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Abstract. In 1998, Jerey Hostein, Jill Pipher, and Joseph H. Silverman intro-
duced the famous Ntru cryptosystem, and called it "A ring-based public key
cryptosystem". Actually it turns out to be a lattice based cryptosystem that is
resistant to Shor’s algorithm. There are several modifications to the original
Ntru and two of them are selected as round 2 candidates of NIST post quan-
tum public key scheme standardization.
In this paper, we present a simple attack on the original Ntru scheme. The idea
comes from Ding et al.’s key mismatch attack. Essentially, an adversary can
find information on the private key of a KEM by not encrypting a message as
intended but in a manner which will cause a failure in decryption if the private
key is in a certain form. In the present, Ntru has the encrypter generating a
random polynomial with "small" coefficients, but we will have the coefficients
be "large". After this, some further work will create an equivalent key.
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1 Introduction

1.1 Background

Public-key cryptosystems have undergone a revolutionary breakthrough in cryptog-
raphy since its invention in 1976 [5]. Today, public-key cryptosystems have become
an indispensable part of modern communication systems. RSA, DSA, ECDSA, and
similar cryptosystems are widely in use providing a secure way of exchanging keys
to be used by the more efficient symmetric-key cryptosystems. Hence the security
of data relies on its weakest part, which is the transfer of the symmetric key by the
public-key cryptosystem. The security of those systems are based on the hardness
of classical number theory problems such as integer prime factorization or discrete
logarithm. These problems are thought difficult enough to resist attack from classical
computing technology. However, Peter shor [18] from Bell Laboratories theoretically
showed that some hard number theory problems such as Integer Prime Factorization
Problem and the Discrete Logarithm Problem could be solved if a quantum com-
puter were built. Peter Shor’s polynomial-time integer factorization algorithm has
led a potential crisis to crytopraphy. People realize that new public-key cryptosys-
tems that have potential to resist quantum algorithms are urgently needed.

1.2 Post-Quantum Cryptography Standardization

Due to the rapid development of quantum computers, NIST believes that it is pru-
dent to begin developing standards for post-quantum cryptography. Moreover, it is
reasonable to plan ahead because a transition to post-quantum cryptography will
not be simple. A significant effort will be required in order to develop, standardize,
and deploy new post-quantum cryptosystems. The call for proposals started in De-
cember 2016. NIST expects to perform multiple rounds of evaluation over a period
of three to five years. The goal of this process is to select a number of acceptable
candidate cryptosystems for standardization. These new standards will be used as
quantum resistant counterparts to existing standards. The evaluation will be based
on the following three criteria: security, cost, and algorithm implementation char-
acteristics [14]. By the end of 2017, 23 signature schemes and 59 encryption/KEM
schemes were submitted, of which 69 participated in the first round, 26 of these sur-
vived the second round. Two of these submissions to the second round are based on
the original Ntru scheme, with some modifications [4][2].

1.3 Lattice based Cryptosystem

Lattice-based public-key cryptosystems are believed to be one of the candidates that
have potential to resist quantum attack. The most important computational problem
in lattice-based cryptosystems is the shortest vector problem (svp) which asks to find
the length of the shortest non-zero vector in a lattice. This problem is believed hard
to solve efficiently even with a quantum computer. Svp also derives other interesting
problems such as the learning with error (LWE) problem introduced by Oded Regev
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in 2005 along with an encryption system [16]. In 2012, Ding et al. published the first
key exchange system based on LWE problem that is provably secure [9]. It can be
easily proven that the security of Ntru depends on the difficulty to solve the svp in
Ntru lattice. In this paper, we try to find short vectors in Ntru lattice that can be used
as equivalent keys if both private and public keys are reused. We hope to show that
certain implementations of Ntru are breakable due to their use in symmetric key
exchanges.

1.4 Key Reuse Attack

Key reuse actually is commonly used in the internet standard. For example, the pre-
shared keys in TLS 1.3 [17] are allowed to be reused. However, key reuse in lattice
based cryptosystem has high potential of risk due to the key reuse attack. There are
currently two types of key reuse attack, signal leakage attack and key mismatch at-
tack. In this paper, we will focus on key mismatch attack. The goal of key mismatch
attack is to create an equivalent private key by verifying if the shared information
generated by two parties agrees or not several times.

In 2005, NSA warns NIST Post-Quantum candidates against active attacks[13].
The first key resue attack was proposed by Fluhrer on the leakage of secret keys of
ring-LWE key exchange when one party reuses the public key [10]. Later Ding et al.
gave an key leakage attack on the LWE key exchange[6]. Besides, Ding et al also in-
troduced an key mismatch attack on RLWE key exchange without signal leakage [8].
In 2019, Bauer et al analyzed the case when public key is resued in NewHope which
is a second round candidate of NIST post quantum standard process [1]. Yue Qin
el al. then proposed an optimized key mismatch attack on NewHope that improves
Bauer’s method [15]. Most recently, Ciprian Băetu et al. extended the key reuse attack
to quantum variant where the adversary has quantum access to a decryption oracle
[3].

1.5 Our contribution

We will present an attack on original Ntru (1998) [11] based on the fact that key mis-
match is accessible to the attacker. We will show that by choosing certain ephemeral
keys, the result of the decryption will make it possible for attacker to create equiva-
lent private keys. First, we will recall the original design of Ntru due to Jerey Hostein,
Jill Pipher, and Joseph H. Silverman. Next, we will describe the method to obtain the
longest consecutive nonzero chain in the coefficients of a private key polynomial.
This step can be done due to the special structure of the ring and the construction of
the private key. Having the longest chain, one can guess the remaining coefficients
by using the effective choices of ephemeral keys. In this step, one may get several
ambiguous cases, but we will explain why these ambiguous case does not matter in
finding the next coefficient and how we fill them. To find an equivalent key for the
other private key, we will simply solve a linear equation by the design construction.
Last but not least, we will provide the experimental success rate of our method, and
analyze that why in very low probability, our method fails.
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2 The Ntru cryptosystem [11]

2.1 Definitions

For the rest of the paper, we assume that n is an odd prime number.
The representatives of Zq is defined to be {− q−1

2 , · · · ,0, · · · , q−1
2 }.

R is the quotient ring Z[x]
xn−1 .

Rp is the quotient ring
Zp [x]
xn−1 .

Rq is the quotient ring
Zq [x]
xn−1 .

Φn = 1+x +x2 +·· ·+xn−1.
Φ1 = x −1.
A polynomial is ternary if its coefficients are in {−1,0,1}.
T is the set of non-zero ternary polynomials of degree at most n −1.
T (d1,d2) is a subset of T consisting of polynomials that have exactly d1 coefficients
equal to 1 and d2 coefficients equal to −1.

Multiplication of polynomials in Rq Let f(x) = a0 +a1x +a2x2 +·· ·+an−1xn−1 and
g(x) = b0+b1x+b2x2+·· ·+bn−1xn−1 be two polynomials in the ring Rq . The product
f(x)g(x) in Rq can be expressed in the matrix form:

[
a0 a1 · · · an−1

]


b0 b1 · · · bn−1

bn−1 b0 · · · bn−2
...

...
. . .

...
b1 b2 · · · b0


The resultant vector gives the coefficients of f(x)g(x) in Rq .

2.2 The Ntru scheme

In this section, we describe the original Ntru scheme.
Keygen:

– Choose f ∈T (d ,d +1) such that f is invertible in Rp and Rq .
– Let fp be the inverse of f in Rp

– fq be the inverse of f in Rq .
– Choose g ∈T (d ,d).
– Let h = pgfq mod (q).
– Public key: h.
– Private key: (f,g).

Encryption:

– Let m ∈ Rp be a message.
– Choose r ∈T (d ,d)
– compute c = prh+m mod q .

Decryption:
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– Compute a = cf mod q .
– Center lift a to R and do a mod p computation

m = fp a mod p.

Definition 1. The Ntru assumption is that given h, it is hard to find f and g.

The Ntru assumption can be formulated to a svp in the Ntru lattice which is
spanned by the rows of the 2N by 2N matrix:[

I h
0 q I

]
where I is the N dimensional identity matrix, h stands for the cyclical permutations
of the coefficients of h. Moreover 0 represents the zero matrix, and q I is q times the
indentity matrix I .

Remark 1. By proposition 6.48 in [12], if the Ntru parameters (n, p, q,d) are chosen
to satisfy q > (6d +1)p, the decryption process will never fail.

Remark 2. The inequality in Remark 1 guarantees that the coefficients of a do not
change when it moves from Rq to R. Therefore, it ensures the correctness of decryp-
tion. However, the attacker has the freedom to choose the ephemeral key r, and if r
is chosen honestly in T (d ,d), the decryption will be successful and no information
is revealed. Hence, the attacker has to choose a special r outside of the set T (d ,d)
which will fail the decryption so that he can get some information about the private
key.

3 Our Attack

The general strategy is inspired by Ding’s key reuse attack to LWE and ring LWE [7].
Under the assumption that both public and private keys are unchanged, an adver-
sary can obtain some information about the private key by choosing a particular
message and ephemeral key due to the fact that the result of decryption is accessible
to the adversary. Our attack consists of two parts. The first part is to obtain an equiv-
alent g. Our strategy is to find the longest chain of consecutive nonzero coefficients
in g. This step can be done by attempting the first several coefficients of ephemeral
keys from large values to small values and see if mismatch happens in decryption.
Afterward, we will guess the coefficients that are next to the endpoint of such longest
chain one by one until we get all the coefficients. We can verify our guess by assign-
ing some values to the corresponding coefficients of ephemeral key and see if the
decryption goes through. The second part of our attack is to find an equivalent key
for f. Since we have the equality h = pgfq in Rq . We can find an equivalent fq by figur-
ing out the kernel of g, which has a special form with high probability. Once we have
an equivalent fq , it is easy to obtain equivalent f and fp .
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3.1 Finding an Equivalent g

Finding the longest Chain We first assume that our message is equal to 0, the case
m 6= 0 will be discussed later. In the decryption process, a := fc in Rq , so a := f(phr) =
f(pfq gr) = pgr in Rq . Hence, a can be expressed as a multiplication of matrices:

[
r0 r1 · · · rn−1

]


pg0 pg1 · · · pgn−1

pgn−1 pg0 · · · pgn−2
...

...
. . .

...
pg1 pg2 · · · pg0


Assume that g has the longest chain of consecutive non-zero coefficients gi+1, · · · , gi+k .
It follows that the first k entries of (i +k)th column of this matrix

pg0 pg1 · · · pgn−1

pgn−1 pg0 · · · pgn−2
...

...
. . .

...
pg1 pg2 · · · pg0


are either p, · · · , p or −p, · · · ,−p.

pg0 · · · ±p · · · pgn−1

pgn−1 · · · ±p · · · pgn−2
...

...
...

...
...

pgi+k+1 · · · ±p · · · ±p
...

...
...

...
...

pg1 · · · pgi+k+1 · · · pg0


If we set our ephemeral key with coefficients r0 = r1 = ·· · = rk = d q−1

2pk e, and rk+1 =
·· · = rn−1 = 0, we have that

[
d q−1

2pk e · · · d
q−1
2pk e 0 · · · 0

]


pg0 · · · ±p · · · pgn−1

pgn−1 · · · ±p · · · pgn−2
...

...
...

...
...

pgi+k+1 · · · ±p · · · ±p
...

...
...

...
...

pg1 · · · pgi+k+1 · · · pg0


It is clear that the (i +k)th position of the resultant vector is either larger than q−1

2

or less than − q−1
2 which goes outside the boundary of Zq . So it will cause additional

modulus in the decryption process, and therefore leads to mismatch. However if the
ephemeral key r has coefficients r0 = r1 = ·· · = rk+1 = d q−1

2p(k+1) e and rk+2 = ·· · = rn−1 =
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0, we have that

[
d q−1

2p(k+1) e · · · d
q−1

2p(k+1) e 0 · · · 0
]


pg0 · · · ±p · · · pgn−1

pgn−1 · · · ±p · · · pgn−2
...

...
...

...
...

pgi+k+1 · · · ±p · · · ±p
...

...
...

...
...

pg1 · · · pgi+k+1 · · · pg0


This time the (i +k)th position of the resultant vector is between − q−1

2 and q−1
2 , so

the decryption process should go through.
we will use the above idea to obtain the longest chain of consecutive nonzero coef-
ficients of g. We just set the first j coefficients of r equal to d q−1

2p j e and rest equal to
0, and see whether the decryption goes through or not. If decryption fails, then we
set the first j +1 coefficients of r equal to d q−1

2p( j+1) e and the rest equal to 0. We keep
trying until decryption goes through. If the decryption succeeds when the first k co-
efficients of r are equal to d q−1

2pk e , we immediately know that g has the longest chain
of k −1 consecutive 1’s or k −1 consecutive -1’s.

Guessing the remaining coefficients of g We may assume that the longest chain of
consecutive nonzero coefficients of g appears in the beginning and they are equal
to 1, i.e. [g0, · · · , gk , gk+1, · · · , gn−1] = [1,1, · · · ,1, gk+1, · · · , gn−1] since the difference is
nothing but a shifting of coefficients and a positive or negative sign. We want to show
that we can get the remaining coefficients of g but with some ambiguous case which
can be solved in 3.1.3. This can be proved by mathematical induction.

It is clear that gk+1 is either 0 or −1. If we set r0 = r1 = ·· · = rk = d q−1
2p(k+1) e, rk+1 =

−d q−1
2p(k+1) e and rest of the coefficients equal to 0, then in the case of gk+1 = −1, the

decryption will fail, otherwise the decryption will pass. So, the decryption result will
decide the value of gk+1.

Assuming that we know the first k + j coefficients of g, we want to show that we
can obtain gk+ j+1. Let n be the number of nonzero coefficients in {g0, · · · , gk+ j }. For

i ∈ {0, · · · ,k + j }, set ri = gi ∗ d q−1
2p(n+1) e, and rk+ j+1 = d q−1

2p(n+1) e and rest equal to 0. If
gk+ j+1 = 0 or −1 then the decryption will pass through but if gk+ j+1 = 1 then the

decryption will fail. Whereas, if we set ri = gi ∗ d q−1
2p(n+1) e for i ∈ {0, · · · ,k + j }, and

rk+ j+1 = −d q−1
2p(n+1) e and rest equal to 0. We have different decryption results this

time. That is, if gk+ j+1 = 0 or 1 then the decryption will pass, if gk+ j+1 = −1, the
decryption will fail.

Based on the above results, we attempt both the choices of r. If for both choices
the decryption passes through then we immediately know that gk+1+ j = 0, whereas
if one choice fails and the other passes then it tells us the exact value of gk+ j+1. How-
ever, if both the choices fail then we have an ambiguous case, but at least in this case,
we know that gk+ j+1 is not equal to 0.
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Fortunately, the ambiguous case does not affect the process of finding the next
coefficient of g. For the convenience, we may simply assume that it is equal to 0 al-
though it is indeed not. This is because no matter what value the ambiguous case g j

is, we can always set the inner product r0g0+r1g1+·· ·+r j−1g j−1 near the boundary
of Zq to test g j+1. Therefore, we claim that we can obtain all the coefficients of g but
with some ambiguous cases.

Completing the guess Now we finally complete the guess by assigning 1’s and -1’s to
the positions wherever the ambiguous cases occur and see whether the decryption
passes through or not. Suppose there are n ambiguous cases, then there are at most
2n possibilities to check.

The case m 6= 0 One may say that the attack can be easily prevented if we keep using
0 as our message all the time. However, due to [6], if we choose our message from
T (d ,d) with small d , the attack still works. Our experimental results give the same
result.

3.2 Finding an Equivalent f

Suppose we obtain an equivalent key ĝ by going through 3.1. We claim that ĝ has
enough information to construct an equivalent private key f̂. By nature of its con-
struction, ĝ (if successfully generated) can only differ from g by a sign and a shifting
of its coefficients. That is, if g =∑n−1

i=0 ai xi ∈T (d ,d) then for some integer m,

ĝ = v
n−1∑
i=0

a(i+m)modn xi = v xm
n−1∑
i=0

ai xi = v xm g

where v is simply 1 if the longest chain of nonzero coefficients in g is indeed 1’s and
is −1 if said chain is actually made of −1’s. We note that xm has an inverse xn−m in
both Rq and Rp . Thus we see that

h = fq g = fq · v xn−m ĝ

Let us denote f̄q = v xn−m fq so we may write h = f̄q ĝ. Further let us write

f̄ = f̄q
−1 = v xm f

where we view each polynomial as a member of Rq . We note that as multiplying by v
is merely a potential change of sign and multiplying by xm just shifting which coeffi-
cient belongs to which term, f̄ will be a ternary polynomial like f.

It thus remains to find f̄q which results in f̄. As we already know ĝ and h, we can
turn this into solving

xĜ = h (1)

Here x and h are vectors representing an unknown polynomial and h in Rq respec-
tively. Ĝ is the matrix corresponding to ĝ as detailed in section 2.1.1. As ĝ has a zero
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divisor, the same as g. Thus ĝ will have a nontrivial nullspace N . So if u is a particu-
lar solution to (1), (u+N ) where is the set of all solutions to (1). Hence f̄q belongs to
(u+N ). To find it one goes checking each element in (u+N ) to see if it is invertible
in Rq and importantly that its inverse is a ternary polynomial. As the rank of Ĝ, con-
sidered as a random matrix, has very high probability to be almost full, but can never
be full, this set is small enough to search through as our computer experiments have
verified. Having found f̄q one can then make an equivalent key.

3.3 Experimental Results

Our parameters are: N = 61, p = 3, q = 2048, d = 20. We chose our message m ∈
T (3,3). The programming language we used is Magma

Attack ran 100
Ambiguous case 12
Nullity failure 2132
Total success 93

It can be seen from our experiments that the ambiguous case happened at a very low
probability. We got most of the coefficients of g by doing 3.1.1 and 3.1.2. The main
reason our attack fails is the nullity problem. In other words, the ḡ we found provides
a nullity that has dimension greater than 1 or some other large nullity. Moreover,
for each ambiguous case, we had to try 1 and -1 in that position. These attempts
gave us different ḡ, which corresponded to different G in (1). Hence the attempts for
ambiguous case may contribute to nullity failure. Overall, Our attack came with a
very high success rate.
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