
How to leverage hardness of constant-degree
expanding polynomials over R

to build iO?

Aayush Jain1, Huijia Lin2, Christian Matt3, and Amit Sahai1

1 UCLA
{aayushjain,sahai}@cs.ucla.edu
2 University of Washington, Seattle

rachel@cs.washington.edu
3 Concordium, Zurich, Switzerland

cm@concordium.com

Abstract. In this work, we introduce and construct D-restricted Func-
tional Encryption (FE) for any constant D ≥ 3, based only on the
SXDH assumption over bilinear groups. This generalizes the notion of
3-restricted FE recently introduced and constructed by Ananth et al.
(ePrint 2018) in the generic bilinear group model.

A D = (d+ 2)-restricted FE scheme is a secret key FE scheme that
allows an encryptor to efficiently encrypt a message of the form M =
(x,y,z). Here, x ∈ Fd×n

p and y,z ∈ Fn
p. Function keys can be issued for

a function f = ΣI=(i1,..,id,j,k) cI ·x[1, i1] · · ·x[d, id] · y[j] · z[k] where the
coefficients cI ∈ Fp. Knowing the function key and the ciphertext, one
can learn f(x,y,z), if this value is bounded in absolute value by some
polynomial in the security parameter and n. The security requirement is
that the ciphertext hides y and z, although it is not required to hide x.
Thus x can be seen as a public attribute.

D-restricted FE allows for useful evaluation of constant-degree
polynomials, while only requiring the SXDH assumption over bilinear
groups. As such, it is a powerful tool for leveraging hardness that exists
in constant-degree expanding families of polynomials over R. In partic-
ular, we build upon the work of Ananth et al. to show how to build
indistinguishability obfuscation (iO) assuming only SXDH over bilinear
groups, LWE, and assumptions relating to weak pseudorandom proper-
ties of constant-degree expanding polynomials over R.

1 Introduction

Program obfuscation transforms a computer program P into an equivalent pro-
gram O(P) such that any secrets present within P are “as hard as possible” to
extract from O(P). This property can be formalized by the notion of indistin-
guishability obfuscation (iO) [9, 32]. Formally, iO requires that given any two

? This paper is a merge of two independent works, one by Jain and Sahai, and the
other by Lin and Matt.

equivalent programs P1 and P2 of the same size, a computationally bounded
adversary cannot distinguish O(P1) from O(P2). iO has far-reaching applica-
tion [26, 50], significantly expanding the scope of problems to which cryptogra-
phy can be applied [50, 38, 25, 19, 28, 35, 12, 31, 34, 16].

The work of [26] gave the first mathematical candidate iO construction, and
since then several additional candidates have been proposed and studied [24, 21,
29, 22, 33, 15, 8, 49, 3, 7, 17, 13, 20, 36, 14, 33, 18, 47, 46, 23, 39, 44, 5, 43].

Constructing iO without MMaps. Until 2018, all known constructions relied on
multilinear maps [21, 22, 24, 29]. Unfortunately, multilinear map constructions
are complex and surviving multilinear map security models [27, 11, 45] are them-
selves complex and difficult to analyze, as they have had to be modified in light
of a sequence of attacks on multilinear map candidates [17, 13, 20, 36, 14, 33, 18,
47, 46].

This state of affairs is troubling scientifically, as we would like to be able to
reduce the security of iO to problems that are simple to state, and where the
underlying mathematics has a long history of study.

Everything old is new again: low-degree polynomials over the reals. Human-
ity has studied solving systems of (low-degree) polynomials over the reals for
hundreds of years. Is it possible to use hardness associated with polynomial sys-
tems over the reals cryptographically? Surprisingly, despite hundreds of years of
study, remarkably little is known about average-case hardness corresponding to
expanding polynomial systems, where the number of real variables is n, and the
polynomial equations over them is n1+ε for ε > 0.

The recent works of [4, 42, 1] introduced a new way constructing iO without
relying on multilinear maps, by looking to hardness that may be present in
degree two [4, 42, 1] or degree three [4] expanding polynomial systems over the
reals.

The primary goal of our work is to extend the approach proposed by [4] to
be able to use hardness associated with suitable expanding polynomial systems
of any constant degree.

Leveraging low degree pseudorandomness over Z to build iO. The key idea be-
hind the work of [4] is to posit the existence of weak pseudorandom objects
that are closely related to polynomials of degree 2 or 3 over the integers. They
then introduce the crucial notion of 3-restricted functional encryption, which is
a notion of functional encryption that allows for a restricted but still useful eval-
uation of degree-3 polynomials. This notion allows for the natural application of
expanding families of degree-3 polynomials. (See below for further discussion on
restricted-FE and its uses.)

Departing from previous work [5, 40, 43] that required at least trilinear maps
to construct any meaningful FE for degree-3 functions, [4] show how to construct
3-restricted FE using only bilinear maps. Finally, by combining 3-restricted FE
with the weak pseudorandom objects mentioned above, they achieve iO (also
assuming LWE).

2

The goals of our present work are two-fold:

– To show how to extend the above approach beyond degree 3, to any constant
degree D for D ≥ 3. To do so, the key ingredient we construct is D-restricted
FE, again only using bilinear maps regardless of the constant D.

– Furthermore, we construct D-restricted FE assuming only the SXDH as-
sumption to hold over the bilinear map groups, instead of the generic bilinear
model that was needed in [4].

We now elaborate.

D-restricted FE. A D-restricted FE scheme naturally generalizes the notion of 3-
restricted FE scheme from [4]. We will writeD = d+2 for notational convenience.
Such a scheme is a secret key FE scheme that allows an encryptor to encrypt a
message of the form M = (x,y, z), where x ∈ Fd×n and y, z ∈ Fnp. Function keys
can be issued for a function f = ΣI=(i1,..,id,j,k) cI · x[1, i1] · · ·x[d, id] · y[j] · z[k]
with coefficients cI ∈ Fp. Knowing the key and the ciphertext, one can learn
f(x,y, z), if this value is bounded in absolute value by some polynomial in the
security parameter and n. The security requirement is that the ciphertext hides
y and z, although it is not required to hide x. Thus x can be seen as a public
attribute. For implications to iO, we require that encryption complexity should
grow only linearly in n (up to a polynomial factor in the security parameter).

Observe that for a given family of degree-D polynomials Q fixed in a func-
tion key, the notion of D-restricted FE allows an encryptor to choose the values
of all variables x,y, z at the time of encryption, and the decryptor will obtain
Q(x,y, z). This allows for the most natural use of degree-D polynomials. We
stress this point because other, less natural uses, are possible without using D-
restricted FE, but these are unsatisfactory: One example would be where along
with the polynomial Q the values of all variables x would also be fixed inside the
function key. This would reduce the degree-D polynomials Q to quadratic poly-
nomials, and just quadratic FE would then suffice (see, e.g., [42, 1]). However,
again, this latter, less natural, approach would not allow x to be chosen freshly
with each encryption. With our notion of D-restricted FE, such an unnatural
setting – where some variables are fixed but others are freshly chosen with each
encryption – can be avoided completely.

Why is it important to go beyond degree 3? At the core of the new works that
construct iO without multilinear maps is the following key question: For some
constant D, do there exist “expanding” distributions of polynomials q1, . . . , qm
of degree D, where m = n1+ε with polynomially-bounded coefficients, such that
if one obtains x = (x1, . . . , xn) ∈ Zn by sampling each xi from a “nice” distri-
bution with polynomially-bounded support, then is it hard to solve for x given
q1(x), . . . , qm(x)? Remarkably, even though this question has a many-hundred
year history within mathematics and nearly every branch of science, surprisingly
little is known about hardness in this setting! And yet the hardness of such in-
version problems is necessary (though not sufficient, see below) for this new line
of work on constructing iO.

3

Recently, [10] gave evidence that such problems may not be hard for D = 2.
The case for D = 3 is less studied, and seems related to questions like the hard-
ness of RANDOM 3-SAT. However, it seems that increasingD to larger constants
should give us more confidence that hard distributions exist. For example, for
D = 5 and larger, this becomes related to the hardness of natural generalizations
of the Goldreich PRG [30, 48]. It is also likely that as D grows, hardness “kicks
in” for smaller values of n, similar to how the hardness of RANDOM k-SAT for
constant k > 3 can be observed experimentally for much smaller values of n,
than for RANDOM 3-SAT. Thus, our study could impact efficiency, as well.

Since studying the hardness of solving expanding families of polynomial equa-
tions over R is an exciting new line of cryptanalytic research, it is particularly
important to study what values of D are cryptographically interesting. Before
our work, only D = 2 and D = 3 were known to lead to iO; our work shows that
hardness for any constant degree D is interesting and cryptographically useful.

We stress that ensuring the hardness of solving for x given q1(x), . . . , qm(x)
is just the first step. Our work also clarifies the actual hardness assumptions
that we need to imply iO as the following two assumptions. Since D > 2, let
D = d+ 2 for the rest of the discussion.

Weak LWE with leakage. This assumption says that there exists distributions χ
over the integers and Q over families of multilinear degree-D polynomials such
that the following two distributions are weakly indistinguishable, meaning that
no efficient adversary can correctly identify the distribution from which a sample
arose with probability above 1

2 + 1/4λ.
Distribution D1: Fix a prime modulus p = O(2λ). Run Q(n,B, ε) to obtain

polynomials (q1, ..., qbn1+εc). Sample a secret s ← Zλp and sample aj,i ← Zλp for
j ∈ [d], i ∈ [n]. Finally, for every j ∈ [d], i ∈ [n], sample ej,i, yi, zi ← χ, and write
ej = (ej,1, . . . , ej,n), y = (y1, . . . , yn), z = (z1, . . . , zn). Output:

{aj,i, 〈aj,i, s〉+ ej,i mod p}j∈[d],i∈[n]

along with

{qk, qk(e1, . . . , ed,y, z)}k∈[n1+ε]

Distribution D2 is the same as D1, except that we additionally sample e′j,i ←
χ for j ∈ [d], i ∈ [n]. The output is now

{aj,i, 〈aj,i, s〉+ e′j,i mod p}j∈[d],i∈[n]

along with

{qk, qk(e1, . . . , ed,y, z)}k∈[n1+ε]

We can think of the polynomials qk(e1, . . . , ed,y, z) as “leaking” some in-
formation about the LWE errors ej,i. The assumption above states that such
leakage provides only a limited advantage to the adversary. Critically, the fact
that there are n2 > n1+ε quadratic monomials involving just y and z above,
which are not used in the LWE samples at all, is crucial to avoiding linearization

4

attacks over Zp in the spirit of Arora-Ge [6]. For more discussion of the security
of the above assumption in the context of D = 3, see [10].

The second assumption deals only with expanding degree-D polynomials over
the reals, and requires that these polynomials are weakly perturbation resilient.

Weak Perturbation-Resilience. The second assumption is that there exists poly-
nomials that for the same parameters above the following two distributions are
weakly indistinguishable. By weakly indistinguishability we mean that no effi-
cient adversary can correctly identify the distribution from which a sample arose
with probability above 1− 2/λ. Let δi ∈ Z be such that |δi| < B(λ, n) for some
polynomial B and i ∈ [n1+ε]:

DistributionD1 consists of the evaluated polynomial samples. That is, we output:

{qk, qk(e1, . . . , ed,y, z)}k∈[n1+ε]

Distribution D2 consists of the evaluated polynomial samples with added per-
turbations δi for i ∈ [n1+ε]. That is, we output:

{qk, qk(e1, . . . , ed,y, z) + δk}k∈[n1+ε]

These assumptions are sketched here informally; the formal definitions are
given in Section 5.

Our Results: Our results can be summarized as follows. First, we construct a
(d+ 2) restricted FE scheme from the SXDH assumption.

Theorem 1. Assuming SXDH over bilinear maps, there is a construction of
a (d+ 2) restricted FE scheme for any constant d ≥ 1.

Then, we give candidates of perturbation resilient generators that can be
implemented using a (d + 2) restricted FE scheme. Finally, using such a per-
turbation resilient generator and (d+ 2) restricted FE, we construct iO via the
approach given by [4]. Here is our final theorem.

Theorem 2. For any constant integer d ≥ 1, two distinguishing gaps adv1, adv2,
if adv1 + adv2 ≤ 1− 2/λ then assuming,

– Subexponentially hard LWE.
– Subexponentially hard SXDH.
– PRGs with
• Stretch of k1+ε (length of input being k bits) for some constant ε > 0.
• Block locality d+ 2.
• Security with distinguishing gap bounded by adv1 against adversaries of

sub-exponential size.
– d∆RG with distinguishing gap bounded by adv2 against adversaries of size

2λ. Details about the notion of d∆RG can be found in Sections 5 and 6.

there exists a secure iO scheme for P/poly.

5

We additionally note that the work of [42] provides a construction of iO
from a different notion of weak randomness generators called pseudo flawed-
smudging generators, and a partially hiding FE scheme that can compute them.
Their notion of partially hiding FE is implied by our degree (d + 2) restricted
FE. Therefore, if using our candidates of perturbation resilient generators as
candidates of pseudo flawed-smudging generators, we can obtain iO via the the
approach of [42], as summarized in the theorem below.

Theorem 3. For any constant integer d ≥ 1, assuming,

– LWE,

– SXDH,

– PRGs with

• Stretch of k1+ε (length of input being k bits) for some constant ε > 0,

• Constant locality and additional mild structural properties (see [42] for
details),

– Pseudo flawed-smudging generators with degree d public computation and
degree 2 private computation. Details about the notion of pseudo flawed-
smudging generators can be found in Section 5.2 and [42].

where all primitives are secure against adversaries of polynomial sizes with sub-
exponentially small distinguishing gaps. Then, there exists a subexponentially
secure iO scheme for P/poly.

For simplicity, we focus on working with the notion of ∆RG here and provide
more details on how to work with pseudo flawed-smudging generators in [37].

We now proceed with a more detailed, but still informal, technical overview
of our techniques.

2 Technical Overview

(d + 2)-restricted FE. The key technical tool constructed in this work is the
notion of (d + 2)−restricted FE (dFE for short) for any constant integer d ≥ 1.
We recall that a dFE scheme over Fp is a secret key functional encryption scheme

for the functions f of the following form: f : Fn×(d+2)
p → Fp. To be precise, f

takes as input (x,y, z) where x ∈ Fn×(d)p and y, z ∈ Fnp. Then it computes
f(x,y, z) = ΣI=(i1,..,id,j,k)cI ·x[1, i1] · · ·x[d, id] ·y[j] ·z[k] where each coefficient
cI ∈ Fp. We require the decryption to be efficient only if the output is bounded
in norm by a polynomial bound B(λ, n). Security of a dFE scheme intuitively
requires that a ciphertext only reveals the d public components x and the output
of the decryption.

Before we describe our construction, we first recall the construction of 3-
restricted FE from [4]:

6

3-restricted FE [4]. Before getting to 3 restricted FE, we first recap how secret
key quadratic functional encryption schemes [41] work at a high level. Let’s say
that the encryptor wants to encrypt y, z ∈ Fnp. The master secret key consists
of two secret random vectors β,γ ∈ Fnp that are used for enforcement of com-
putations done on y and z respectively. The idea is that the encryptor encodes
y and β using some randomness r, and similarly encodes z and γ together as
well. These encodings are created using bilinear maps in one of the two base
groups. These encodings are constructed so that the decryptor can compute an
encoding of [g(y, z)−rg(β,γ)]t in the target group for any quadratic function g.
The function key for the given function f is constructed in such a manner that
it allows the decryptor to compute the encoding [rf(β,γ)]t in the target group.
Thus the output [f(y, z)]t can be recovered in the exponent by computing the
sum of [rf(β,γ)]t and [f(y, z)− rf(β,γ)]t in the exponent. As long as f(y, z)
is polynomially small, this value can then be recovered efficiently.

Clearly the idea above only works for degree-2 computations, if we use bilin-
ear maps. However, the work of [4] built upon this idea nevertheless to construct
a 3-restricted FE scheme. Recall, in a 3-restricted FE one wants to encrypt three
vectors x,y, z ∈ Fnp. While y and z are required to be hidden, x is not required
to be hidden.

In their scheme, in addition to β,γ ∈ Fnp in case of a quadratic FE, another
vector α ∈ Fnp is also sampled that is used to enforce the correctness of the x part
of the computation. As before, given the ciphertext one can compute [y[j]z[k]−
rβ[j]γ[k]]t for j, k ∈ [n]. But this is clearly not enough, as these encodings do
not involve x in any way. Thus, in addition, an encoding of r(x[i]−α[i]) is also
given in the ciphertext for i ∈ [n]. Inside the function key, there are corresponding
encodings of β[j]γ[k] for j, k ∈ [n] which the decryptor can pair with encoding
of r(x[i]−α[i]) to form the encoding [r(x[i]−α[i])β[j]γ[k]]t in the target group.

Now observe that,

x[i] ·
(
y[j]z[k]− rβ[j]γ[k]

)
+ r(x[i]−α[i]) · β[j]γ[k]

=x[i]y[j]z[k]− rα[i]β[j]γ[k]

Above, since x[i] is public, the decryptor can herself take (y[j]z[k]−rβ[j]γ[k]),
which she already has, and multiply it with x[i] in the exponent. This allows her
to compute an encoding of [x[i]y[j]z[k] − rα[i]β[j]γ[k]]t. Combining these en-
codings appropriately, she can obtain [g(x,y, z)− rg(α,β,γ)]t for any degree-3
multilinear function g. Given the function key for f and the ciphertext, one can
compute [rf(α,β,γ)]t which can be used to unmask the output. This is because
the ciphertext contains an encoding of r in one of the base groups and the func-
tion key contains an encoding of f(α,β,γ) in the other group and pairing them
results in [rf(α,β,γ)]t.

The work of [4] shows how to analyze the security of the construction above
in a generic bilinear group model.

Towards constructing (d+ 2)−restricted FE. Now let’s consider how we can ex-
tend the approach discussed above for the case of d = 2. Suppose now we want to

7

encrypt u,x,y and z. Here y, z are supposed to be private while x and u are not
required to be hidden. Let’s now also have φ ∈ Fnp to enforce u part of the compu-
tation. How can we generalize the idea above to allow for degree-4 computations?
One straightforward idea is to release encodings of r(u[i1]x[i2]− φ[i1]α[i2]) for
i1, i2 ∈ [n] in the ciphertext instead of encodings of r(x[i2] − α[i2]) like before.
This would permit the computation of [f(u,x,y, z)− rf(φ,α,β,γ)]t. However,
such an approach would not be efficient enough for our needs: we require the
complexity of encryption to be linear in n. However, the approach above would
need to provide n2 encodings corresponding to r(u[i1]x[i2]−φ[i1]α[i2]) for every
i1, i2 ∈ [n].

Our first idea: A “ladder” of enforcement. Let’s now take a step back. Notice
that our 3-restricted FE scheme already allows one to compute [x[i2]y[j]z[k]−
rα[i2]β[j]γ[k]]t for any i2, j, k ∈ [n]. We want to leverage this existing capability
to bootstrap to degree-4 computations.

Suppose the decryptor is also able to generate the encoding [r(u[i1]−φ[i1]) ·
α[i2]β[j]γ[k]]t for any i1, i2, j, k ∈ [n]. Then, she can generate the encoding
[u[i1]x[i2]y[j]z[k]− φ[i1]α[i2]β[j]γ[k]]t as follows:

r(u[i1]− φ[i1])α[i2]β[j]γ[k] + u[i1] ·
(
x[i2]y[j]z[k]− rα[i2]β[j]γ[k]

)
=u[i1]x[i2]y[j]z[k]− rφ[i1]α[i2]β[j]γ[k]

Notice that u is public so the decryptor can herself take (x[i2]y[j]z[k] −
rα[i2]β[j]γ[k]), which she already has, and multiply it with u[i1] in the expo-
nent. To allow the computation of [r(u[i1]−φ[i1])α[i2]β[j]γ[k]]t we can provide
additionally encodings of (u[i1]− rφ[i1]) in the ciphertexts for i1 ∈ [n] and cor-
responding encodings of α[i2]β[j]γ[k] for i2, j, k ∈ [n] in the function key that
can be paired together.

What next? As before, the decryptor can homomorphically compute on these
encodings and learn [f(u,x,y, z) − rf(φ,α,β,γ)]t. Finally, the decryptor can
compute [rf(φ,α,β,γ)]t by pairing an encoding of r given in the ciphertext and
and encoding of f(φ,α,β,γ) given in the function key. Thus, the output can be
unmasked in the exponent.

Observe that this solution preserves linear efficiency of the ciphertext. As of
now we have not told anything about how security is argued. From computation
point of view, this solution indeed turns out to be insightful as this process can
now be generalized to form a ladder of enforcement for any constant degree-D
computations.

Laddered computations for any constant degree (d + 2). First let’s set up some
notation. Let x ∈ Fd×np be the public part of the plain-text and y, z ∈ Fnp. Let

α ∈ Fd×np be the vector of random field elements corresponding to x. Similarly,
β and γ in Fnp be the vector of random elements corresponding to y and z re-
spectively.

8

The next observation is the following. Suppose the decryptor can generate
the following terms by pairing encodings present in the ciphertext and encodings
present in the functional key, for every I = (i1, .., id, j, k) ∈ [n]D.

– [y[j]z[k]− rβjγk]t for j, k ∈ [n].
– [r(x[d, id]−α[d, id]) · β[j]γ[k]]t
– [r(x[d− 1, id−1]−α[d− 1, id−1]) ·α[d, id]β[j]γ[k]]t
– . . .
– [r(x[1, i1]−α[1, i1]) ·α[2, i2] · · ·α[d, id]β[j]γ[k]]t

As before, the decryptor can also obtain an encoding [rf(α,β,γ)]t corre-
sponding to the degree-D multilinear function f in the function key.

The main observation to generalize the D = 4 case discussed above is then
the following. Consider the first two terms: [y[j]z[k] + rβjγk]t and [r(x[d, id] −
α[d, id])β[j]γ[k]]t and note that:

x[d, id](y[j]z[k]− rβjγk) + r(x[d, id]−α[d, id])β[j]γ[k]

=x[d, id]y[j]z[k]− rα[d, id]β[j]γ[k]

This observation allows the decryptor to compute an encoding

Intd = [x[d, id]y[j]z[k]− rα[d, id]β[j]γ[k]]t

using encodings of the first two types in the list above.
Next observe that using the encoding,

[r(x[d− 1, id−1]−α[d− 1, id−1]) ·α[d, id]β[j]γ[k]]t

and encoding Intd one can compute

Intd−1 = [x[d− 1, id−1]x[d, id]y[j]z[k]− rα[d− 1, id−1]α[d, id]β[j]γ[k]]t

This is because,

x[d− 1, id−1] · (x[d, id]y[j]z[k]− rα[d, id]β[j]γ[k])

+ r(x[d− 1, id−1]−α[d− 1, id−1]) ·α[d, id]β[j]γ[k]

=x[d− 1, id−1]x[d, id]y[j]z[k]− rα[d− 1, id−1]α[d, id]β[j]γ[k]

Continuing this way up a “ladder” the decryptor can compute

MonI = [Π`∈[d]x[`, i`]y[j]z[k]− rΠ`∈[d]α[`, i`]β[j]γ[k]]t

Observe that the term Π`∈[d]x[`, i`]y[j]z[k] − rΠ`∈[d]α[`, i`]β[j]γ[k] corre-
sponding to MonI can be generated as a linear combination of terms from the
list above. Once MonI is computed then the decryptor can do the following. Since
f = ΣI=(i1,..,id,j,k)cIx[1, i1] · · ·x[d, id]y[j]z[k], the decryptor can then compute:

Monf = [f(x,y, z)− rf(α,β,γ)]t

Finally using [rf(α,β,γ)]t the decryptor can recover [f(x,y, z)]t.

9

How to base security on SXDH? So far, we have just described a potential
computation pattern that allows the decryptor to obtain the function output
given a function key and a ciphertext. Any scheme that allows constructing the
terms described above in the ladder is guaranteed to satisfy correctness. But
how do we argue security?

We rely on a primitive called Canonical Function Hiding Inner Product En-
cryption (cIPE for short). A cIPE scheme allows the decryptor to compute the
inner product of a vector encoded in the ciphertext, with a vector encoded in
the function key. Also, intuitively, cIPE guarantees that the vector embedded in
the function key is also hidden given the function key. More precisely, given any
vectors v,v′,u,u′ such that 〈u,v〉 = 〈u′,v′〉, no efficient adversary can distin-
guish between a ciphertext encoding u and a function key encoding v, from a
ciphertext encoding u′ and a function key encoding v′.

Furthermore, syntactically speaking, in a cIPE scheme, we will require the
following to be true:

– The encryption algorithm just computes exponentiation and multiplication
operations in G1. The encryption of a vector (a1, .., a4) can just be computed
knowing gai1 for i ∈ [4] and the master secret key.

– Key generation algorithm just computes exponentiation and multiplication
operation inG2. The function key for a vector (b1, .., b4) can just be computed
knowing gbi2 for i ∈ [4] and the master secret key.

– The decryption process just computes pairing operations and then computes
group multiplications over Gt. The output is produced in Gt. The element
gat is represented as [a]t for the rest of the paper.

Such a cIPE scheme was given by [40], where it was instantiated from SXDH
over bilinear maps. That work also used cIPE to build quadratic FE from SXDH.
We will also make use of cIPE in our construction of D-restricted FE. Note,
however, that unlike in the case of quadratic FE, our construction, and crucially
our proof of security, will also need to incorporate the “ladder” enforcement
mechanism sketched above. We are able to do so still relying only on the SXDH
assumption.

We note that the size of the vectors encrypted using a cIPE scheme cannot
grow with n, to achieve linear efficiency. In fact, we just use four-dimensional
vectors.

Realizing the Ladder: Warm-up Construction for d+ 2 = 4. Here is a warm-up
construction for the case of d = 2 (i.e. D=4).
Setup(1λ, 1n): On input security parameter 1λ and length 1n,

– Run cIPE setup as follows. sk0 ← cIPE.Setup(1λ, 14). Thus these keys are
used to encrypt vectors in F4

p.
– Then run cIPE setup algorithm 2 · n times. That is, for every ` ∈ [2] and

i` ∈ [n], compute sk(`,i`) ← cIPE.Setup(1λ, 14).
– Sample α← F2×n

p . Also sample β,γ ← Fnp.

10

– For every set I = (i1, i2, j, k) in [n]4 do the following. Let I ′ = (i2, j, k) and

I
′′

= (j, k). Compute Key
(1,i1)
I′ =

cIPE.KeyGen(sk(1,i1), (α[2, i2]β[j]γ[k],α[1, i1]α[2, i2]β[j]γ[k], 0, 0))

Similarly, compute Key
(2,i2)

I
′′ =

cIPE.KeyGen(sk(2,i2), (β[j]γ[k],α[2, i2]β[j]γ[k], 0, 0))

– Output MSK = ({sk(`,i`),Key
(`,i`)
I }`,i`,I ,α,β,γ, sk0)

Enc(MSK,x,y, z): The input messageM = (x,y, z) consists of a public attribute

x ∈ F2×n
p and private vectors y, z ∈ Fnp. Perform the following operations:

– Parse MSK = ({sk(`,i`),Key
(`,i`)
I }`,i`,I ,α,β,γ, sk0).

– Sample r ← Fp.
– Compute CT0 = cIPE.Enc(sk0, (r, 0, 0, 0)).
– Sample sk′ ← cIPE.Setup(1λ, 14).
– Compute CTCj ← cIPE.Enc(sk, (y[j],β[j], 0, 0)) for j ∈ [n]
– Compute CTKk ← cIPE.KeyGen(sk, (z[k],−rγ[k], 0, 0)) for k ∈ [n].

– For every ` ∈ [2], i` ∈ [n], compute CT(`,i`) = cIPE.Enc(sk(`,i`), (rx[`, i`],−r,
0, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT(`,i`)}`∈[2],i`∈[n],j∈[n],k∈[n])

KeyGen(MSK, f): On input the master secret key MSK and function f ,

– Parse MSK = ({sk(`,i`),Key
(`,i`)
I }`,i`,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– Compute Key0,f = cIPE.KeyGen(sk0, (θf , 0, 0, 0))

– Output skf = (Key0,f , {Key
(`,i`)
I }`,i`,I).

Observe how the computation proceeds. This scheme allows to generate all
terms in the ladder described above as follows:

Consider all terms associated with the vector I = (i1, i2, j, k) ∈ [n]4.

– [y[j]z[k]− rβjγk]t = cIPE.Dec(CTKk,CTCj)

– [r(x[2, i2] − α[2, i2])β[j]γ[k]]t = cIPE.Dec(Key
(2,i2)

I
′′ ,CT(2,i2)) where I

′′
=

(j, k).

– [r(x[1, i1] − α[1, i1])α[2, i2]β[j]γ[k]]t = cIPE.Dec(Key
(1,i1)

I
′ ,CT(1,i1)) where

I
′′

= (i2, j, k)
– [rf(α,β,γ)]t = cIPE.Dec(Key0,f ,CT0).

Thus, we can compute [f(x,y, z)]t. We now briefly describe how security is
proven.

11

Security Proof: Key Points. We use SXDH and function hiding property of the
cIPE scheme crucially to argue security. The hybrid strategy is the following.

1. First we switch y to 0 vector in the challenge ciphertext, changing one
component at a time.

2. To maintain correctness of output, we simultaneously introduce an offset in
the function key to maintain correctness of decryption.

3. Once y is switched, z can be switched to vector 0, due to the function hiding
property of the cIPE scheme. This is because the inner products remain the
same in both the case as y is always 0 and inner product of any vector
with all zero vector is 0. Finally, we are in the hybrid where the challenge
ciphertext just depends on x and in particular totally independent of y and
z.

Step (1) is most challenging here, and requires careful pebbling and hard-
wiring arguments made using SXDH and function hiding security property of
cIPE. We point the reader to the full version for a detailed proof.

New ∆RG candidates: Our construction of D-restricted FE enables us to mean-
ingfully consider ∆RG candidates that are implementable by D-restricted FE
using degree-D polynomials. This enables a much richer class of potential ∆RG
candidates than those implementable by 3-restricted FE [4]. In Section 6, we de-
scribe a few of the new avenues for constructing ∆RG candidates that we open
by our construction of D-restricted FE.

Reader’s Guide. The rest of the paper is organized as follows. In Section 3 we
recall the definition of indistinguishability obfuscation and other prerequisites
for the paper. In Section 4 we define formally the notions of (d + 2) restricted
FE. Thereafter, in Section 5 perturbation resilient generator (∆RG for short) is
defined. Both primitives are central to this paper. In Section 6 we give candidate
constructions of ∆RG and show how to implement it using a (d + 2) restricted
FE scheme. In Section 7 we show how to construct (d + 2) restricted FE using
SXDH. Finally, in Section 8 we stitch all these primitives to show how to build
obfuscation.

3 Preliminaries

We denote the security parameter by λ. For a distribution X we denote by
x ← X the process of sampling a value x from the distribution X. Similarly,
for a set X we denote by x ← X the process of sampling x from the uniform
distribution over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}.
A function negl : N → R is negligible if for every constant c > 0 there exists an
integer Nc such that negl(λ) < λ−c for all λ > Nc.

By ≈c we denote computational indistinguishability. We say that two ensem-
bles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable if for

12

every probabilistic polynomial time adversary A there exists a negligible func-

tion negl such that

∣∣∣∣Prx←Xλ [A(1λ, x) = 1] − Pry←Yλ [A(1λ, y) = 1]

∣∣∣∣ ≤ negl(λ)

for every sufficiently large λ ∈ N.

For a field element a ∈ Fp represented in [−p/2, p/2], we say that −B < a <
B for some positive integer B if its representative in [−p/2, p/2] lies in [−B,B].

Definition 1 (Distinguishing Gap). For any adversary A and two distribu-
tions X = {Xλ}λ∈N and Y = {Yλ}λ∈N, define A’s distinguishing gap in distin-
guishing these distributions to be |Prx←Xλ [A(1λ, x) = 1]−Pry←Yλ [A(1λ, y) = 1]|

By boldfaced letters such as v we will denote multidimensional matrices.
Whenever dimension is unspecified we mean them as vectors.

Throughout, we denote by an adversary an interactive machine that takes
part in a protocol with the challenger. Thus, we model such an adversary as a
tuple of circuits (C1, ..., Ct) where t is the number of messages exchanged. Each
circuit takes as input the state output by the previous circuit, among other
messages. The size of adversary is defined as sum of size of each circuit.

3.1 Indistinguishability Obfuscation (iO)

The notion of indistinguishability obfuscation (iO), first conceived by Barak
et al. [9], guarantees that the obfuscation of two circuits are computationally
indistinguishable as long as they both are equivalent circuits, i.e., the output of
both the circuits are the same on every input. Formally,

Definition 2 (Indistinguishability Obfuscator (iO) for Circuits). A uni-
form PPT algorithm iO is called an indistinguishability obfuscator for a circuit
family {Cλ}λ∈N, where Cλ consists of circuits C of the form C : {0, 1}n → {0, 1}
with n = n(λ), if the following holds:

– Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}n,
we have that

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– Indistinguishability: For any PPT distinguisher D, there exists a negli-
gible function negl(·) such that the following holds: for all sufficiently large
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all
inputs x ∈ {0, 1}n and |C0| = |C1|, we have:∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)

– Polynomial Slowdown: For every λ ∈ N, every C ∈ Cλ, we have that
|iO(λ,C)| = poly(λ,C).

13

3.2 Bilinear Maps and Assumptions

Let PPGen be a probabilistic polynomial time algorithm that on input 1λ returns
a description (e,G1, G2, GT , g1, g2,p) of asymmetric pairing groups where G1,
G2 and GT are groups of order p for a 2λ bit prime p. g1 and g2 are generators
of G1 and G2 respectively. e : G1 ×G2 → GT is an efficiently computable non-
degenerate bilinear map. Define gt = e(g1, g2) as the generator of GT .

Representation: We use the following representation to describe group ele-
ments. For any b ∈ {1, 2, T} define by [x]b for x ∈ Fp as gxb . This notation will
be used throughout. We now describe SXDH assumption relative to PPGen.

Definition 3. (SXDH Assumption relative to PPGen.) We say that SXDH
assumption holds relative to PPGen, if (e,G1, G2, GT , g1, g2,p) ← PPGen, then
for any group g` for ` ∈ {1, 2, t}, it holds that, for any polynomial time adversary
A:

| Pr
r,s,u←Fp

[A([r]`, [s]`, [r · s]`) = 1]− Pr
r,s,u←Fp

[A([r]`, [s]`, [u]`) = 1]| ≤ negl(λ)

Further, if negl(λ) is O(2−λ
c

) for some c > 0, then we say that subexponential
SXDH holds relative to PPGen.

3.3 Canonical Function Hiding Inner Product FE

We now describe the notion of a canonical function hiding inner product FE
proposed by [40]. A canonical function hiding scheme FE scheme consists of the
following algorithms:

– PPSetup(1λ)→ pp. On input the security parameter, PPSetup, outputs pa-
rameters pp, which contain description of the groups and the plain text space
Zp.

– Setup(pp, 1n)→ sk. The setup algorithm takes as input the length of vector
1n and parameters pp and outputs a secret key sk. We assume that pp is
always implicitly given as input to this algorithm and the algorithms below
(sometimes we omit this for ease of notation).

– Enc(sk,x)→ CT. The encryption algorithm takes as input a vector x ∈ Znp
and outputs a ciphertext CT.

– KeyGen(sk,y) → sky. The key generation algorithm on input the master
secret key sk and a function vector y ∈ Znp and outputs a function key sky

– Dec(1B , sky,CT) → m∗. The decryption algorithm takes as input a cipher-
text CT, a function key sky and a bound B and it outputs a value m∗.
Further, it is run in two steps. First step Dec0, computes [〈x,y〉]T (if the
keys and ciphertexts were issued for x and y) and then the second step,
Dec1, computes its discrete log, if this value lies in [−B,B]

A cIPE scheme satisfies linear efficiency, correctness, function hiding security
and a canonical structure requirement. All of these are described in the full
version.

14

4 Key Notion 1: (d+ 2)−restricted FE

In this section we describe the notion of a (d+2)-restricted functional encryption
scheme (denoted by dFE). Let d denote any positive integer constant. Informally,
a dFE scheme is a functional encryption scheme that supports homogeneous
polynomials of degree d + 2 having degree 1 in d + 2 input vectors. d out of
those d + 2 vectors are public. This is a generalization of the notion of a three
restricted FE scheme proposed by [4].

Notation: Throughout, we denote by boldfaced letters (multi-dimensional) ma-
trices, where dimensions are either explicitly or implicitly defined.

Function class of interest: Consider a set of functions FdFE = FdFE,λ,p,n = {f :

Fn(d+2)
p → Fp} where Fp is a finite field of order p(λ). Here n is seen as a function

of λ. Each f ∈ Fλ,p,n takes as input d+ 2 vectors (x[1], ...,x[d],y, z) of length n
over Fp and computes a polynomial of the form Σci1,...,id,j,k ·x[1, i1] · ... ·x[d, id] ·
y[j] ·z[k], where ci1,..,id,j,k are coefficients from Fp for very i1, ..., id, j, k ∈ [n]d+2.

Syntax. Consider the set of functions FdFE,λ,p,n as described above. A (d +
2)−restricted functional encryption scheme dFE for the class of functions FdFE

(described above) consists of the following PPT algorithms:

– Setup, Setup(1λ, 1n): On input security parameter λ (and the number of
inputs n = poly(λ)), it outputs the master secret key MSK.

– Encryption, Enc(MSK,x[1], ...,x[d],y, z): On input the encryption key MSK
and input vectors x ∈ Fd×np , y and z (all in Fnp) it outputs ciphertext CT.
Here x is seen as a public attribute and y and z are thought of as private
messages.

– Key Generation, KeyGen(MSK, f): On input the master secret key MSK
and a function f ∈ FdFE, it outputs a functional key sk[f].

– Decryption, Dec(sk[f], 1B ,CT): On input functional key sk[f], a bound
B = poly(λ) and a ciphertext CT, it outputs the result out.

We define the correctness property below.

B-Correctness. Consider any function f ∈ FdFE and any plaintext x,y, z ∈ Fp

(dimensions are defined above). Consider the following process:

– sk[f]← KeyGen(MSK, f).
– CT← Enc(MSK,x,y, z)
– If f(x,y, z) ∈ [−B,B], set θ = f(x,y, z), otherwise set θ = ⊥.

The following should hold:

Pr
[
Dec(sk[f], 1B ,CT) = θ

]
≥ 1− negl(λ),

for some negligible function negl.
Linear Efficiency: We require that for any message (x,y, z) where x ∈

Fd×np and y, z ∈ Fnp the following happens:

15

– Let MSK← Setup(1λ, 1n).
– Compute CT← Enc(MSK,x,y, z).

The size of encryption circuit computing CT is less than n×(d+2) log2 p·poly(λ).
Here poly is some polynomial independent of n.

4.1 Semi-functional Security

We define the following auxiliary algorithms.

Semi-functional Key Generation, sfKG(MSK, f, θ): On input the master se-
cret key MSK, function f and a value θ, it computes the semi-functional key
sk[f, θ].

Semi-functional Encryption, sfEnc(MSK,x, 1|y|, 1|z|): On input the master
encryption key MSK, a public attribute x and length of messages y, z, it com-
putes a semi-functional ciphertext ctsf .

We define two security properties associated with the above two auxiliary al-
gorithms. We will model the security definitions along the same lines as semi-
functional FE.

Definition 4 (Indistinguishability of Semi-functional Ciphertexts). A
(d + 2)-restricted functional encryption scheme dFE for a class of functions
FdFE = {FdFE,λ,p,n}λ∈N is said to satisfy the indistinguishability of semi-
functional ciphertexts property if there exists a constant c > 0 such that
for sufficiently large λ ∈ N and any adversary A of size 2λ

c

, the probability that
A succeeds in the following experiment is 2−λ

c

.

Expt(1λ,b):

1. A specifies the following:

– Challenge message M∗ = (x,y, z). Here y, z is in Fnp and x is in Fd×np .
– It can also specify additional messages {Mk = (xk,yk, zk)}k∈[q] Here

yk, zk is in Fnp and xk is in Fd×np . Here q is a polynomial in n, λ.
– It also specifies functions f1, . . . , fη and hardwired values θ1, . . . , θη where
η is a polynomial in n, λ.

2. The challenger checks if θk = fk(x,y, z) for every k ∈ [η]. If this check fails,
the challenger aborts the experiment.

3. The challenger computes the following
– Compute sk[fk, θk]← sfKG(MSK, fk, θk), for every k ∈ [η].
– If b = 0, compute CT∗ ← sfEnc(MSK,x, 1|y|, 1|z|). Else, compute CT∗ ←

Enc(MSK,x,y, z).
– CTi ← Enc(MSK,Mi), for every i ∈ [q].

4. The challenger sends
(
{CTi}i∈[q],CT∗, {sk[fk, θk]}k∈[η]

)
to A.

5. The adversary outputs a bit b′.

16

We say that the adversary A succeeds in Expt(1λ,b) with probability ε if it out-
puts b′ = b with probability 1

2 + ε.

We now define the indistinguishability of semi-functional keys property.

Definition 5 (Indistinguishability of Semi-functional Keys). A (d+ 2)-
restricted FE scheme dFE for a class of functions FdFE = {FdFE,λ,p,n}λ∈N is said
to satisfy the indistinguishability of semi-functional keys property if there
exists a constant c > 0 such that for all sufficiently large λ, any PPT adversary
A of size 2λ

c

, the probability that A succeeds in the following experiment is 2−λ
c

.

Expt(1λ,b):

1. A specifies the following:

– It can specify messages Mj = {(xi,yi, zi)}j∈[q] for some polynomial q.

Here yi, zi is in Fnp and xi is in Fd×np .

– It specifies functions f1, . . . , fη ∈ FdFE and hardwired values θ1, . . . , θη ∈
Fp. Here η is some polynomial in λ, n.

2. Challenger computes the following :

– If b = 0, compute sk[fi]
∗ ← KeyGen(MSK, fi) for all i ∈ [η]. Otherwise,

compute sk[fi]
∗ ← sfKG(MSK, fi, θi) for all i ∈ [η].

– CTi ← Enc(MSK,Mj), for every j ∈ [q].

3. Challenger then sends
(
{CTi}i∈[q], {sk[fi]

∗}i∈[η]
)

to A.

4. A outputs b′.

The success probability of A is defined to be ε if A outputs b′ = b with probability
1
2 + ε.

If a (d + 2)-restricted FE scheme satisfies both the above definitions, then it is
said to satisfy semi-functional security.

Definition 6 (Semi-functional Security). Consider a (d + 2)-restricted FE
scheme dFE for a class of functions F . We say that dFE satisfies semi-functional
security if it satisfies the indistinguishability of semi-functional ciphertexts prop-
erty (Definition 4) and the indistinguishability of semi-functional keys property
(Definition 5).

Remark: Two remarks are in order:

1. First, we define sub-exponential security here as that notion is useful for our
construction of iO. The definition can be adapted to polynomial security
naturally.

2. Semi-functional security implies the indistinguishability based notion natu-
rally. This is pointed out in [5].

17

5 Key Notion 2: Perturbation Resilient Generator

Now we describe the notion of a Perturbation Resilient Generator (∆RG for
short), proposed by [4]. A ∆RG consists of the following algorithms:

– Setup(1λ, 1n, B)→ (pp,Seed). The setup algorithm takes as input a security
parameter λ, the length parameter 1n and a polynomial B = B(λ) and
outputs a seed Seed ∈ {0, 1}∗ and public parameters pp.

– Eval(pp,Seed) → (h1, ..., h`). The evaluation algorithm outputs a vector
(h1, ..., h`) ∈ Z`. Here ` is the stretch of ∆RG.

We have following properties of a ∆RG scheme.

Efficiency: We require for Setup(1λ, 1n, B) → (pp,Seed) and Eval(pp,Seed) →
(h1, ..., h`),

– |Seed| = n · poly(λ) for some polynomial poly independent of n. The size of
Seed is linear in n.

– For all i ∈ [`], |hi| < poly(λ, n). The norm of each output component hi in
Z is bounded by some polynomial in λ and n.

Perturbation Resilience: We require that for large enough security parame-
ter λ, for every polynomial B, there exists a large enough polynomial nB(λ)
such that for any n > nB , there exists an efficient sampler H such that for
Setup(1λ, 1n, B)→ (pp,Seed) and Eval(pp,Seed)→ (h1, ..., h`), we have that for
any distinguisher D of size 2λ and any a1, ..., a` ∈ [−B,B]`

|Pr[D(x
$←− D1) = 1]− Pr[D(x

$←− D2) = 1]| < 1− 2/λ

Here D1 and D2 are defined below:

– DistributionD1: Compute Setup(1λ, 1n, B)→ (pp,Seed) and Eval(pp,Seed)→
(h1, ..., h`). Output (pp, h1, ..., h`).

– Distribution D2: Compute Setup(1λ, 1n, B)→ (pp,Seed) and H(pp,Seed)→
(h1, .., h`). Output (pp, h1 + a1, ..., h` + a`).

Remark: Note that one could view ∆RG as a candidate sampler H itself.

Now we describe the notion of Perturbation Resilient Generator implementable
by a (d+ 2)-restricted FE scheme (d∆RG for short.)

5.1 ∆RG implementable by (d+ 2)−restricted FE

A ∆RG scheme implementable by (d + 2)-Restricted FE (d∆RG for short) is a
perturbation resilient generator with additional properties. We describe syntax
again for a complete specification.

18

– Setup(1λ, 1n, B) → (pp,Seed). The setup algorithm takes as input a secu-
rity parameter λ, the length parameter 1n and a polynomial B = B(λ) and
outputs a seed Seed and public parameters pp. Here, Seed = (Seed.pub(1),
Seed.pub(2), ...,Seed.pub(d),Seed.priv(1),Seed.priv(2)) is a vector on Fp for a
modulus p, which is also the modulus used in (d+ 2)-restricted FE scheme.
There are d + 2 components of this vector, where d of the d + 2 compo-

nents are public and two components are private, each in Fnpoly(λ)p . Also
each part can be partitioned into subcomponents as follows. Seed.pub(j) =
(Seed.pub(j, 1), ...,Seed.pub(j, n)) for j ∈ [d], Seed.priv(j) = (Seed.priv(j, 1),

....,Seed.priv(j, n)) for j ∈ [2]. Here, each sub component is in Fpoly(λ)p for
some fixed polynomial poly independent of n. Also, pp = (Seed.pub(1), . . . ,
Seed.pub(d), q1, .., q`) where each qi is a degree d + 2 multilinear polyno-
mial described below. We require syntactically there exists two algorithms
SetupSeed and SetupPoly such that Setup can be decomposed follows:
1. SetupSeed(1λ, 1n, B)→ Seed. The SetupSeed algorithm outputs the seed.
2. SetupPoly(1λ, 1n, B)→ q1, ..., q`. The SetupPoly algorithm outputs q1, .., q`.

– Eval(pp,Seed) → (h1, ..., h`). The evaluation algorithm outputs a vector
(h1, ..., h`) ∈ Z`. Here for i ∈ [`], hi = qi(Seed) and ` is the stretch of
d∆RG. Here qi is a homogeneous multilinear degree d+ 2 polynomial where
each monomial has degree 1 in {pub(j)}j∈[d+2] and {priv(j)}j∈[2] components
of the seed.

The security and efficiency requirements are the same as before.
Remark: To construct iO we need the stretch of d∆RG to be equal to ` = n1+ε

for some constant ε > 0.

5.2 Pseudo Flawed-Smudging Generators

Related to ∆RGs are pseudo flawed-smudging generators (PFGs) introduced by
Lin and Matt [42]. As ∆RGs, PFGs are geared for the purpose of generating a
smudging noise Y to hide a small polynomially bounded noise a. We first give
a high-level description of PFGs and then compare them to ∆RGs. For formal
definitions and a further discussion of PFGs, we refer the reader to [42].

Intuitively, the output of a PFG “hides” the noise vector a at all but a few
coordinates with noticeable probability. More formally, the output distribution
of a PFG is indistinguishable to a, so-called, flawed-smudging distribution Y.
A distribution Y is flawed-smudging if the following holds with some inverse
polynomial probability δ = 1/poly(λ) over the choice of Y ← Y: For some
polynomial B = poly(λ), every B-bounded noise vector distribution χ, and Y ←
Y, a ← χ, there is a random variable I correlated with a and Y , representing
a small, |I| = o(λ), subset of “compromised” coordinates, so that the joint
distribution of (I,a,Y + a) is statistically close to that of (I,a′,Y + a), where
a′ is a fresh sample from χ conditioned on agreeing with a at coordinates in I
(i.e., a′i = ai for all i ∈ I).

Compared to ∆RGs, there is a “good case” occurring with probability δ, in
which most coordinates of a are hidden. On the other hand, the output h of a

19

∆RG guarantees that h and h + a are computationally indistinguishable up to
advantage 1− δ. Hence, ∆RGs are weaker in this respect since the guarantee is
only computational instead of statistical as for PFGs. However, the output of
a PFG may in the good case still reveal a at a few coordinates (i.e., a and a′

agree at a few coordinates), whereas the output of a ∆RG hides a completely.
In that respect, PFGs are weaker.

Despite the technical differences discussed above, the core guarantees of
∆RGs and PFGs are similar. All candidates discussed in the following are there-
fore candidates for both notions.

6 d∆RG Candidates

We now describe our candidate for d∆RG implementable by a (d+2)− restricted
FE scheme. All these candidates use a large enough prime modulus p = O(2λ),
which is the same as the modulus used by (d + 2)−restricted FE. Then, let χ
be a distribution used to sample input elements over Z. Let Q denote a poly-
nomial sampler. Next we give candidate in terms of χ and Q but give concrete
instantiations later.

6.1 d∆RG Candidate

– Setup(1λ, 1n, B) → (pp,Seed). Sample a secret s ← F1×n∆RG
p for n∆RG =

poly(λ) such that LWEn∆RG,n·d,p,χ holds. Here χ is a bounded distribution
with bound poly(λ). Let Q denote an efficiently samplable distribution of
homogeneous degree (d+ 2) polynomials (instantiated later). Then proceed
with SetupSeed as follows:
1. Sample ai,j ← F1×n∆RG

p for i ∈ [d], j ∈ [n].
2. Sample ei,j ← χ for i ∈ [d], j ∈ [n].
3. Compute ri,j = 〈ai,j , s〉+ ei,j mod p in Fp for i ∈ [d], j ∈ [n].
4. Define wi,j = (ai,j , ri,j) for i ∈ [d], j ∈ [d].
5. Set Seed.pub(j, i) = wj,i for j ∈ [d], i ∈ [n].
6. Sample yi, zi ← χ for i ∈ [n].
7. Set t = (−s, 1). Note that 〈wj,i, t〉 = ej,i for j ∈ [d], i ∈ [n].
8. Set y′i = yi ⊗d t. (tensor t, d times)
9. Set Seed.priv(1, i) = y′i for i ∈ [n].

10. Set Seed.priv(2, i) = zi for i ∈ [n].
Now we describe SetupPoly. Fix η = n1+ε.

1. Write ej = (ej,1, . . . , ej,n) for j ∈ [d], y = (y1, . . . , yn) and z = (z1, . . . , zn).
2. Sample polynomials q′` for ` ∈ [η] as follows.
3. q′` = ΣI=(i1,..,id,j,k)cIe1,i1 · · · ed,idyjzk where coefficients cI are bounded

by poly(λ). These polynomials are sampled according to Q
4. Define qi to be a multilinear homogeneous degree d+ 2 polynomial that

takes as input Seed = ({wj,i}j∈[d],i∈[n],y′1, . . . ,y′n, z). Then it computes
each monomial cIe1,i1 · · · ed,idyjzk as follows and then adds all the results
(thus computes q′i(e1, . . . , ed,y, z)):

20

• Compute cI〈w1,i1 , t〉 · · · 〈wd,id , t〉yjzk. This step requires y′i = yi⊗dt
to perform this computation.

5. Output q1, ..., qη.

– Eval(pp,Seed) → (h1, ..., hη). The evaluation algorithm outputs a vector
(h1, ..., hη) ∈ Zη. Here for i ∈ [η], hi = qi(Seed) and η is the stretch of
d∆RG. Here qi is a degree d+ 2 homogenenous multilinear polynomial (de-
fined above) which is degree 1 in d public and 2 private components of the
seed.

Efficiency:

1. Note that Seed contains n · d LWE samples wi,j for i ∈ [d], j ∈ [n] of
dimension n∆RG. Along with the samples, it contains elements y′i = yi ⊗d t
for i ∈ [n] and elements zi for i ∈ [n]. Note that the size of these elements
are bounded by poly(λ) and is independent of n.

2. The values hi = qi(Seed) = ΣI=(i1,..,id,j,k)cIe1,i1 · · · ed,idyjzk. Since χ is a
bounded distribution, bounded by poly(λ, n), and coefficients cI are also
polynomially bounded, each |hi| < poly(λ, n) for i ∈ [m].

6.2 Instantiations

We now give various instantiations of Q. Let χ be the discrete gaussian distribu-
tion with 0 mean and standard deviation n. The following candidate is proposed
by [10] based on the investigation of the hardness of families of expanding poly-
nomials over the reals.

Instantiation 1: 3SAT Based Candidate. Let t = B2λ. Sample each polynomial q′i
for i ∈ [η] as follows. q′i(x1, . . . ,xt,y1, . . . ,yt, z1, . . . ,zt) = Σj∈[t]q

′
i,j(xj ,yj , zj).

Here xj ∈ χd×n and yj , zj ∈ χn for j ∈ [t]. In other words, q′i is a sum of t
polynomials q′i,j over t disjoint set of variables. Let d = 1 for this candidate.

Now we describe how to sample q′i,j for j ∈ [η].

1. Sample randomly inputs x∗,y∗, z∗ ∈ {0, 1}n.
2. To sample q′i,j do the following. Sample three indices randomly and indepen-

dently i1, i2, i3 ← [n]. Sample three signs b1,i,j , b2,i,j , b3,i,j ∈ {0, 1} uniformly
such that b1,i,j ⊕ b2,i,j ⊕ b3,i,j ⊕ x∗[i1]⊕ y∗[i2]⊕ z∗[i3] = 1.

3. Set q′i,j(xj ,yj , zj) = 1 − (b1,i,j · xj [i1] + (1 − b1,i,j) · (1 − xj [i1])) · (b2,i,j ·
yj [i2] + (1− b2,i,j) · (1− yj [i2])) · ((b3,i,j · zj [i3] + (1− b3,i,j) · (1− zj [i3]))

Remark:

1. Note that any clause of the form a1 ∨ a2 ∨ a3 can be written as 1 − (1 −
a1)(1− a2)(1− a3) over integers where a1, a2, a3 are literals in first case and
take values in {0, 1}, and thus any random satisfiable 3SAT formula can be
converted to polynomials in this manner.

2. Similarly, the above construction can be generalised to degree (d + 2)-SAT
style construction by considering (d + 2)−SAT for any constant positive
integer d and translating them to polynomials.

21

Instantiation 2: Goldreich’s One-way Function Based Candidate. Goldreich’s
one-way function [30] consists of a predicate P involving d + 2 variables and
computes a boolean function that can be expressed a degree d + 2 polynomial
over the integers. Our candidate q′i,j(xj ,yj , zj) consists of the following step.

1. Sample d+ 2 indices i1, ..., id+2 ∈ [n].
2. Output q′i,j = P (xj [1, i1], . . . ,xj [d, id],yj [id+1], zj [id+2]).

For d = 3, [48] provided with the following candidate.
P (a1, .., a5) = a1⊕a2⊕a3⊕a4a5 where each ai ∈ {0, 1}. Note that this can be

naturally converted to a polynomial as follows. Rewrite a⊕b = (1−a)b+(1−b)a
and this immediately gives rise to a polynomial over the integers.

6.3 Simplifying Assumptions

In this section, we remark that the d∆RG assumption can be simplified from be-
ing an exponential family of assumptions to two simpler assumptions as follows.
We provide two sub-assumptions, which together imply d∆RG assumptions.

LWE with degree d + 2 leakage. There exists a polynomial sampler Q and a
constant ε > 0, such that for every large enough λ ∈ N, and every polynomial
bound B = B(λ) there exist large enough polynomial nB = λc such that for
every positive integer n > nB , there exists a poly(n)−bounded discrete gaus-
sian distribution χ such that the following two distrbutions are close (we define
closeness later). We define the following two distributions:

Distribution D1:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, ε) = (q1, ..., qbn1+εc).

– (Sample Secret.) Sample a secret s← Zλp
– Sample aj,i ← Zλp for j ∈ [d], i ∈ [n].
– (Sample LWE Errors.) For every j ∈ [d], i ∈ [n], sample ej,i, yi, zi ← χ.

Write ej = (ej,1, . . . , ej,n) for j ∈ [d], y = (y1, . . . , yn) and z = (z1, . . . , zn).
– Output {aj,i, 〈aj,i, s〉+ ej,i mod p}j∈[d],i∈[n] and
{qk, qk(e1, . . . , ed,y, z)}k∈[bn1+εc]

Distribution D2:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, ε) = (q1, ..., qbn1+εc).

– (Sample Secret.) Sample a secret s← Zλp
– Sample aj,i ← Zλp for j ∈ [d], i ∈ [n].
– (Sample independent LWE Errors.) For every j ∈ [d], i ∈ [n], sample
ej,i, e

′
j,i, yi, zi ← χ. 4 Write e′j = (e′j,1, . . . , e

′
j,n), ej = (ej,1, . . . , ej,n) for

j ∈ [d], y = (y1, . . . , yn) and z = (z1, . . . , zn).

4 Thus, we can observe that χ should be a distribution such that LWE assumption
holds with respect to χ and parameters specified above

22

– Output {aj,i, 〈aj,i, s〉+ e′j,i mod p}j∈[d],i∈[n] and
{qk, qk(e1, . . . , ed,y, z)}k∈[bn1+εc]

The assumption states that there exists a constant εadv > 0 such that for
any adversary A of size 2λ

εadv , the following holds:

|Pr[A(D1) = 1]− Pr[A(D2) = 1]| < 1/2λ

Remark. This assumption says that to a bounded adversary, the advantage
of distinguishing the tuple consisting of polynomials samples, along with cor-
related LWE samples with tuple consisting of polynomials samples, along with
uncorrelated LWE samples is bounded by 1/2λ. Second assumption says that
the tuple of polynomial samples looks close to independent discrete gaussian
variables with a large enough variance and 0 mean. Below we define the notion
of a (B, δ)−smooth distribution.

Definition 7. (B, δ)−Smooth distribution N is an efficiently samplable distri-
bution over Z with the property that ∆(N ,N + b) ≤ δ for any b ∈ [−B,B].

Weak Pseudo-Independence Generator Assumption [2, 42]. For the parameters
defined above, the assumption states that there exists a constant εadv > 0 such
that for any adversary A of size 2λ

εadv , the following holds:

|Pr[A(D1) = 1]− Pr[A(D2) = 1]| < 1− 3/λ

where distributions are defined below.
Distribution D1:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, ε) = (q1, ..., qbn1+εc).
– For every j ∈ [d], i ∈ [n], sample ej,i, yi, zi ← χ. Write ej = (ej,1, . . . , ej,n)

for j ∈ [d], y = (y1, . . . ,yn) and z = (z1, . . . , zn).
– Output {qk, qk(e1, . . . , ed,y, z)}k∈[bn1+εc]

Distribution D2:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, ε) = (q1, ..., qbn1+εc).
– Output {qk, hk ← N}k∈[bn1+εc]

Here N is a (B, 1
n2λ)−smooth distribution.

Thus we have,

Claim. Assuming,

1. LWE with degree d+ 2 leakage.
2. Weak Pseudo-Independence Generator Assumption

There exists a d∆RG scheme.

23

Proof. (Sketch.) This is immediate and the proof goes in three hybrids. First, we
use LWE with degree d+2 leakage assumption with 1/2λ security loss. In the next
hybrid, we sample from N given to us by Weak Pseudo-Independence Generator
Assumption. With that, we have another 1−3/λ loss in the security. Finally, we
move to a hybrid where all perturbations are 0. This leads to a security loss of
n1+ε × 1

n2λ <
1

n1−ελ due to statistical distance. Adding these security losses, we
prove the claim. Thus H just uses N to sample each component independently.

7 Constructing (d+ 2) restricted FE from bilinear maps

In this section we describe our construction for a d+ 2−restricted FE scheme.
We now describe our construction as follows:

7.1 Construction

Ingredients: Our main ingredient is a secret-key canonical function-hiding inner
product functional encryption scheme cIPE (see Section 3.3).

Notation: We denote by Fp the field on which the computation is done in slotted
encodings.

1. By boldfaced letters, we denote (multi-dimensional) matrices, where dimen-
sions are specified. Messages are of the form (x,y, z). Here, x ∈ Fd×np .
y, z ∈ Fnp.

2. Function class of interest: We consider the set of functions FdFE =
FdFE,λ,p,n = {f : Fn(d+2)

p → Fp} where Fp is a finite field of order p(λ).
Here n is seen as a function of λ. Each f ∈ Fλ,p,n takes as input d + 2
vectors (x[1], . . . ,x[d],y, z) over Fp and computes a polynomial of the form
Σci1,...,id,j,k · x[1, i1] · · ·x[d, id] · y[j] · z[k], where ci1,...,id,j,k are coefficients
from Fp.

Notation. For a secret key generated for the cIPE encryption algorithm, by
using primed variables such as sk′ we denote the secret key that is not gener-
ated during the setup of the dFE scheme but during its encryption algorithm.
We describe the construction below.

Setup(1λ, 1n): On input security parameter 1λ and length 1n,

– Sample pp← cIPE.PPSetup(1λ). We assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys are

used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ` ∈ [d] and

i` ∈ [n], compute sk(`,i`) ← cIPE.Setup(pp, 14).
– Sample α← Fd×np . Also sample β,γ ← Fnp.

– For ` ∈ [d], i` ∈ [n] and every set I = (i`+1, . . . , id, j, k) ∈ [n]d−`+2,

compute Key
(`,i`)
I = cIPE.KeyGen(sk(`,i`), (α[` + 1, i`+1] · · ·α[d, id]β[j]γ[k],

α[`, i`] · · ·α[d, id]β[j]γ[k], 0, 0)).

24

– Output MSK = ({sk(`,i`),Key
(`,i`)
I }`,i`,I ,α,β,γ, sk0)

KeyGen(MSK, f): On input the master secret key MSK and function f ,

– Parse MSK = ({sk(`,i`),Key
(`,i`)
I }`,i`,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– Compute Key0,f = cIPE.KeyGen(sk0, (θf , 0, 0, 0))

– Output skf = (Key0,f , {Key
(`,i`)
I }`,i`,I)

Enc(MSK,x,y, z): The input messageM = (x,y, z) consists of a public attribute

x ∈ Fd×np and private vectors y, z ∈ Fnp. Perform the following operations:

– Parse MSK = ({sk(`,i`),Key
(`,i`)
I }`,i`,I ,α,β,γ, sk0).

– Sample r ← Fp.
– Compute CT0 = cIPE.Enc(sk0, (r, 0, 0, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14).
– Compute CTCj ← cIPE.Enc(sk′, (y[j],β[j], 0, 0)) for j ∈ [n]
– Compute CTKk ← cIPE.KeyGen(sk′, (z[k],−rγ[k], 0, 0)) for k ∈ [n].
– For ` ∈ [d], i` ∈ [n], compute CT(`,i`) = cIPE.Enc(sk(`,i`), (rx[`, i`],−r, 0, 0)).
– Output CT = (x,CT0, {CTCj ,CTKk,CT(`,i`)}`∈[d],i`∈[n],j∈[n],k∈[n])

Dec(1B , skf ,CT):

– Parse CT = (x,CT0, {CTCj ,CTKk,CT(`,i`)}`∈[d],i`∈[n],j∈[n],k∈[n]).
– Parse skf = {Key0,f ,Key

(`,i`)
I }`,i`,I .

– For every ` ∈ [d] and I = (i`, . . . , id, j, k) ∈ [n]d−`+3 do the following. Let
I ′ be such that I = i`||I ′. In other words, I ′ has all but first element of I.

Compute Mon
(`,i`)
I′ = cIPE.Dec(Key

(`,i`)
I′ ,CT(`,i`)) = [r(x[`, i`]−α[`, i`])α[`−

1, i`−1] · · ·α[d, id]β[j]γ[k]]T .
– Compute Mon0 = cIPE.Dec(Key0,f ,CT0) = [rf(α,β,γ)]T .

– Compute Mon(j,k) = cIPE.Dec(CTKk,CTCj) = [y[j]z[k]− rβ[j]γ[k]]T .
– Let f = ΣI=(i1,...,id,j,k)cIx[1, i1] · · ·x[d, id]y[j]z[k]. Now fix I = (i1, . . . , id, j, k).

For the monomial corresponding to I compute IntI = [x[1, i1] · · ·x[d, id]y[j]z[k]−
rα[1, i1] · · ·α[d, id]β[j]γ[k]]T as follows.
1. For v ∈ [d], denote Iv = (iv, . . . , id, j, k) and I ′v = (iv+1, . . . , id, j, k) .

2. Compute IntI = Πv∈[d]Mon(v,iv)I′v
ρIv

. We describe ρIv shortly.
3. We want these coefficients ρIv such that IntI = [Σv∈[d]ρv(x[v, iv]α[v +

1, iv+1] · · ·α[d, id]β[j]γ[k]− rα[v, iv] · · ·α[d, id]β[j]γ[k])]T .
4. This defines ρI1 = 1 and ρIv = x[1, i1], . . . ,x[v − 1, iv−1] for v ∈ [d].
5. This can be verified for d = 2 as follows.

x[1, i1]x[2, i2](y[j]z[k]− rβ[j]γ[k]) + x[1, i1]r(x[2, i2]

−α[i2])β[j]γ[k] + r(x[1, i1]−α[1, i1])α[i2]β[j]γ[k]

=x[1, i1]x[2, i2]y[j]z[k]− rα[1, i1]α[2, i2]β[j]β[k]

In this way, the process holds for any d.
– Finally compute Int1 = ΠI=(i1,..,id)Int

cI
I = [f(x,y, z)− rf(α,β,γ)]T .

– Compute Int1 ·Mon0 = [f(x,y, z)]T . Using brute force, check if |f(x,y, z)| <
B. If that is the case, output f(x,y, z) otherwise output ⊥.

We now discuss correctness and linear efficiency:

25

Correctness: Correctness is implicit from the description of the decryption algo-
rithm.

Linear Efficiency: Note that a ciphertext is of the following form:

CT = (x,CT0, {CTCj ,CTKk,CT(`,i`)}`∈[d],i`∈[n],j∈[n],k∈[n])

Thus there are n × (d + 1) + 1 cIPE ciphertexts and n cIPE function keys for
vectors of length 4. Hence, the claim holds due to the efficiency of cIPE.

Due to lack of space we defer the security proof to the full version. Here is
our theorem statement.

Theorem 4. Assuming SXDH holds relative to PPGen, the construction de-
scribed in Section 7 satisfies semi-functional security.

8 Construction of iO

Following the template of [4] we prove the following theorems. The details can
be found in the full version.

Theorem 5. For any constant integer d ≥ 1, Assuming

– Subexponentially hard LWE.
– Subexponentially hard SXDH
– PRGs with

• Stretch of k1+ε (length of input being k bits) for some constant ε > 0.
• Block locality d+ 2.
• Security with negl distinguishing gap against adversaries of sub-exponential

size.

– d∆RG with a stretch of k1+ε
′

for some constant ε′ > 05.

there exists an iO scheme for P/poly.

Here is the version with the tradeoff.

Theorem 6. For any constant integer d ≥ 1, two distinguishing gaps adv1, adv2,
if adv1 + adv2 ≤ 1− 2/λ then assuming,

– Subexponentially hard LWE.
– Subexponentially hard SXDH.
– PRGs with

• Stretch of k1+ε (length of input being k bits) for some constant ε > 0.
• Block locality d+ 2.
• Security with distinguishing gap bounded by adv1 against adversaries of

sub-exponential size.

5 Instantiations can be found in Section 6.2

26

– d∆RG with distinguishing gap bounded by adv2 against adversaries of size 2λ
6.

there exists a secure iO scheme for P/poly.

Alternatively, the construction from Section 7 can also be used to instantiate
a partially hiding FE scheme as in [42]. Together with a pseudo flawed-smudging
generator (see Section 5.2) that can be computed by that FE scheme, we can
follow the approach from [42] to obtain the following theorem. See the full version
for details.

Theorem 7. For any constant integer d ≥ 1, assuming,

– LWE,
– SXDH,
– PRGs with

• Stretch of k1+ε (length of input being k bits) for some constant ε > 0,
• Constant locality and additional mild structural properties (see [42] for

details),

– Pseudo flawed-smudging generators with degree d public computation and
degree 2 private computation.

where all primitives are secure against adversaries of polynomial sizes with sub-
exponentially small distinguishing gaps. Then, there exists a subexponentially
secure iO scheme for P/poly.

Acknowledgements. We would like to thank Prabhanjan Ananth for prelimi-
nary discussions on the concept of a d+ 2 restricted FE scheme. We would also
like to thank Pravesh Kothari, Sam Hopkins and Boaz Barak for many useful
discussions about our d∆RG Candidates. This work was done in part when both
Huijia Lin and Chrisitan Matt were at University of California, Santa Barbara.

Aayush Jain and Amit Sahai are supported in part from a DARPA/ARL
SAFEWARE award, NSF Frontier Award 1413955, and NSF grant 1619348,
BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Re-
search Award, an equipment grant from Intel, and an Okawa Foundation Re-
search Grant. This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency through the ARL under Contract W911NF-15-
C- 0205. Aayush Jain is also supported by a Google PhD Fellowship in Privacy
and Security. Huijia Lin and Christian Matt were supported by NSF grants
CNS-1528178, CNS-1514526, CNS-1652849 (CAREER), a Hellman Fellowship,
the Defense Advanced Research Projects Agency (DARPA) and Army Research
Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No.
2017-002 through Galois. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense, the Na-
tional Science Foundation, Google, or the U.S. Government.

6 Instantiations can be found in Section 6.2

27

References

1. Agrawal, S.: New methods for indistinguishability obfuscation: Bootstrapping and
instantiation. IACR Cryptology ePrint Archive 2018, 633 (2018)

2. Ananth, P., Brakerski, Z., Khuarana, D., Sahai, A.: New approach against the
locality barrier in obfuscation: Pseudo-independent generators. Unpublished Work
(2017)

3. Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: Avoiding
Barrington’s theorem. In: ACM CCS. pp. 646–658 (2014)

4. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilinear
maps: io from lwe, bilinear maps, and weak pseudorandomness. IACR Cryptology
ePrint Archive 2018, 615 (2018)

5. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: EUROCRYPT (2017)

6. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Au-
tomata, Languages and Programming - 38th International Colloquium, ICALP
2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I. pp. 403–415 (2011)

7. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
New mathematical tools, and the case of evasive circuits. In: Advances in Cryptol-
ogy - EUROCRYPT. pp. 764–791 (2016)

8. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: CRYPTO. pp. 221–238 (2014)

9. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Advances in Cryp-
tology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings. pp. 1–18 (2001)

10. Barak, B., Hopkins, S., Jain, A., Kothari, P., Sahai, A.: Sum-of-squares meets
program obfuscation, revisited. Unpublished Work (2018)

11. Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Preventing zeroizing attacks on
GGH15. IACR Cryptology ePrint Archive 2018, 511 (2018)

12. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a
nash equilibrium. In: FOCS (2015)

13. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against
zeroizing attacks. IACR Cryptology ePrint Archive 2014, 930 (2014),
http://eprint.iacr.org/2014/930

14. Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Crypt-
analysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report
2015/845 (2015), http://eprint.iacr.org/

15. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: TCC. pp. 1–25 (2014)

16. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and uces:
The case of computationally unpredictable sources. In: CRYPTO. pp. 188–205
(2014)

17. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: EUROCRYPT (2015)

18. Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new clt multilinear maps.
Cryptology ePrint Archive, Report 2015/934 (2015), http://eprint.iacr.org/

19. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: STOC (2016)

28

20. Coron, J., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M.,
Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: New MMAP attacks
and their limitations. In: CRYPTO (2015)

21. Coron, J., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers.
In: Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I. pp. 476–493
(2013)

22. Coron, J.S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers.
In: CRYPTO (2015)

23. Döttling, N., Garg, S., Gupta, D., Miao, P., Mukherjee, P.: Obfuscation from low
noise multilinear maps. IACR Cryptology ePrint Archive 2016, 599 (2016)

24. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In:
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings (2013)

25. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Theory of Cryptography - 11th Theory of Cryptog-
raphy Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Pro-
ceedings. pp. 74–94 (2014)

26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

27. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Theory of Cryptography - 14th
International Conference, TCC 2016-B, Beijing, China, October 31 - November 3,
2016, Proceedings, Part II. pp. 241–268 (2016)

28. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a nash equilibrium. In: CRYPTO (2016)

29. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices.
In: TCC. pp. 498–527 (2015)

30. Goldreich, O.: Candidate one-way functions based on expander graphs. IACR
Cryptology ePrint Archive 2000, 63 (2000), http://eprint.iacr.org/2000/063

31. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F., Sahai, A., Shi,
E., Zhou, H.: Multi-input functional encryption. In: EUROCRYPT (2014)

32. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: TCC. pp. 194–
213 (2007)

33. Halevi, S.: Graded encoding, variations on a scheme. IACR Cryptology ePrint
Archive 2015, 866 (2015)

34. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to
generate and use universal samplers. In: ASIACRYPT. pp. 715–744 (2016)

35. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In: EUROCRYPT (2014)

36. Hu, Y., Jia, H.: Cryptanalysis of GGH map. IACR Cryptology ePrint Archive
2015, 301 (2015)

37. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials over R to build iO. arXiv (2019)

38. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC (2015)

39. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 28–57. Springer (2016)

29

40. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 prgs. In: Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceed-
ings, Part I. pp. 599–629 (2017)

41. Lin, H.: Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5
prgs. In: CRYPTO. pp. 599–629. Springer (2017)

42. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to in-
distinguishability obfuscation. IACR Cryptology ePrint Archive 2018, 646 (2018)

43. Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps and
block-wise local prgs. Cryptology ePrint Archive, Report 2017/250 (2017),
http://eprint.iacr.org/2017/250

44. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from ddh-like as-
sumptions on constant-degree graded encodings. In: FOCS. pp. 11–20. IEEE (2016)

45. Ma, F., Zhandry, M.: New multilinear maps from CLT13 with provable security
against zeroizing attacks. IACR Cryptology ePrint Archive 2017, 946 (2017)

46. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: Crypt-
analysis of indistinguishability obfuscation over GGH13. In: Advances in Cryptol-
ogy - CRYPTO (2016)

47. Minaud, B., Fouque, P.A.: Cryptanalysis of the new multilinear map over the inte-
gers. Cryptology ePrint Archive, Report 2015/941 (2015), http://eprint.iacr.org/

48. Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0. In: FOCS.
pp. 136–145 (2003)

49. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I. pp. 500–517 (2014)

50. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: Shmoys, D.B. (ed.) Symposium on The-
ory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014. pp. 475–484. ACM (2014). https://doi.org/10.1145/2591796.2591825,
http://doi.acm.org/10.1145/2591796.2591825

30

