方法难以对模糊概念进行精确定量评价、受主观影响较大的问题,在许多行业得到了较广泛的应用<sup>[13-16]</sup>。

本文在分析中子管结构组成和主要故障模式的基础上,采用模糊综合评判和层次分析法

对中子管故障进行多级模糊综合评判,并开展 故障风险评估,为进一步改进中子管设计、提高 其可靠性水平提供参考依据。

# 1 中子管组成结构及故障模式

# 1.1 中子管组成结构

中子管是将离子源、加速极、靶等结构全部 密封在管体中构成的一种典型的电真空器件, 其组成结构如图 1 所示,主要包括管体、离子 源、氘氚储存器、加速极、靶和二次电子抑制结 构等。工作时,氘氚储存器加热释放的氘氚混 合气体在离子源阳极高压及磁场作用下发生电 离形成等离子体,加速极和离子源之间的高压 电场从离子源等离子体中引出并加速氘氚混合 束轰击在靶上,与靶上注入的氘氚发生核反应 产生中子,反应方程为:

 $^{2}_{1}$ H+ $^{2}_{1}$ H →  $^{3}_{2}$ He+ $^{1}_{0}$ n(D-D反应) (1)

 ${}^{2}_{1}$ H+ ${}^{3}_{1}$ H  $\longrightarrow {}^{4}_{2}$ He+ ${}^{1}_{0}$ n(D-T 反应) (2)



Fig. 1 Schemtic of structure for neutron tube

D-D 反应释放出能量约为 2.5 MeV 的快中子, D-T 反应释放出能量约为 14 MeV 的快中子。

中子管管体提供了密闭的真空环境和高压 绝缘条件并支撑管内各部件。氘氚储存器存储 中子管工作所需的氘氚气体,工作时通过吸放 气控制管内气压。离子源产生等离子体束并使 其有效引出。加速极提供中子管工作时所需的 高压引出电场。靶是氚源及中子产生场所,同 时导出离子束流轰击靶膜时产生的热量。二次 电子抑制结构抑制并降低束流在轰击靶面时产 生的二次电子,起到降低无效靶流的作用。

# 1.2 中子管主要故障模式

中子管故障主要表现为无法达到预期稳定 产额、真空度下降或丧失、绝缘能力下降、无法 产生中子等。根据中子管的组成结构和功能可 分析得知,管体故障主要表现为密封性或绝缘 性丧失;离子源故障主要是电离功能异常或丧 失、离子流异常波动;氘氚储存器故障主要是 吸、放气能力异常或丧失;加速极故障主要是高 压电场加载异常,离子加速、聚焦不稳定等;靶故 障主要是吸附氘氚气体能力下降、不稳定或丧 失,靶流异常或氦压升高;二次电子抑制结构的 故障主要表现为二次电子抑制能力下降、不稳定 或丧失。中子管的主要故障模式如图 2 所示。



Fig. 2 Failure mode of neutron tube

# 2 评估模型及方法

本文采用模糊综合评判和层次分析法对中 子管故障进行风险评估。模糊综合评判法基于 模糊数学,对不方便量化的系统合成模糊关系, 将一些模糊因素定量化,从而对多个因素进行 评判。该方法可定量地研究和处理客观存在的 模糊因素,充分考虑因素的中间过渡状态。层 次分析法是一种对多目标进行分析决策的方 法,将1个多目标的复杂问题分解成若干个因 素,并按关系分组形成层次结构,从而确定层次 中各因素的相对重要性。

本文采用的评估模型和方法[17-20]如下。

1) 确定隶属度矩阵 R

通过专家调查对评价指标进行数据采集, 得到每个评价指标的对应模糊评语频率,将归 一化频率作为每个评价指标对应模糊评语的隶 属度,从而建立隶属度矩阵 **R**:

$$\mathbf{R} = (r_{ij})_{m \times n} = \begin{pmatrix} r_{11} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{m1} & \cdots & r_{mn} \end{pmatrix}$$
(3)

其中, $r_{ij}$ 表示第 $i(i=1,2,\dots,m)$ 个评价指标在 第 $j(j=1,2,\dots,n)$ 个模糊评语上的频率,

$$\sum_{j=1} r_{ij} = 1$$
 .

2) 确定相对权重

采用层次分析法确定复杂系统各评价指标 的相对权重。对于评价指标  $u_x$ 和 $u_y(x=1,2,$ …,m,y=1,2,…,m),可按照表 1 所列的九标 度指标重要程度判断表来确定它们之间的相对 重要程度。

表 1 九标度指标重要程度判断表 Table 1 Nine-scale judgement of indicator important degree

| 相对重要程度             | 判断取值 axy | 说明            |
|--------------------|----------|---------------|
| $u_x$ 与 $u_y$ 同等重要 | 1        | 重要程度介于上述两     |
| $u_x$ 比 $u_y$ 稍微重要 | 3        | 相邻判断取值之间时,    |
| $u_x$ 比 $u_y$ 明显重要 | 5        | 可取中间值 2、4、6、8 |
| $u_x$ 比 $u_y$ 强烈重要 | 7        |               |
| $u_x$ 比 $u_y$ 极端重要 | 9        |               |

由以上定义,对于任意的评价指标  $u_x$  和  $u_y$ ,按九标度指标重要程度判断表有  $a_{xy} = 1/a_{yx}$ 。对于系统的 *m* 个评价指标,可构造 *m*×*m* 判断矩阵 **A**:

$$\mathbf{A} = (a_{xy})_{m \times m} = \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mm} \end{bmatrix} \quad (4)$$

可按式(5)计算判断矩阵的特征值λ:

$$AX = \lambda X \tag{5}$$

其中,X为特征向量。当判断矩阵 A 具有完全一致性的条件下,有唯一非零、最大的特征值  $\lambda_{max} = m$ 。一般情况下,判断矩阵 A 的最大特征值  $\lambda_{max}$ 稍大于矩阵阶数 m,且其余特征根接近于 0。

为了保证应用层次分析法得到的评价指标 相对权重基本合理,需进行一致性检验。可按 式(6)计算一致性指标 CI:

$$CI = \frac{\lambda_{\max} - m}{m - 1} \tag{6}$$

根据一致性指标 CI 计算一致性比例 CR,即:

$$CR = \frac{CI}{RI}$$
(7)

其中,RI为平均一致性指标,它与 m 有关,具体取值列于表 2。

当一致性比例 CR≪0.1 时,认为判断矩阵 具有较好的一致性,此时最大特征值 λ<sub>max</sub>对应的 特征向量 X 进行归一化处理后得到相对权重向 量 *X*;当一致性比例 CR>0.1 时,认为判断矩阵 的一致性不可接受,需进行适当的修正。

表 2 平均一致性指标值

Table 2 Indicator value of average consistency

| 阶数 | RI   | 阶数 | RI   |
|----|------|----|------|
| 1  | 0    | 6  | 1.24 |
| 2  | 0    | 7  | 1.32 |
| 3  | 0.58 | 8  | 1.41 |
| 4  | 0.90 | 9  | 1.45 |
| 5  | 1.12 |    |      |

3) 确定模糊综合评判集

根据各评价指标的相对权重向量 **X** 和隶 属度矩阵**R**,可根据式(8)所示的广义模糊合成 运算得到模糊综合评判集**B**:

 $\boldsymbol{B} = \widetilde{\boldsymbol{X}} \odot \boldsymbol{R} = (b_1, b_2, \cdots, b_n)$ (8)

其中, ①表示广义模糊合成运算。

本文选取的模糊算子 b<sub>j</sub> 为:

$$b_j = \sum_{i=1}^m \widetilde{x}_i r_{ij} \tag{9}$$

4) 模糊综合评判

模糊综合评判集 **B** 是一模糊向量,不够直 观。为了直观而明确地表达评判结果,采用模糊 等级向量  $C = [c_1, c_2, \dots, c_n]$ 将模糊向量清晰化, 将其转化为一简单分数作为模糊综合评判值 Z。  $Z = B \cdot C^{T}$  (10)

# 3 中子管故障多级模糊综合评判

按照图1所示的中子管故障层次结构,进 行多级模糊综合评判。建立二级评价指标和模 糊评语(表3)。采用层次分析法得到中子管故 障二级评价指标的相对权重(表4)。

表 3 中子管故障二级评价指标和模糊评语

| - Table 3 - Secondary cyanation multator and rully comment of neutron tube rand | Table 3 | Secondary evaluat | on indicator and | l fuzzv comment | of neutron tube failure |
|---------------------------------------------------------------------------------|---------|-------------------|------------------|-----------------|-------------------------|
|---------------------------------------------------------------------------------|---------|-------------------|------------------|-----------------|-------------------------|

| 严酷度 U1               | 发生度 U2    | 检测度 U3                  | 模糊风险等级及风险值  |
|----------------------|-----------|-------------------------|-------------|
| 非常严重(v11)            | 经常出现(v21) | 无法检测(v31)               | 很大,[80,100] |
| 严重(v <sub>12</sub> ) | 较常出现(v22) | 很难检测(v32)               | 较大,[60,80]  |
| 一般(v13)              | 偶尔出现(v23) | 有机会检测(v33)              | 中等,[40,60]  |
| 较轻微(v14)             | 较少出现(v24) | 基本可检测(v <sub>34</sub> ) | 较小,[20,40]  |
| 轻微(v15)              | 极少出现(v25) | 肯定可检测(v35)              | 很小,[0,20]   |

表 4 中子管故障二级评价指标判断矩阵及相对权重

Table 4 Secondary evaluation indicator judgement matrix and relative weight of neutron tube failure

| 二级评价指标    | 严酷度 U1 | 发生度U2 | 检测度 U <sub>3</sub> | 相对权重    |
|-----------|--------|-------|--------------------|---------|
| 严酷度 $U_1$ | 1      | 1     | 3                  | 0.428 6 |
| 发生度 U2    | 1      | 1     | 3                  | 0.428 6 |
| 检测度 U3    | 1/3    | 1/3   | 1                  | 0.142 9 |

#### 3.1 管体故障模糊综合评判

根据专家调研情况统计管体故障一级评价 指标各模糊评语出现的概率,构建隶属度矩阵。 中子管管体故障一级评价指标各评语的隶属度 矩阵列于表 5。采用层次分析法得到的中子管 管体故障一级评价指标的判断矩阵及相对权重 列于表 6。

根据中子管管体故障一级评价指标的隶 属度矩阵及相对权重,按照式(8)、(9)进行一 级模糊综合评判,得到的结果为管体故障二级 评价指标评语的隶属度矩阵。再结合表4的二 级评价指标相对权重,按照式(8)、(9)进行二级 模糊综合评判,得到模糊综合评判集。本文中 取模糊风险等级向量 C=[90,70,50,30,10], 代入式(10),可得中子管管体故障的二级模 糊综合评判集的清晰化结果为 Z=48.417,对 照表3可知管体故障的风险等级为中等。

#### 3.2 离子源故障模糊综合评判

根据专家调研结果,中子管离子源故障一级评价指标各评语的隶属度矩阵列于表 7。采 用层次分析法得到的中子管离子源故障一级评价指标的判断矩阵及相对权重列于表 8。

表 5 中子管管体故障一级评价指标评语的隶属度矩阵

Table 5 Membership degree matrix of primary evaluation indicator comment for neutron tube body failure

|          | 严酷度评语 V1               |          |          |          |          |          | 发生度评语 V2 |          |          |          | 检测度评语 V <sub>3</sub> |          |          |          |          |
|----------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------------|----------|----------|----------|----------|
| 一级评价指标   | <i>v</i> <sub>11</sub> | $v_{12}$ | $v_{13}$ | $v_{14}$ | $v_{15}$ | $v_{21}$ | $v_{22}$ | $v_{23}$ | $v_{24}$ | $v_{25}$ | $v_{31}$             | $v_{32}$ | $v_{33}$ | $v_{34}$ | $v_{35}$ |
| 表面污染     | 0                      | 0.6      | 0.2      | 0.2      | 0        | 0        | 0        | 0.6      | 0        | 0.4      | 0                    | 0        | 0.2      | 0.2      | 0.6      |
| 高压击穿     | 0.6                    | 0.4      | 0        | 0        | 0        | 0        | 0        | 0.4      | 0.4      | 0.2      | 0                    | 0.2      | 0.2      | 0.4      | 0.2      |
| 焊缝开裂     | 0.8                    | 0.2      | 0        | 0        | 0        | 0        | 0        | 0.2      | 0.8      | 0        | 0                    | 0        | 0        | 0.8      | 0.2      |
| 芯柱断裂     | 0.8                    | 0.2      | 0        | 0        | 0        | 0        | 0        | 0.2      | 0.6      | 0.2      | 0                    | 0        | 0        | 0.8      | 0.2      |
| 靶端磁环焊缝开裂 | 0.6                    | 0.2      | 0.2      | 0        | 0        | 0        | 0        | 0.2      | 0.6      | 0.2      | 0                    | 0        | 0        | 0.8      | 0.2      |

表 6 中子管管体故障一级评价指标判断矩阵及相对权重

#### Table 6 Primary evaluation indicator judgement matrix and relative weight of neutron tube body failure

| 一级评价指标   | 表面污染 | 高压击穿 | 焊缝开裂 | 芯柱断裂 | 靶端磁环焊缝开裂 | 相对权重    |
|----------|------|------|------|------|----------|---------|
| 表面污染     | 1    | 2    | 4    | 8    | 7        | 0.497 1 |
| 高压击穿     | 1/2  | 1    | 2    | 4    | 3        | 0.241 6 |
| 焊缝开裂     | 1/4  | 1/2  | 1    | 2    | 2        | 0.127 8 |
| 芯柱断裂     | 1/8  | 1/4  | 1/2  | 1    | 1        | 0.063 9 |
| 靶端磁环焊缝开裂 | 1/7  | 1/3  | 1/2  | 1    | 1        | 0.069 7 |

表 7 中子管离子源故障一级评价指标评语的隶属度矩阵

## Table 7 Membership degree matrix of primary evaluation indicator comment for neutron tube ion source failure

| 伊河公北左    |          | 严酉       | 告度评语     | $\frac{1}{2}V_1$ |          |          | 发生       | <b>上度评</b> 语 | $\stackrel{\text{E}}{\to} V_2$ |          |          | 检测       | 则度评词     | 昏 $V_3$  |          |
|----------|----------|----------|----------|------------------|----------|----------|----------|--------------|--------------------------------|----------|----------|----------|----------|----------|----------|
| 一级时们佰称   | $v_{11}$ | $v_{12}$ | $v_{13}$ | $v_{14}$         | $v_{15}$ | $v_{21}$ | $v_{22}$ | $v_{23}$     | $v_{24}$                       | $v_{25}$ | $v_{31}$ | $v_{32}$ | $v_{33}$ | $v_{34}$ | $v_{35}$ |
| 阴极短路     | 0.4      | 0.4      | 0.2      | 0                | 0        | 0        | 0        | 0            | 0.6                            | 0.4      | 0        | 0.2      | 0        | 0        | 0.8      |
| 阴极脱落     | 0.4      | 0.4      | 0.2      | 0                | 0        | 0        | 0        | 0            | 0.2                            | 0.8      | 0        | 0.2      | 0.4      | 0.2      | 0.2      |
| 阳极短路     | 0.6      | 0.4      | 0        | 0                | 0        | 0.2      | 0        | 0.2          | 0.6                            | 0        | 0        | 0        | 0        | 0        | 1        |
| 阳极引线断路   | 0.6      | 0.2      | 0        | 0.2              | 0        | 0        | 0        | 0            | 0.4                            | 0.6      | 0        | 0.4      | 0        | 0.2      | 0.4      |
| 永磁体磁通量衰减 | 0        | 0.2      | 0.2      | 0.6              | 0        | 0        | 0        | 0.4          | 0.4                            | 0.2      | 0        | 0        | 0.2      | 0.2      | 0.6      |
| 永磁体破损    | 0.2      | 0        | 0.2      | 0.6              | 0        | 0        | 0        | 0            | 0.4                            | 0.6      | 0        | 0        | 0.4      | 0.2      | 0.4      |
| 接地极放电异常  | 0        | 0.4      | 0.6      | 0                | 0        | 0        | 0        | 0.6          | 0.4                            | 0        | 0        | 0.4      | 0.4      | 0        | 0.2      |

| Table 8 Primary | evaluation | n indicator | Judgement | matrix and rel | alive weight of | neutron tu | be ion source | Tallure |
|-----------------|------------|-------------|-----------|----------------|-----------------|------------|---------------|---------|
| 一级评价指标          | 阴极<br>短路   | 阴极<br>脱落    | 阳极<br>短路  | 阳极引线<br>断路     | 永磁体磁<br>通量衰减    | 永磁体<br>破损  | 接地极<br>放电异常   | 相对权重    |
| 阴极短路            | 1          | 2           | 1         | 1              | 1/2             | 1/2        | 1             | 0.117 6 |
| 阴极脱落            | 1/2        | 1           | 1/2       | 1/2            | 1/4             | 1/4        | 1/2           | 0.058 8 |
| 阳极短路            | 1          | 2           | 1         | 1              | 1/2             | 1/2        | 1             | 0.117 6 |
| 阳极引线断路          | 1          | 2           | 1         | 1              | 1/2             | 1/2        | 1             | 0.117 6 |
| 永磁体磁通量衰减        | 2          | 4           | 2         | 2              | 1               | 1          | 2             | 0.235 3 |
| 永磁体破损           | 2          | 4           | 2         | 2              | 1               | 1          | 2             | 0.235 3 |
| 接地极放电异常         | 1          | 2           | 1         | 1              | 1/2             | 1/2        | 1             | 0.117 6 |

表 8 中子管离子源故障一级评价指标判断矩阵及相对权重

根据中子管离子源故障一级评价指标的隶 属度矩阵及相对权重,按照式(8)、(9)进行一级 模糊综合评判,得到离子源故障二级评价指标 评语的隶属度矩阵,再结合表4的二级评价指 标相对权重,按照式(8)、(9)进行二级模糊综合 评判,得到模糊综合评判集。中子管离子源故 障的二级模糊综合评判集的清晰化结果为 Z=

41.431,对照表3可知离子源故障的风险等级 为中等。

### 3.3 氘氚储存器故障模糊综合评判

根据专家调研结果,中子管氘氚储存器故障 一级评价指标各评语的隶属度矩阵列于表 9。采 用层次分析法得到的中子管氘氚储存器故障一级 评价指标的判断矩阵及相对权重列于表 10。

表 9 中子管氘氚储存器故障一级评价指标评语的隶属度矩阵

| Table 9 | Membership d | legree matrix of | primary | evaluation | indicator | comment o | f neutron | tube D | ⊢T storage | failure |
|---------|--------------|------------------|---------|------------|-----------|-----------|-----------|--------|------------|---------|
|---------|--------------|------------------|---------|------------|-----------|-----------|-----------|--------|------------|---------|

| 纽河丛北左   | 严酷度评语 V1 |          |          |          |          | 发生度评语 V2 |          |          |          | 检测度评语 V <sub>3</sub> |          |          |          |          |          |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------------|----------|----------|----------|----------|----------|
| 一级计划指称  | $v_{11}$ | $v_{12}$ | $v_{13}$ | $v_{14}$ | $v_{15}$ | $v_{21}$ | $v_{22}$ | $v_{23}$ | $v_{24}$ | $v_{25}$             | $v_{31}$ | $v_{32}$ | $v_{33}$ | $v_{34}$ | $v_{35}$ |
| 加热丝断路   | 0.6      | 0.2      | 0.2      | 0        | 0        | 0        | 0        | 0.2      | 0.6      | 0.2                  | 0        | 0        | 0        | 0.2      | 0.8      |
| 加热丝短路   | 0.6      | 0.2      | 0.2      | 0        | 0        | 0        | 0        | 0.2      | 0.6      | 0.2                  | 0        | 0        | 0        | 0.2      | 0.8      |
| 绝缘瓷管破损  | 0.4      | 0.6      | 0        | 0        | 0        | 0        | 0        | 0        | 0.8      | 0.2                  | 0        | 0.2      | 0.4      | 0.2      | 0.2      |
| 吸气剂局部破损 | 0        | 0.6      | 0.4      | 0        | 0        | 0        | 0.2      | 0        | 0.8      | 0                    | 0.4      | 0.2      | 0.4      | 0        | 0        |
| 吸气剂脱落   | 0.2      | 0.8      | 0        | 0        | 0        | 0        | 0.2      | 0        | 0.6      | 0.2                  | 0.2      | 0.6      | 0.2      | 0        | 0        |

表 10 中子管氘氚储存器故障一级评价指标判断矩阵及相对权重

| Table 10 | Primary evaluation indicator | judgement matrix and r | elative weight of neutron tube <b>D</b> | -T storage failure |
|----------|------------------------------|------------------------|-----------------------------------------|--------------------|
|----------|------------------------------|------------------------|-----------------------------------------|--------------------|

| 一级评价指标  | 加热丝断路 | 加热丝短路 | 绝缘瓷管破损 | 吸气剂局部破损 | 吸气剂脱落 | 相对权重    |
|---------|-------|-------|--------|---------|-------|---------|
| 加热丝断路   | 1     | 1     | 1/7    | 1/5     | 1/3   | 0.053 2 |
| 加热丝短路   | 1     | 1     | 1/7    | 1/5     | 1/3   | 0.053 2 |
| 绝缘瓷管破损  | 7     | 7     | 1      | 1/2     | 4     | 0.328 9 |
| 吸气剂局部破损 | 5     | 5     | 2      | 1       | 7     | 0.455 9 |
| 吸气剂脱落   | 3     | 3     | 1/4    | 1/7     | 1     | 0.108 9 |

根据中子管氘氚储存器故障一级评价指标 的隶属度矩阵及相对权重,按照式(8)、(9)进行 一级模糊综合评判,得到的结果为氘氚储存器 故障二级评价指标评语的隶属度矩阵。再结合 表 4 的二级评价指标相对权重,按照式(8)、(9) 进行二级模糊综合评判,得到模糊综合评判集。 中子管氘氚储存器故障的二级模糊综合评判集 的清晰化结果为Z = 51.995, 对照表 3可知氘 氚储存器故障的风险等级为中等。

# 3.4 加速极故障模糊综合评判

根据专家调研结果,中子管加速极故障一

级评价指标各评语的隶属度矩阵列于表 11。 采用层次分析法得到的中子管加速极故障一级 评价指标的判断矩阵及相对权重列于表 12。

#### 表 11 中子管加速极故障一级评价指标评语的隶属度矩阵

Table 11 Membership degree matrix of primary evaluation indicator comment

of neutron tube acceleration pole failure

| 如证从北长      |          | 严酢       | 告度评语     | $\frac{1}{4}V_1$ |          |          | 发生       | 三度评词     | $\frac{1}{2}V_2$ |          |          | 检测       | 则度评词     | 昏 $V_3$  |          |
|------------|----------|----------|----------|------------------|----------|----------|----------|----------|------------------|----------|----------|----------|----------|----------|----------|
| 一级计切指称     | $v_{11}$ | $v_{12}$ | $v_{13}$ | $v_{14}$         | $v_{15}$ | $v_{21}$ | $v_{22}$ | $v_{23}$ | $v_{24}$         | $v_{25}$ | $v_{31}$ | $v_{32}$ | $v_{33}$ | $v_{34}$ | $v_{35}$ |
| 高压加载异常     | 0.4      | 0.4      | 0.2      | 0                | 0        | 0        | 0        | 0.8      | 0                | 0.2      | 0        | 0.2      | 0.4      | 0.2      | 0.2      |
| 离子加速、聚焦不稳定 | 0        | 0.6      | 0.4      | 0                | 0        | 0        | 0        | 0.4      | 0.4              | 0.2      | 0        | 0.8      | 0        | 0        | 0.2      |

#### 表 12 中子管加速极故障

#### 一级评价指标判断矩阵及相对权重

 Table 12
 Primary evaluation indicator judgement

matrix and relative weight of neutron

tube acceleration pole failure

| 一级评价指标     | 高压<br>加载异常 | 离子加速、<br>聚焦不稳定 | 相对<br>权重 |
|------------|------------|----------------|----------|
| 高压加载异常     | 1          | 1/3            | 0.25     |
| 离子加速、聚焦不稳定 | 3          | 1              | 0.75     |

根据中子管加速极故障一级评价指标的隶 属度矩阵及相对权重,按照式(8)、(9)进行一级 模糊综合评判,得到加速极故障二级评价指标 评语的隶属度矩阵。再结合表4的二级评价指 标相对权重,按照式(8)、(9)进行二级模糊综合 评判,得到模糊综合评判集。中子管加速极故 障的二级模糊综合评判集的清晰化结果为 Z= 51.037,对照表3可知加速极故障的风险等级 为中等。

#### 3.5 靶故障模糊综合评判

根据专家调研结果,中子管靶故障一级评价指标各评语的隶属度矩阵列于表 13。采用 层次分析法得到的中子管靶故障一级评价指标 的判断矩阵及相对权重列于表 14。

表 13 中子管靶故障一级评价指标评语的隶属度矩阵

#### Table 13 Membership degree matrix of primary evaluation indicator comment of neutron tube target failure

| 祝证公长后   | 严酷度评语 V1 |          |          |          |          |          | 发生度评语 V2 |          |          |          | 检测度评语 V <sub>3</sub> |          |          |          |          |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------------|----------|----------|----------|----------|
| 一级叶川指你  | $v_{11}$ | $v_{12}$ | $v_{13}$ | $v_{14}$ | $v_{15}$ | $v_{21}$ | $v_{22}$ | $v_{23}$ | $v_{24}$ | $v_{25}$ | $v_{31}$             | $v_{32}$ | $v_{33}$ | $v_{34}$ | $v_{35}$ |
| 靶膜氧化    | 0        | 0.2      | 0.6      | 0.2      | 0        | 0        | 0.6      | 0.2      | 0.2      | 0        | 0.2                  | 0.8      | 0        | 0        | 0        |
| 靶膜破损    | 0.2      | 0.4      | 0        | 0.4      | 0        | 0        | 0.2      | 0        | 0.8      | 0        | 0.2                  | 0.4      | 0.4      | 0        | 0        |
| 靶膜脱落    | 0.6      | 0.2      | 0.2      | 0        | 0        | 0        | 0        | 0.2      | 0.6      | 0.2      | 0.2                  | 0.4      | 0.4      | 0        | 0        |
| 靶释放氦气   | 0        | 0.2      | 0.4      | 0.2      | 0.2      | 0.2      | 0.2      | 0.6      | 0        | 0        | 0.4                  | 0.6      | 0        | 0        | 0        |
| 靶基表面热点蚀 | 0        | 0.6      | 0.2      | 0.2      | 0        | 0        | 0.2      | 0.2      | 0.6      | 0        | 0                    | 0.8      | 0.2      | 0        | 0        |

表 14 中子管靶故障一级评价指标判断矩阵及相对权重

Table 14 Primary evaluation indicator judgement matrix and relative weight of neutron tube target failure

| 一级评价指标  | 靶膜氧化 | 靶膜破损 | 靶膜脱落 | 靶释放氦气 | 靶基表面热点蚀 | 相对权重    |
|---------|------|------|------|-------|---------|---------|
| 靶膜氧化    | 1    | 5    | 5    | 1/5   | 5       | 0.244 5 |
| 靶膜破损    | 1/5  | 1    | 3    | 1/8   | 1/2     | 0.062 2 |
| 靶膜脱落    | 1/5  | 1/3  | 1    | 1/8   | 1/4     | 0.036 7 |
| 靶释放氦气   | 5    | 8    | 8    | 1     | 5       | 0.559 8 |
| 靶基表面热点蚀 | 1/5  | 2    | 4    | 1/5   | 1       | 0.096 8 |

根据中子管靶故障一级评价指标的隶属度 矩阵及相对权重,按照式(8)、(9)进行一级模糊 综合评判,得到靶故障二级评价指标评语的隶 属度矩阵。再结合表4的二级评价指标相对权 重,按照式(8)、(9)进行二级模糊综合评判,得 到模糊综合评判集。中子管靶故障的二级模糊 综合评判集的清晰化结果为 Z=54.871,对照 表3可知靶故障的风险等级为中等。

#### 3.6 二次电子抑制结构故障模糊综合评判

根据专家调研结果,中子管二次电子抑制 结构故障一级评价指标各评语的隶属度矩阵列 于表 15。采用层次分析法得到的中子管二次 电子抑制结构故障一级评价指标的判断矩阵及 相对权重列于表 16。

表 15 中子管二次电子抑制结构故障一级评价指标评语的隶属度矩阵 Table 15 Membership degree matrix of primary evaluation indicator comment of neutron tube secondary electron suppression structure failure

| 如证公长后    | 严酷度评语 V1 |          |          |          |          | 发生度评语 V2 |          |          |          | 检测度评语 V <sub>3</sub> |          |          |          |          |          |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------------|----------|----------|----------|----------|----------|
| 一级时间指称   | $v_{11}$ | $v_{12}$ | $v_{13}$ | $v_{14}$ | $v_{15}$ | $v_{21}$ | $v_{22}$ | $v_{23}$ | $v_{24}$ | $v_{25}$             | $v_{31}$ | $v_{32}$ | $v_{33}$ | $v_{34}$ | $v_{35}$ |
| 磁通量衰减    | 0        | 0.2      | 0.4      | 0.4      | 0        | 0        | 0.4      | 0        | 0.2      | 0.4                  | 0        | 0        | 0.2      | 0        | 0.8      |
| 抑制电阻断路   | 0        | 0.6      | 0        | 0.4      | 0        | 0        | 0        | 0.4      | 0.4      | 0.2                  | 0        | 0        | 0        | 0.2      | 0.8      |
| 抑制电阻参数漂移 | 0        | 0.2      | 0.6      | 0.2      | 0        | 0        | 0        | 0.4      | 0.4      | 0.2                  | 0        | 0        | 0.2      | 0        | 0.8      |

表 16 中子管二次电子抑制结构故障一级评价指标判断矩阵及相对权重

 
 Table 16
 Primary evaluation indicator judgement matrix and relative weight of neutron tube secondary electron suppression structure failure

| 一级评价指标 | 磁通量衰减 | 抑制电阻断路 | 抑制电阻参数漂移 | 相对权重    |
|--------|-------|--------|----------|---------|
| 磁通量衰减  | 1     | 5      | 1        | 0.454 5 |
| 抑制电阻断路 | 1/5   | 1      | 1/5      | 0.090 9 |

5

根据中子管二次电子抑制结构故障一级评价指标的隶属度矩阵及相对权重,按照式(8)、(9)进行一级模糊综合评判,得到二次电子抑制结构故障二级评价指标评语的隶属度矩阵。再结合表4的二级评价指标相对权重,按照式(8)、(9)进行二级模糊综合评判,得到模糊综合评判集。中子管二次电子抑制结构故障的二级模糊综合评判集的清晰化结果为 Z=38.677,对照表3可知二次电子抑制结构故障的风险等级为较小。

1

# 4 中子管故障风险评估

抑制电阻参数漂移

根据中子管故障模糊综合评判结果,中子 管除二次电子抑制结构的潜在故障风险等级为 较小外,其他部件潜在故障的风险等级均为中 等,总体故障模糊风险水平为中等水平。中子 管故障风险列于表 17,故障风险前 3 位的部件 为靶、氘氚储存器和加速极。

表 17 中子管故障风险 Table 17 Risk of neutron tube failure

1

0.454 5

| 故障类型       | 故障模糊风险 | 风险排序 |
|------------|--------|------|
| 靶故障        | 54.871 | 1    |
| 氘氚储存器故障    | 51.995 | 2    |
| 加速极故障      | 51.037 | 3    |
| 管体故障       | 48.417 | 4    |
| 离子源故障      | 41.431 | 5    |
| 二次电子抑制结构故障 | 38.677 | 6    |

中子管靶潜在故障总体故障风险为中等。 根据表 14 的分析结果,对中子管靶应重点关注 靶释放氦气、靶膜氧化等故障,可分别导致中子 管氦压升高、靶吸附氘氚气体能力下降或丧失, 从而导致中子管无法达到预期稳定产额。可考 虑采取抗氧化能力更强的靶膜材料,并提高靶 膜固氦能力,同时优化靶基散热结构,避免靶膜 温升过高,减少氦气的释放。 中子管氘氚储存器潜在故障总体故障风险 为中等。根据表 10 的分析结果,对中子管氘氚 储存器应重点关注吸气剂局部破损、绝缘瓷管 破损等故障,这些故障可导致吸、放气能力下降 或丧失,从而导致中子管无法达到预期稳定中 子产额。由于吸气剂局部破损、绝缘瓷管破损 多由电流过大导致,因此在使用过程中应注意 规范操作,可适当增加外部电流保护器件。

中子管加速极潜在故障总体故障风险为中 等。根据表 12 的分析结果,对中子管加速极应 重点关注离子加速、聚焦不稳定的故障,这些故 障可导致中子管无法达到预期稳定产额,其通 常由加速极表面损伤、陶瓷筒体内部附着杂质 引起,可考虑改进工艺,提高筒体表面光洁度。

# 5 结论

本文采用模糊综合评判和层次分析法对中 子管开展了故障风险评估,结果表明:中子管总 体故障风险水平中等,故障风险前3位的部件 为靶、氘氚储存器和加速极,在设计和使用中应 重点关注靶释放氦气,靶膜氧化,氘氚储存器吸 气剂局部破损,绝缘瓷管破损,加速极离子加 速、聚焦不稳定等故障。

# 参考文献:

- [1] 乔亚华.中子管的研究进展及应用[J].核电子 学与探测技术,2008,28(6):1 134-1 139.
  QIAO Yahua. Progress in studies and applications of neutron tube[J]. Nuclear Electronics &. Detection Technology, 2008, 28(6): 1 134-1 139 (in Chinese).
- [2] 梁峰,吴军随,麻惠生. 耐高温长寿命测井中子 管[J]. 测井技术,1999(1):62-64.
  LIANG Feng, WU Junsui, MA Huisheng. High temperature and long-life neutron tube for logging[J]. Well Logging Technology, 1999(1): 62-64(in Chinese).
- [3] 贾文宝.可移动式中子监测隐性爆炸物系统的 初步探索与研究[J].原子核物理评论,2005(1): 76-78,121.

JIA Wenbao. Study of movable system of neutron detecting latent explosive[J]. Nuclear Physics Review, 2005(1): 76-78, 121(in Chinese).

[4] 肖坤祥,冉汉正,曾清,等. 高产额中子发生器研制[J]. 原子能科学技术,2012,46(增刊):713-

717.

XIAO Kunxiang, RAN Hanzheng, ZENG Qing, et al. Development of high yield neutron generator[J]. Atomic Energy Science and Technology, 2012, 46(Suppl.): 713-717(in Chinese).

- [5] 裴宇阳. 中子照相技术及其应用[J]. 现代仪器, 2004(5):17-22,16.
  PEI Yuyang. Progress in neutron radiography and their application[J]. Modern Instrument, 2004(5):17-22,16(in Chinese).
- [6] 乔双,景士伟.提高中子管产额的措施[J].核技术,2011,34(12):893-896.
  QIAO Shuang, JING Shiwei. Improving the yield of neutron tubes developed at NNU, China
  [J]. Nuclear Techniques, 2011, 34(12): 893-896(in Chinese).
- [7] 李三庆. 测井用中子管寿命分析[J]. 西安工业 学院学报,2001(4):355-357.
  LI Sanqing. Analysis for lifetime of neutron tube in logging[J]. Journal of Xi'an Institute of Technology, 2001(4): 355-357(in Chinese).
- [8] 刘炯,骆庆锋,鲁宁,等.影响中子管产额因素的分析[J].石油仪器,2010,24(6):22-23,100.
  LIU Jiong, LUO Qingfeng, LU Ning, et al.
  Analysis on the influence factors of neutron tube yield[J]. Petroleum Instruments, 2010, 24(6): 22-23, 100(in Chinese).
- [9] 宋应民,杨洪广,张家善,等. 用于中子测井的自成靶密封中子管性能评价[J]. 同位素,2014,27 (4):199-202.
  SONG Yingmin, YANG Hongguang, ZHANG Jiashan, et al. The parameters test of a sealed D-T logging neutron tube[J]. Journal of Isotopes, 2014, 27(4): 199-202(in Chinese).
- [10] GJB/Z 1391-2006 故障模式、影响及危害性分 析指南[S]. 北京:总装备部军标出版发行部, 2006.
- [11] 戴云徽,韩之俊,朱海荣. 故障模式及影响分析 (FMEA)研究进展[J]. 中国质量,2007(10):23-26.

DAI Yunhui, HAN Zhijun, ZHU Hairong. Progress on the study of failure modes and effect analysis[J]. China Quality, 2007(10): 23-26(in Chinese).

[12] 胡海涛,高朝晖,何正友,等. 基于 FTA 和 FMEA法的地铁牵引供电系统可靠性评估[J]. 铁道学报,2012,34(10):48-54. HU Haitao, GAO Zhaohui, HE Zhengyou, et al. Reliability evaluation of metro traction power supply system based on FTA and FMEA methods[J]. Journal of the China Railway Society, 2012, 34(10): 48-54(in Chinese).

[13] 崔文彬,吴桂涛,孙培廷,等. 基于 FMEA 和模糊 综合评判的船舶安全评估[J]. 哈尔滨工程大学 学报,2007(3):263-267,276.

> CUI Wenbin, WU Guitao, SUN Peiting, et al. Ship safety assessment based on FMEA and fuzzy comprehensive evaluation methods[J]. Journal of Harbin Engineering University, 2007(3): 263-267, 276(in Chinese).

[14] 杨丽梅,蔡长亮,徐楠. 基于模糊综合评判与 FMEA的数控机床故障分析[J]. 机床与液压, 2015,43(15):197-201,206.

> YANG Limei, CAI Changliang, XU Nan. Fault analysis of CNC machine tool based on fuzzy comprehensive evaluation and FMEA methods [J]. Machine Tool & Hydraulics, 2015, 43 (15): 197-201, 206(in Chinese).

[15] 郑晶晶,张钦礼,王新民,等. 充填管道系统失效 模式与影响分析(FMEA)及失效影响模糊评估 [J]. 中国安全科学学报,2009,19(6):166-171,3. ZHENG Jingjing, ZHANG Qinli, WANG Xinmin, et al. FMEA analysis of backfilling pipeline system and fuzzy evaluation of failure effect[J]. CHINA Safety Science Journal, 2009, 19(6): 166-171, 3(in Chinese).

- [16] ZAFIROPOULOS E P, DIALYNAS E N. Reliability prediction and failure mode effects and criticality analysis (FMECA) of electronic devices using fuzzy logic[J]. International Journal of Quality & Reliability Management, 2005, 22 (2): 124-156.
- [17] 张小红,裴道武,代建华. 模糊数学与 Rough 集 理论[M]. 北京:清华大学出版社,2012.
- [18] 陈水利,李敬功,王向公. 模糊集理论及其应用 [M]. 北京:科学出版社,2005.
- [19] RACHIERU N, BELU N, ANGHEL D C. Improvement of process failure mode and effects analysis using fuzzy logic[J]. Applied Mechanics and Materials, 2013, 2564(371): 822-826.
- [20] CHEN S D. Failure mode and effects analysis based on fuzzy utility cost estimation[J]. International Journal of Quality & Reliability Management, 2007, 24(9): 68-79.