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Abstract. Invariant subspaces (Crypto’11) and subspace trails (FSE’17) are two
related recent cryptanalytic approaches that led to new results on, e. g. PRINTCipher
and AES. We extend the invariant subspace approach to allow for different subspaces
in every round, something that so far only the subspace trail approach and a gener-
alization for invariant subspace and invariant set attacks (Asiacrypt’18) were able
to do. For an easier detection, we provide an algorithm which finds these weak-key
subspace trails.
Using this framework, we perform an extensive analysis of weak-key distinguishers
(in the single-key setting) for AES with several key schedule variants. Among others,
we show that for the new key-schedule proposed at ToSC/FSE’18 – which is faster
than the standard key schedule and ensures a higher number of active S-Boxes – it is
possible to set up an invariant subspace distinguisher for any number of rounds.
Finally, we describe a property for full AES-128 and AES-256 in the chosen-key setting
with complexity 264 without requiring related keys. These chosen-key distinguishers
are set up by exploiting the multiple-of-n property introduced at Eurocrypt’17,
adapted to the case of AES instantiated with weak-keys.
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1 Introduction
Block ciphers are certainly among the most important cryptographic primitives. Their
design and analysis are well advanced, and with today’s knowledge designing a secure
block cipher is a problem that is largely considered solved. Especially with the AES we
have at hand a very well analyzed and studied cipher that, after more than 20 years of
investigation still withstands all cryptanalytic attacks. However, new results on the AES
still appear regularly, especially within the last couple of years (e. g. [Bar+18; Gra+17;
Gra18; Røn+17]). While those papers do not pose any practical threat to the AES, they
do give new insights into the internals of what is arguably the cipher that is responsible
for the largest fraction of encrypted data worldwide.

Clearly, security of symmetric crypto is always security against specific attacks. The
number of available attacks has increased significantly ever since the introduction of
differential [BS90] and linear [Mat94] cryptanalysis in the early 1990. Besides the numerous
variations of linear and differential attacks, e. g. truncated differentials [Knu95], impossible
differentials [Bih+99; Knu98], zero-correlation attacks [BR14], and multidimensional linear
cryptanalysis [Her+09] to name only a few, it turned out that in many cases combining
two attack vectors might lead to new, more powerful attacks. The most prominent
example is the combination of linear and differential cryptanalysis into differential-linear
cryptanalysis [LH94].

Another important aspect is that the attacker model is regularly changing. With
the introduction of statistical attacks, especially linear and differential cryptanalysis, the
attacker was suddenly assumed to be able to retrieve, or even choose, large amounts of
plaintext/ciphertext pairs. Later, in the related-key setting, the attacker became even
more powerful and was assumed to be able to choose not only plaintexts but also ask for
the encryption of chosen messages under a key that is related to the unknown secret key.
Finally, in the open-key model, the attacker either knows the key or has the ability to
choose the key herself.

While the practical impact of such models is often debatable, they actually might
become meaningful when the block cipher is used as a building block for other primitives,
in particular for the construction of hash-functions1. Moreover, even if those considerations
do not pose practical attacks, they still provide very useful insights and observations that
strengthen our understanding of block ciphers in general, and on the AES in particular.

Our work builds upon the above in the sense that we do combine previously separate
attacks to derive new results on the AES, both in the secret-key as well as in the open-key
model.

1.1 Our contribution
Weak-key subspace trail cryptanalysis. In this work we start by recalling the basic
set-up of subspace trail cryptanalysis (see [Gra+16; Gra+17; Lea+18]) and invariant
subspace attacks (see [Lea+11; Lea+15]) in Section 2. Our main focus is to point out
the important differences of these two attacks. As we will explain, those concepts are not
generalizations of each other but rather orthogonal attack vectors. From this point of view,
a natural step is to combine both approaches into a new, more powerful, attack. This is in
line with what was done previously with other attacks as mentioned above.

As invariant subspace attacks are weak-key attacks by nature, the new attack originating
from the combination of invariant subspace attacks and subspace trail cryptanalysis is a
weak-key attack as well. Here, weak-key refers to the fact that the attacks do not work for
any key, but rather only for a fraction of all keys. Consequently, in Section 2 we coin the

1As concrete examples, in Appendix H we present collisions for Matyas-Meyer-Oseas, Davies–Meyer
and Miyaguchi-Preneel compressing modes instantiated with 7-round AES-256.
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Table 1: Summary of concrete new results and observations on AES with various key
schedules in the single-key setting (no related-keys). The respective sections have more
detailed comparison.

Property Key Schedule Rounds Remarks Reference

Trunc. Diff. trivial any 264 keys folklore, § 4.1
Trunc. Diff. FSE 2018 [Kho+17] any 264 keys § 4.2

Trunc. Diff.
AES-128/192/256 3 all keys folklore
AES-128/192/256 5 232 / 264 / 2128 keys § 5.1

AES-256 6/7/8 296 / 264 / 232 keys § 5.1
AES-128/192/256 5 all keys [Gra+17]
AES-128/192/256 6 232 / 264 / 2128 keys § 5.2Multiple-of-n

AES-256 7/8/9 296 / 264 / 232 keys § 5.2
Multiple-of-n AES-128 10 (full) CKD∗ § 6.5
Multiple-of-n AES-192 11 CKD∗ App. G.2
Multiple-of-n AES-256 14 (full) CKD∗ App. G.3

Compr. Collision AES-256 7 cost 232 App. H
* Chosen-Key Distinguisher

new strategy weak-key subspace trail cryptanalysis. To be able to detect these trails, we
provide an algorithmic way, based on previous search algorithms for invariant subspaces.

Previously, invariant subspace attacks were only applied to ciphers with very simple
key schedule algorithms. As a result, ciphers where the round keys differed not only by
round constants seemed secure against this type of attacks. In particular, up to now, it
seemed impossible to apply invariant subspace attacks on the AES.

With our new combination of invariant subspace attacks and subspace trail cryptanalysis,
we overcome this inherently difficult problem. As a showcase of the increased possibilities
of our attack, and as the most important example anyway, in Sections 4 and 5 we present
several new observations on the AES. An overview of these properties is given in Table 1.
Using as starting point the invariant subspace found by our algorithm and presented in
Section 4, we show that (almost) all the secret-key distinguishers for round-reduced AES
currently present in the literature can be set up for a higher number of rounds of AES if
the whitening key is a weak-key.

As a side-result, in Section 4.2 we show that the recently proposed alternative AES
key schedule [Kho+17] actually leads to a cipher that can be broken in our setting.

Chosen-key distinguisher for (full) AES-128 and AES-256 in the single-key setting.
Building up on those results we are able to show a non-random property for full AES-128
and AES-256 in the chosen-key setting that seems difficult to produce generically. This
improves all the chosen-key distinguishers for AES in the single-key setting. In particular,
in Section 6 we exhibit a chosen-key distinguisher with complexity 264 for full AES-128 in
the single-key model, valid for 232 keys.2.

For these results we combine two weak-key subspace trails in an inside-out manner
and, instead of a simple truncated differential property at the plaintexts and ciphertexts,
we use a variant of the “multiple-of-n” property recently shown for AES in [Gra+17].

2A 10-round known-key distinguisher for AES has been proposed by Gilbert [Gil14] at Asiacrypt 2014.
Echoing Grassi and Rechberger [GR17], in Section 6.1.2 we argue why such distinguisher can be considered
artificial. Briefly, the property of this distinguisher does not involve directly the plaintexts/ciphertexts,
but their encryption/decryption after one round.
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Open problems. Finally, we point out that our work leaves many open questions for
future research. In particular, the analysis of [Bei+17] that resulted in efficient ways to
prove the resistance of a given cipher to invariant subspace attacks is not applicable to the
weak-key subspace trail cryptanalysis. Thus, an important and highly non-trivial task is
to leverage this analysis to the case of weak-key subspace trails.

1.2 Related work

Regarding weak-key cryptanalysis, the most famous example of weak-keys is given for
the DES. The block cipher DES has a few specific keys termed “weak-keys” and “semi-
weak-keys” [MS87]. These are keys that cause the encryption mode of DES to act
identically to the decryption mode of DES (albeit potentially that of a different key).
Several other examples can be found in the literature, e. g. for Blowfish [KM07; Vau96],
PRESENT [Ohk09], or Piccolo [WW16]. Typical “weak-key” attacks (so called as these
attacks work only when a key of a special form is used, thus a “weak-key”) are the already
mentioned invariant subspace attack [Lea+11; Lea+15], the invariant set (or nonlinear
invariant) attack [Tod+16], see also the recent work by Beyne [Bey18] for a generalization
of invariant subspace and invariant set attacks. As an example for the risk of weak-keys,
we mention the case of the stream cipher RC4 [Flu+01], where RC4’s weak initialization
vectors allow an attacker to mount a known-plaintext attack, which has been (widely)
used to compromise the security of WEP.

Weak-keys are much more often a problem where the adversary has some control
over what keys are used, such as when a block cipher is used in a mode of operation
intended to construct a secure cryptographic hash function. For example, the Davies-Meyer
construction or the Miyaguchi-Preneel one can transform a secure block cipher into a
secure compression function. In a hash setting, block cipher security models such as the
known-key model (or the chosen-key model) makes sense since in practice the attacker has
full access and control over the internal computations.

The idea of known-key distinguishers was introduced by Knudsen and Rijmen in [KR07]
for their analysis of AES and a class of Feistel ciphers. They examined the security of these
block ciphers in a model where the adversary knows the key. To succeed, the adversary
has to discover some property of the attacked cipher that e. g. holds with a probability
higher than for an ideal cipher, or is generally believed to be hard to exhibit generically.
The idea of chosen-key distinguishers was popularized in the attack on the full-round
AES-256 [BK09; Bir+09] in a related-key setting. This time the adversary is assumed
to have a full control over the key. A chosen-key attack was shown on 9-round reduced
AES-128 in [Fou+13] in the related-key setting, and on 8-round AES-128 in [Der+12] in
the single-key setting. Both the known-key and chosen-key distinguishers are collectively
known as open-key distinguishers.

An attack in these (open-key) models depicts a structural flaw of the cipher, while it
should be desired to work with a primitive that does not have any flaw, even in the most
generous security model for the attacker. A classical example is the devastating effect on
the compression function security of weak-keys for a block cipher [Wei+12], which are
usually considered as a minor flaw for a block cipher if the set of these weak-keys is small.

2 Weak-key (invariant) subspace trails

Before coming to the weak-key variant of subspace trails, let us recapitulate the differences
between invariant subspaces and subspace trails.
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2.1 Subspace trails
Subspace trails have been first defined in [Gra+16] and later used to attack reduced round
versions of AES [Gra+17] and PRINCE [GR16] as well as on Simpira [Røn16]. We refer
to [Gra+16] for more details about the concept of subspace trails. Our treatment here is
however meant to be self-contained.

We recall the definition of a subspace trail next. For this, let F denote a round function
of a key-alternating block cipher, and let U ⊕ a denote a coset of a vector space U . By U c
we denote the complementary subspace of U .

Definition 1 (Subspace trails). Let (U1, U2, . . . , Ur+1) denote a set of r + 1 subspaces
with dim(Ui) 6 dim(Ui+1). If for each i = 1, . . . , r and for each ai, there exists (unique)
ai+1 ∈ U ci+1 such that

F (Ui ⊕ ai) ⊆ Ui+1 ⊕ ai+1,

then (U1, U2, . . . , Ur+1) is a subspace trail of length r for the function F .
If all the previous relations hold with equality, the trail is called a constant-dimensional

subspace trail.

One important observation is the following. Consider a key-alternating cipher Ek using
F as a round function and where the round keys are xored in between the rounds, as
depicted below:

k Key Scheduling

m

k0

F

k1

F F

kr

c

In this case, a subspace trail for F will extend to a subspace trail for Ek for any choice of
round keys. This is a simple consequence as

F (Ui ⊕ ai) ⊆ Ui+1 ⊕ ai+1 implies Fki(Ui ⊕ ai) ≡ F (Ui ⊕ ai)⊕ ki ⊆ Ui+1 ⊕ a′i+1

for a suitable a′i+1 = ai⊕ki (where ki is the i-th subkey). In other words, the key addition
changes only the coset of the subspace Ui+1, while it does not affect the subspace itself.
Thus, not only do subspace trails work for all keys, they are also completely independent
of the key schedule. Here, invariant subspace attacks behave very differently.

2.2 Invariant subspace attacks
Invariant subspace attacks, which can be seen as a general way of capturing symmetries,
have been first introduced in [Lea+11] in an attack on PRINTCipher. Later, those attacks
have been applied to several other (mainly lightweight) primitives, e. g. in [Lea+15], where
a generic tool to detect them has been proposed.

As above, denoting by Fk(·) = F (·)⊕ k the round function of an iterated block-cipher,
let U ⊂ Fn2 be a subspace. Then, U is called an invariant subspace if there exist constants
a, b ∈ Fn2 such that Fk(U ⊕ a) = U ⊕ b. In order to extend the invariant subspace
U ⊕ ai 7→ U ⊕ ai+1 to the whole cipher, we need all round keys to be in specific cosets3 of
U namely, ki ∈ U ⊕ (ai+1 ⊕ bi) (where F (U ⊕ ai) = U ⊕ bi):

Fk(U ⊕ ai) = F (U ⊕ ai)⊕ k = U ⊕ bi ⊕ k︸︷︷︸
∈U⊕(ai+1⊕bi)

= U ⊕ ai+1.

3It is not necessary that ai = ai+1 for all i in order to set up an invariant subspace attack.
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Definition 2 (Invariant subspace trail). Let Kweak be a set of keys and k ∈ Kweak, with
k ≡ (k0, k1, . . . , kr) where kj is the j-th round key. For each k ∈ Kweak, the subspace U
generates an invariant subspace trail of length r for the function Fk(·) ≡ F (·)⊕ k if for
each i = 1, . . . , r there exists a non-empty set Ai ⊆ U c for which the following property
holds:

∀ai ∈ Ai : ∃!ai+1 ∈ Ai+1 s.t. Fki(U ⊕ ai) ≡ F (U ⊕ ai)⊕ ki = U ⊕ ai+1.

All keys in the set Kweak are weak-keys.

In the following, we combine both concepts into weak-key subspace trails.

2.3 Weak-key subspace trails
When comparing subspace trail and invariant subspace attacks, two obvious but important
differences can be observed. First, subspace trails are clearly much more general as they
allow different spaces in the domain and co-domain of F . Second, subspace trails are by
far more restrictive, as not only one coset of the subspace has to be mapped to one coset
of (a potentially different) subspace, but rather all cosets have to be mapped to cosets.
For subspace trails, the later fact is the main reason for allowing arbitrary round keys.

The main idea for weak-key subspace trails is to stick to the property of invariant
subspace attacks where only few (even just one) cosets of a subspace are mapped to other
cosets of a subspace. However, borrowing from subspace trails, we allow those subspaces
to be different for each round. As this will again restrict the choice of round keys that
will keep this property invariant to a class of weak-keys we call this combination weak-key
subspace trails (or simply, weak subspace trails). The formal definition is the following.

Definition 3 (Weak-key subspace trails). Let Kweak be a set of keys and k ∈ Kweak with
k ≡ (k0, k1, . . . , kr) where kj is the j-th round key. Further let (U1, U2, . . . , Ur+1) denote a
set of r + 1 subspaces with dim(Ui) 6 dim(Ui+1). For each k ∈ Kweak, (U1, U2, . . . , Ur+1)
is a weak-key subspace trail (WKST) of length r for the function Fk(·) ≡ F (·)⊕ k if for
each i = 1, . . . , r there exists a non-empty set Ai ⊆ U ci for which the following property
holds:

∀ai ∈ Ai : ∃!ai+1 ∈ Ai+1 s.t. Fki(Ui ⊕ ai) ≡ F (Ui ⊕ ai)⊕ ki ⊆ Ui+1 ⊕ ai+1.

All keys in the set Kweak are weak-keys. If all the previous relations hold with equality,
the trail is called a weak-key constant-dimensional subspace trail.

Usually, the set Ai ⊆ U ci reduces to a single element ai, that is Ai ≡ {ai}. Moreover,
we can easily see that Definition 3 is a generalization of both Definitions 1 and 2:

• if Kweak is equal to the whole set of keys and if Ai = U ci , then it corresponds to
subspace trails;

• if Ui = Ui+1 for all i, then it corresponds to invariant subspace trails.

Security Problem. Clearly, a WKST allows greater freedom for an attacker. In compari-
son to invariant subspace attacks, WKSTs have the potential of being better applicable to
block ciphers with a non trivial key schedule. At the same time, with respect to subspace
trails it is not necessary for WKSTs to hold for all possible keys.

Interestingly, proving resistance against invariant subspace (or more generally invariant
sets) in the case of identical round keys (up to the addition of round constants) is well
understood, see [Bei+17]. However, the situation changes completely when considering
WKSTs and/or ciphers with a non-trivial key schedule. In those situations, the analysis
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Figure 1: To find invariant subspaces (left part), we iteratively compute the image of the
current subspace and map the span of it backwards through the inverse function, until the
process stabilizes. For subspace trails (right part), all cosets of the starting subspace get
mapped to a coset of the ending subspace. This implies that the derivative of the round
function is in the ending subspace.

of [Bei+17] is no longer applicable and we do not have a generic approach to argue the
resistance against WKSTs.

It follows that the concept of WKSTs opens up many new opportunities and raises
many new, probably highly non-trivial questions on how to protect against it. We focus
on demonstrating the new opportunities by investigating the AES. How to (generically)
protect against those attacks is left as an open question for future research.

2.4 Algorithmic detection of weak-key subspace trails
Before discussing the actual weak subspace trails, let us take a look at how we can find
these algorithmically. To begin with, we recapitulate how the algorithms for invariant
subspaces [Lea+15] and subspace trails work [Lea+18].

First, Fig. 1 (left part) sketches the idea for invariant subspaces. Given a round function
F : Fn2 → Fn2 , the algorithm guesses a starting offset a for the affine subspace U ⊕ a and
then maps U ⊕ a forwards and back through F and F−1, every-time computing the span
of the image. If the subspace stabilizes, we have found an invariant subspace.

Second, Fig. 1 (right part) illustrates the main idea for subspace trails. The important
difference to invariant subspaces is that every coset of the starting subspace U is mapped
to some coset of the ending subspace V . The implication of this is, see [Lea+18, Lemma 1],
the images of the derivatives ∆uF (·) := F (· ⊕ u)⊕ F (·) of the round function F span a
subspace of V . In other words, if U F→ V is a subspace trail, then

U
F→ span

(⋃
u∈U

Im(∆u(F ))
)
⊆ V.

We cannot exploit this fact for WKSTs, though. Instead we base the algorithm on the
idea for invariant subspaces.

Goal and details of the algorithm. Given a round function R : Fn2 → Fn2 and a key
schedule Ki : Fm2 → Fn2 for 0 ≤ i ≤ r rounds, the goal is to find two subspaces U, V ⊂ Fn2
and a subset S ⊆ Fm2 , s. t. every message m chosen from U and every key k ∈ S get
mapped to a ciphertext c = Ek(m) ∈ V , where the encryption uses the round function R
and key schedule Ki for the i-th round key. Thus, all master keys in S are weak-keys.

As a starting point, we assume that the zero message m = 0 is in our starting subspace
U0. This is anyway always the case, as we assume all Ui’s to be subspaces. Additionally,



8 Weak-Key Subspace Trails and Applications to AES

Algorithm 1 Compute an initial Weak-key subspace trail
Precondition: A round function R : Fn2 → Fn2 and a key schedule Ki : Fn2 → Fn2 for

0 ≤ i ≤ r rounds. An upper bound max_rnd on the number of rounds to cover.
Postcondition: A weak-key subspace trail U0 → · · · → Ul over l rounds for a set S of

weak-keys.

1 function wkst(R,Ki,max_rnd)
2 S ← {0}
3 L← [U0 = {0,K0(0)}]
4 while for the last element Ui in L: dim(Ui) < n do
5 Ui+1 ← ∅
6 for enough x ∈R Ui do
7 Ui+1 ← Ui+1 ∪ {R(x)}
8 Ui+1 ← span(Ui+1 ∪ {Ki+1(k) | ∀k ∈ S})
9 append Ui+1 to L

10 if len(L) ≥ max_rnd then
11 return L
12 return (L, S)

we require that a certain key kweak – chosen by the user – is weak, thus in S. Since
kweak = 0 ∈ S is very often the case if invariant subspace attacks apply, we assume
kweak = 0 in the following. In particular, we have the following conditions:

0 ∈ Ui, R(Ui) ⊆ Ui+1,

Ki(S) ⊆ Ui, R(Ki(S)) ⊆ Ui+1. (1)

Exploiting these conditions and starting at the above mentioned point, we can simply
compute the WKST forwards. We may want to check if the resulting trail is invariant,
for that we can simply compute the trail backwards at some point. For the complete
pseudocode4 see Algorithm 1 – Sage code that implements this algorithm can be found in
the Appendix I (see Listing 1).

The runtime of our algorithm depends on the while and for loop. The first loop iterates
over the subspaces in our trail and is thus bound by the length of the WKST. For the later
loop, we have to iterate over “enough x”. Following the same argument as in [Lea+18]
tells us that sampling n+ 100 random inputs is enough to compute the following subspace
with overwhelming probability.

3 Subspace trail properties of the AES
We start with a brief revision of the AES, as its details are important for the remainder of
the work, and known subspace trails.

The Advanced Encryption Standard [DR02] is a Substitution-Permutation network
that supports key sizes of 128, 192 and 256 bits. The 128-bit plaintext initializes the
internal state as a 4 × 4 matrix of bytes as values in the finite field F256, defined using
the irreducible polynomial x8 + x4 + x3 + x+ 1. Depending on the version of AES, Nr
rounds are applied to the state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14
for AES-256. An AES round applies four operations to the state matrix:

• SubBytes (SB) – applying the same 8-bit to 8-bit invertible S-Box 16 times in parallel
on each byte of the state (it provides non-linearity in the cipher);

4Only for simplicity, the update process for the set S is not included in the algorithm. More weak-keys
can be found by computing backward from the Ui’s, see Eq. (1) and the Sage implementation.
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• ShiftRows (SR) – cyclic shift of each row to the left;

• MixColumns (MC) – multiplication of each column by a constant 4× 4 invertible
matrix MMC (MC and SR provide diffusion in the cipher);

• AddRoundKey (ARK) – XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕MC ◦SR ◦SB(x). In the first round
an additional AddRoundKey operation (using a whitening key) is applied, and in the last
round the MixColumns operation is omitted.

Key schedule AES-128. The key schedule of AES-128 takes the user key and transforms
it into 11 subkeys of 128 bits each. The subkey array is denoted by W [0, . . . , 43], where
each word of W [·] consists of 4 bytes and where the first 4 words of W [·] are loaded with
the user secret key. The remaining words of W [·] are updated according to the following
rule:

W [i][j] =
{
W [i][j − 4]⊕ SB(W [i+ 1][j − 1])⊕R[i][j/4] if j mod 4 = 0
W [i][j − 1]⊕W [i][j − 4] otherwise

where i = 0, 1, 2, 3, j = 4, . . . , 43 and R[·] is an array of predetermined constants.5

Key schedule AES-192. The key schedule of AES-192 is similar to the one given for
AES-128. In this case, the subkey array is denoted by W [0, . . . , 51], where here the first
6 words of W [·] are loaded with the user secret key. The remaining words of W [·] are
updated according to the following rule:

W [i][j] =
{
W [i][j − 6]⊕ SB(W [i+ 1][j − 1])⊕R[i][j/6] if j mod 6 = 0
W [i][j − 1]⊕W [i][j − 6] otherwise

where i = 0, 1, 2, 3, j = 6, . . . , 51 and R[·] is an array of predetermined constants.

Key schedule AES-256. The case AES-256 is a little different from the previous cases.
In this case, the subkey array is denoted by W [0, . . . , 59], where here the first 8 words
of W [·] are loaded with the user secret key. The remaining words of W [·] are updated
according to the following rule:

W [i][j] =


W [i][j − 8]⊕ SB(W [i+ 1][j − 1])⊕R[i][j/8] if j mod 8 = 0
W [i][j − 8]⊕ SB(W [i][j − 1]) if j mod 8 = 4
W [i][j − 1]⊕W [i][j − 8] otherwise

where i = 0, 1, 2, 3, j = 8, . . . , 59 and R[·] is an array of predetermined constants.

The notation used in the paper. Let x denote a plaintext, a ciphertext, an intermediate
state or a key. Then xi,j or xi+4×j with i, j ∈ {0, . . . , 3} denotes the byte in the row i and
in the column j. We denote by kr the key of the r-th round. If only one key is used, then
we denote it by k to simplify the notation. Finally, we denote by R one round of AES,
while we denote r rounds of AES by Rr. We sometimes use the notation RK instead of R
to highlight the round key K. As last thing, in the paper we often use the term “partial
collision” (or “collision”) when two texts belong to the same coset of a given subspace X.

5The round constants are defined in GF (28)[X] as R[0][1] = X, R[0][r] = X ·R[0][r − 1] if r ≥ 2 and
R[i][·] = 0 if i 6= 0. For the following, let R[r] ≡ R[0][r].
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3.1 Subspace trails of AES
In this section, we recall the main concepts of the subspace trails of AES presented
in [Gra+16] – we refer to [Gra+16] for more details and examples.

For the following, we only work with vectors and vector spaces over F4×4
28 , and we

denote by {e0,0, . . . , e3,3} the unit vectors of F4×4
28 (e. g. ei,j has a single 1 in row i and

column j). We also recall that given a subspace X, the cosets X ⊕ a and X ⊕ b (where
a 6= b) are equal (X ⊕ a ≡ X ⊕ b) if and only if a⊕ b ∈ X.

Definition 4. The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

Definition 5. The diagonal spaces Di and the inverse-diagonal spaces IDi are respec-
tively defined as Di = SR−1(Ci) ≡ 〈e0,i, e1,i+1, e2,i+2, e3,i+3〉 and IDi = SR(Ci) ≡
〈e0,i, e1,i−1, e2,i−2, e3,i−3〉, where the indexes are taken modulo 4.

Definition 6. The i-th mixed spaces Mi are defined asMi = MC(IDi).

Definition 7. For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI andMI be defined as

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.

As shown in detail in [Gra+16]:

• for any coset DI ⊕ a there exists unique b ∈ C⊥I such that R(DI ⊕ a) = CI ⊕ b;

• for any coset CI ⊕ a there exists unique b ∈M⊥I such that R(CI ⊕ a) =MI ⊕ b.

Theorem 1 ([Gra+16]). For each I and for each a ∈ D⊥I , there exists one and only one
b ∈M⊥I such that

R2(DI ⊕ a) =MI ⊕ b.

We refer to [Gra+16] for a complete proof of this theorem. Observe that b depends on a
(the constant that defines the initial coset of DI) and on the secret key k.

Observe that if X is a generic subspace, X ⊕ a is a coset of X and x and y are two
elements of the (same) coset X ⊕ a, then x⊕ y ∈ X. It follows that:

Lemma 1. For all x, y and for all I ⊆ {0, 1, 2, 3}:

Pr
[
R2(x)⊕R2(y) ∈MI

∣∣ x⊕ y ∈ DI] = 1.

As demonstrated in [Gra+16], we finally recall that for each I, J ⊆ {0, 1, 2, 3}, then :
MI ∩ DJ = {0} if and only if |I|+ |J | ≤ 4. It follows that

Theorem 2 ([Gra+16]). Let I, J ⊆ {0, 1, 2, 3} such that |I|+ |J | ≤ 4. For all x 6= y:

Pr
[
R4(x)⊕R4(y) ∈MI

∣∣ x⊕ y ∈ DJ] = 0.

For completeness, we briefly describe the subspace trail notation using a more “classical”
one. If two texts t1 and t2 are equal except for the bytes in the i-th diagonal6 for each
i ∈ I, then they belong in the same coset of DI . Two texts t1 and t2 belong in the same
coset of MI if the bytes of their difference MC−1(t1 ⊕ t2) in the i-th anti-diagonal for
each i /∈ I are equal to zero. Similar considerations hold for the column space CI and the
inverse-diagonal space IDI .

6The i-th diagonal of a 4× 4 matrix A is defined as the elements that lie on row r and column c such
that r − c = i mod 4. The i-th anti-diagonal of a 4× 4 matrix A is defined as the elements that lie on row
r and column c such that r + c = i mod 4.
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Generic subspace trail of length 1 for AES

For the follow-up, we introduce a generic subspace trail of length 1.

Definition 8. Let I be a subset of {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3. Let
the subspace XI be defined as

XI = 〈{ei,j}(i,j)∈I〉 ≡
{ ⊕

(i,j)∈I

αi,j · ei,j
∣∣∀αi,j ∈ F28

}
.

In other words, XI is the set of elements given by linear combinations of {ei,j}(i,j)∈I ,
where ei,j ∈ F4×4

28 has a single 1 in row i and column j.

Theorem 3. For each I ⊆ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3 and for each
a ∈ X⊥I , there exists one and only one b ∈ Y⊥I such that

R(XI ⊕ a) = YI ⊕ b

where YI = MC ◦ SR(XI).

The complete proof7 of this Theorem is given in Appendix A. Such subspace trail cannot
be extended on two rounds for any generic XI , due to the non-linear S-Box operation of
the next round (that can destroy the linear relations that hold among the bytes).

3.2 Weak-key subspace trail of AES: A concrete example
Before going on, we present a (proper) weak-key subspace trail for AES. For simplicity,
initially we work with a simpler S-Box, that is we replace the AES S-Box with the inverse
one

∀x ∈ GF (28) : S(x) =
{

1/x ≡ x254, if x 6= 0,
0 otherwise

To achieve our goal, the idea is to find subspaces V,W ⊂ GF (28) of dimension two and/or
four s. t.

S(V ⊕ v) ⊆W ⊕ w

for certain (not all) v, w ∈ GF (28), where V 6= W in general. E. g. the subspace V of
dimension four defined as8

V = 〈[1, 12, 80, 176], 0〉 ⊆ {x ∈ GF (28) |x256 ⊕ x = 0}

is invariant under the S-Box – that is, S(V ) = V , since S(x)256⊕S(x) = [(x254)]256⊕x254 =
x254 ⊕ x254 = 0 (remember that x2n−1 = 1 for all x ∈ GF (2n)), while its cosets V ⊕ v for
v 6= 0 are in general not invariant.

In [Bra+05], several subspaces V,W ⊂ GF (28) of dimension two and four are defined
such that V 6= W and S(V ⊕ v) ⊆W ⊕w. In particular, in there authors found 85 disjoint
input subspaces of dimension 2 together with the corresponding output subspaces, and 17
disjoint input subspaces of dimension 4 together with the corresponding output subspaces
of the AES, like

S (V ≡ 〈[2, 24, 97, 160], 0〉) = (W ≡ 〈[6, 40, 88, 139], 0〉) .
7Here we limit ourselves to highlight that for each I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3,

there exists J ⊆ {(i, j)}0≤i,j≤3 such that SR(XI) = XJ (or equivalently SR−1(XI) = XJ ).
8About the notation, the flats are denoted by 〈[a1, . . . , ad], b〉, where b represents the coset and

a1, . . . , ad the d basis vectors of the subspace. Here the vectors are denoted by their radius-2 notation, i. e.
x = x1 + 2 · x2 + · · ·+ 2n−1 · xn ∈ Z corresponds with the vector x = (x1, . . . , xn).
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This can be used to set up a weak-subspace trail for 1-round AES, e.g.

V ⊕ x ≡

〈[2, 24, 97, 160]〉 x0,1 x0,2 x0,3
x1,0 〈[2, 24, 97, 160]〉 x1,2 x1,3
x2,0 x2,1 〈[2, 24, 97, 160]〉 x2,3
x3,0 x3,1 x3,2 〈[2, 24, 97, 160]〉


MC ◦ SR ◦S(Kw⊕·)−−−−−−−−−−−−→W ⊕ y ≡

〈[6, 40, 88, 139]〉 y0,1 y0,2 y0,3
〈[6, 40, 88, 139]〉 y1,1 y1,2 y1,3
〈[6, 40, 88, 139]〉 y2,1 y2,2 y2,3
〈[6, 40, 88, 139]〉 y3,1 y3,2 y3,3


for random value of x ∈ D⊥0 ≡ D1,2,3 (where y ∈ C1,2,3). In this case, the class of weak
keys Kw corresponds to the subspace V ⊕ D1,2,3 (where V ⊂ D0), where each byte of the
key in the first diagonal belongs to the subspace 〈[2, 24, 97, 160]〉, while the bytes in the
other diagonals can take any possible values. Similarly, it is possible to set up different
and longer weak-key subspace trails.

Finally, analogous results can be obtained for the real AES, since the AES S-Box is
affine equivalent to I(x), that is

AES-S-Box(x) = α · S(x)⊕ β

where α is a 8×8 binary (invertible) matrix and β is a constant (β = 0x63). In other words,
the previous weak-key subspace trail holds if the subspace W is replaced by α ·W ⊕ β.

4 Weak-key invariant subspace trail and key schedule
Let the subspace IS be defined as

IS :=



a b a b
c d c d
e f e f
g h g h


∣∣∣∣∣∣∣∣ ∀a, b, c, d, . . . , h ∈ F28

 (2)

This subspace is invariant under a key-less round R(·) = MC ◦ SR ◦ SB(·), since

SB(IS) = IS SR(IS) = IS MC(IS) = IS.

This subspace9 – already presented and used in e. g. [Cha+17; Guo+13; Le+04] – can
easily be found by extending the result of Algorithm 1. It will be our starting point in
order to set up a weak invariant subspace trail for all versions of AES.

AES Key-Schedule As we are going to show, the possibility to set up a weak invariant
subspace trail depends on the concrete value of the secret key and of the key schedule details.
The problem to design a strong key schedule has been largely studied and discussed in the
literature. Usually, the target that a key schedule must satisfy is resistance against related-
key attacks, while the problem of weak-keys is in general less considered – and sometimes
strange effects can occur, see [Kra+17]. However, presence of weak-keys can have a
devastating effect on the security of a cipher. As a concrete examples, we cite the invariant
attack on Midori64 [Guo+16], or on AES instantiated with the key schedule [Kho+17]
recently proposed at FSE 2018 (as we are going to show in Sect. 4.2).

In the following we consider several AES key schedules present in the literature, and
for each one of them we discuss the possibility to set up a weak invariant subspace trail.
In more details, we consider three categories of key schedule:

9We mention that such subspace also confirms and provides an example of a recent result from Liu and
Rijmen [LR17], who proved that if an invariant subspace of a key-less AES round exists, it has dimension
at most 8 (see [LR17, Theorem 3] for details).
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• the simplest key schedule is given by identical subkeys or by subkeys defined as the
XOR of the whitening key and round constants – this category has been largely
studied in [Bei+17], recently published at Crypto 2017;

• another category of key schedule is given by (linear) permutation of the byte positions:
each subkey is the result of a particular permutation applied to the whitening key –
e. g. the key schedule recently proposed at FSE 2018 [Kho+17];

• finally, we consider AES-like key schedules – besides the original AES key schedule,
we consider the variant proposed at SAC 2010 by Nikolić [Nik11].

For each case, we present a set of weak-keys for which the invariant subspace trail
can be set up10. To do this, our strategy is to look for keys that satisfy the following
two properties: (1st) belong to the invariant subspace IS and (2nd) for which the “next
round sub-key” generated by the key schedule belongs to the invariant subspace IS. In
other words, in order to find weak-keys, we initially focus on a set of 264 keys – denoted
by Kweak – “equal” to the subspace IS just defined, and among them we identify the keys
that satisfy the second requirement just given.

Using these results as starting point, in the next section we present weak-key secret-key
distinguishers for round-reduced AES, that is we show how to extend the secret key
distinguishers on AES on more rounds in the case in which the whitening key is a weak-key.

4.1 Identical round keys and weak round constants
The simplest possible key schedule11 (mainly used for lightweight ciphers) is probably
obtained as follows: the r-th round subkey k[r] is simply given by the XOR of the whitening
key K and a round constant RC[r], that is k[r] = K ⊕RC[r].

Consider the subspace IS previously defined. If for each round r the subkey K⊕RC[r]
belongs to this subspace, then it is possible to set up a weak invariant subspace trail for a
set of weak-keys for an arbitrary number of rounds. In particular, if k[r] ∈ IS then

IS MC ◦ SR ◦ SB(·)−−−−−−−−−−→ IS ·⊕k[r]−−−−→ IS (3)

This property, and similar symmetries in the AES round transformation, are folklore.
Only to provide a concrete example in the literature, we mention the invariant attack on
Midori64 [Guo+16], where authors set up an invariant subspace attack on the full cipher
due to a bad choice of the round constants.

For completeness, we mention that with a proper choice of round constants, such
properties can be easily avoided, as showed in details in Beierle et al. [Bei+17]. Even
though we do not know of a method to generically rule out weak subspace trails, we do
not know of such properties for such a key schedule with random round constants either.

4.2 Key schedule based on permutation of the byte positions
Another possible category of key schedule exploits permutation of the byte positions: each
subkey is the result of a particular permutation applied to the whitening key. A concrete
example of key schedule based on permutation has been proposed at FSE 2018 [Kho+17].
This “new fully linear key schedule that can be used to replace the one in AES-128” (see
[Kho+17, Sect. 6]) is basically a permutation on the key state byte positions, where the

10In the following, we consider only invariant subspace trails of length at least two.
11Our choice to include this very simple key schedule is mainly due to pedagogical reasons, which can

help to make the application to real AES easier to understand.
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key state update function is defined as follows
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

→


11 15 3 7
12 0 4 8
1 5 9 13
2 6 10 14


Regarding security, even though no S-Box nor round constant is used in this key schedule,
authors prove there are more active S-Boxes in the related-key model than for AES-
128. However, consider the previous subspace IS defined in Eq. (2) and assume that
the whitening key belongs to such subspace. It follows that any subkey generated by
the previous permutation belongs this subspace (due to particular symmetries of the
permutation), which implies the possibility to set up an “infinitely-long” weak invariant
subspace Eq. (3) for a set of weak-keys. Similar results can be obtained also for one of the
key-schedules recently proposed at SAC 2018 [Der+18, Sect. 4.2] – see Appendix B.2 for
more details.

We mention that a simple way to avoid such invariant subpsace attack is to add random
round-constants. For completeness, authors of [Kho+17] also propose to “tweak this
design (without increasing the tracking effort) by adding an S-Box layer every round to
the entire first row of the key state”. Due to the analysis just proposed, this operation
does not improve the security against the presented invariant subspace attack. However,
this problem can be easily fixed by applying an S-Box layer every round to the entire (e.g.)
first column.

4.3 AES key schedule
Next, we present the AES original key schedule. Since in the following we present chosen-key
distinguishers that depend on the AES key schedule, we present this case in detail.

4.3.1 Invariant subspace – weak-keys of AES-128

Under one of the 232 weak-keys in Kweak

Kweak :=



A A A A
B B B B
C C C C
D D D D


∣∣∣∣∣∣∣∣ ∀A,B,C,D ∈ F28

 (4)

the subspace IS is mapped into a coset of IS after two complete AES rounds. In more
details, given k ∈ Kweak, let k̂ be the corresponding subkey after 2 rounds of the key
schedule (where k̂ /∈ Kweak in general). It follows that

IS R2◦ARK(·)−−−−−−−→ IS ⊕ k̂

where R(·) ≡ ARK ◦MC ◦SR ◦ SB(·), that is IS forms a weak invariant subspace of length
2. In order to prove this result, it is sufficient to note that

1. Kweak ⊆ IS, which implies that IS ⊕ k = IS for all k ∈ Kweak;

2. the first round key derived from the key-schedule of Kweak – denoted by K ′w – is a
subset of IS

K ′w ≡


SB(B)⊕A⊕R[1] SB(B)⊕R[1] SB(B)⊕A⊕R[1] SB(B)⊕R[1]

SB(C)⊕B SB(C) SB(C)⊕B SB(C)
SB(D)⊕ C SB(D) SB(D)⊕ C SB(D)
SB(A)⊕D SB(A) SB(A)⊕D SB(A)


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4.3.2 Invariant subspace – weak-keys of AES-256

For the case AES-256, a set of 2128 weak-keys is given by

Kweak :=



A0 A1 A0 A1 E0 E1 E0 E1

B0 B1 B0 B1 F 0 F 1 F 0 F 1

C0 C1 C0 C1 G0 G1 G0 G1

D0 D1 D0 D1 H0 H1 H0 H1


∣∣∣∣∣∣∣∣
∀Ai, . . . ,Hi ∈ F28

∀i = 0, 1


Under any of such keys, the subspace IS is mapped after two complete rounds into a coset
of IS, that is IS R2◦ARK(·)−−−−−−−→ IS ⊕ k̂, where k̂ is the corresponding subkey after 2 rounds
of the key schedule.

For the follow-up, we also present three subspaces of Kweak for which it is possible to
construct a longer invariant subspace trail:

3-round: working with any of the 296 keys that satisfy A0 = A1, . . . D0 = D1, the
subspace IS is mapped after three complete rounds into a coset of IS, that is
IS R3◦ARK(·)−−−−−−−→ IS ⊕ k̂′ where k̂′ is the subkey after 3 rounds.

4-round: working with any of the 264 keys that satisfy A0 = A1, . . . , H0 = H1, the
subspace IS is mapped after four complete rounds into a coset of IS, that is
IS R4◦ARK(·)−−−−−−−→ IS ⊕ k̂′′ where k̂′′ is the subkey after 4 rounds.

5-round: working with any of the 232 keys that satisfy A0 = A1 = B0 = . . . = D0 = D1 = 0
and E0 = E1, . . . H0 = H1, the subspace IS is mapped after five complete rounds
into a coset of IS, that is IS R5◦ARK(·)−−−−−−−→ IS ⊕ k̂′′′ where k̂′′′ is the subkey after 5
rounds.

The complete expressions of the subkeys involved for the previous results are given for
completeness in Appendix B.

4.3.3 Invariant subspace – weak-keys of AES-192

For the case AES-192, a set12 of 264 weak-keys is given by

Kweak ≡




A E ⊕ SB−1(D ⊕H) A E ⊕ SB−1(D ⊕H) E SB−1(D ⊕H)
B F ⊕ ŜB

−1
(A⊕ E) B F ⊕ ŜB

−1
(A⊕ E) F ŜB

−1
(A⊕ E)

C G⊕ SB−1(B ⊕ F ) C G⊕ SB−1(B ⊕ F ) G SB−1(B ⊕ F )
D H ⊕ SB−1(C ⊕G) D H ⊕ SB−1(C ⊕G) H SB−1(C ⊕G)


∣∣ ∀A, . . . ,H ∈ F28


where ŜB

−1
(·) = SB−1(· ⊕ R[1]). Under any of such keys, the subspace IS is mapped

after two complete rounds into a coset of IS, that is IS R2◦ARK(·)−−−−−−−→ IS ⊕ k̂, where k̂ the
corresponding subkey after 2 rounds of the key schedule.

4.4 AES-like key schedule
Finally, a possible variant of the AES key schedule has been proposed at SAC 2010 by
Nikolić [Nik11]. This variant is obtained by introducing a small change in the current AES
key schedule, which allows to improve the security against related-key attacks. In short,
for obtaining each column of the new subkey, the new key schedule always uses rotation by

12We highlight that this subset is not a subspace, as for AES-128 and AES-256.
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Table 2: Secret-key properties for round-reduced AES. In the following, we list the properties
for round-reduced AES which are independent of the secret key and the corresponding
number of rounds, comparing the case of weak-keys. “Number of keys” denotes the number
of keys (with respect to the total space) for which a particular property holds up to r
Rounds.

Property Version of AES Rounds Number of keys Reference

AES-128/192/256 3 2128 / 2192 / 2256 folklore
AES-128/192/256 5 232 / 264 / 2128 § 5.1Trunc. Diff.

AES-256 6/7/8 296 / 264 / 232 § 5.1
AES-128/192/256 5 2128 / 2192 / 2256 [Gra+17]
AES-128/192/256 6 232 / 264 / 2128 § 5.2Multiple-of-n

AES-256 7/8/9 296 / 264 / 232 § 5.2

one byte up of the previous subkey column, while AES uses a rotation only when obtaining
the subkey column with an index multiple of Nk (Nk = 4, 6, 8 for AES-128,-192,-256).

As we show in detail in Appendix B.3, even if this change improves the security against
related-key attack, it is possible to get the same results just presented for the original AES
key schedule also in this case.

5 Weak-key secret-key distinguishers for AES
As a first application of the invariant subspaces just found, we are going to show that
under the assumption of weak-keys it is possible to extend the secret-key distinguishers
present in the literature to more rounds. In the following, we present in detail only the
results for AES-128 for the encryption/forward direction (analogous results hold also in
the decryption/backward direction). Similar results can be obtained also for AES-192 and
AES-256, using the corresponding weak-keys and weak invariant subspace trails previously
defined. The results – which have been practically tested using a C/C++ implementation
– are summarized in Table 2.

Important Remark. We emphasize that from now on we assume that the secret key is a
weak-key (that is, a key in the set Kweak as described previously), and that all the following
results are independent of the details of the S-Box and of the MixColumns operation.

5.1 Subspace trail distinguishers
In the case of AES, it is possible to set up subspace trail distinguishers for 3 and 4-round
AES. Both are independent of the secret-key, of the details of the S-Box and of the
MixColumns matrix (assuming branch number equal to five). In particular, the first one
exploits the fact that

Pr
[
R3(x)⊕R3(y) ∈MJ

∣∣ x⊕ y ∈ DI] = (28)−4|I|+|I|·|J|

as showed in details in [Gra+16], while for a random permutation Π the previous probability
is equal to

Pr [Π(x)⊕Π(y) ∈MJ | x⊕ y ∈ DI ] = (28)−16+4|J|. (5)

For the impossible differential case, the idea is to exploit the fact thatMI ∩ DJ = {0} for
|I|+ |J | ≤ 4. Thus, it follows that (see [BK01; Gra+16] for details)

Pr
[
R4(x)⊕R4(y) ∈MJ

∣∣ x⊕ y ∈ DI] = 0 if |I|+ |J | ≤ 4
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while for a random permutation Π the probability is given by Eq. (5).
In the following, we show that it is possible to extend the previous subspace trail

distinguisher for up to 5 rounds in the case of weak-keys. For simplicity, we focus on the
case of AES-128. As we have just seen, the subspace IS is mapped into a coset IS ⊕ a
after two rounds if the secret key is a weak-key. In other words, given two plaintexts
x, y ∈ IS, then R2(x)⊕R2(y) ∈ IS under a weak-key. By definition of IS and DI , note
that13

Pr [z ∈ DI | z ∈ IS] =
{

2−32 I ≡ {0, 2}, {1, 3}
0 otherwise

(6)

where we assume that z /∈ DL for all L ⊆ {0, 1, 2, 3} s.t. |L| < |I| < 4. This is the starting
point for our results, together with the fact that Pr [z ∈ D0,2] = Pr [z ∈ D1,3] = 2−64 for a
generic text z.

5.1.1 Weak-key subspace trail over 4-round AES-128

Since R2(DI⊕a) =MI⊕b (that is Pr
[
R2(x)⊕R2(y) ∈MI

∣∣ x⊕ y ∈ DI] = 1), it follows
that for an AES permutation and for a weak-key

Pr
[
R4(x)⊕R4(y) ∈MI

∣∣ x, y ∈ IS, k ∈ Kweak
]

= 2−32 if I ≡ {0, 2}, {1, 3},

while for a random permutation Π the probability is equal to 2−64 (see Eq. (5)).
This fact can also be re-written using the subspace trail notation.

Proposition 1. Consider 264 plaintexts in the subspace IS, and the corresponding ci-
phertexts after 4-rounds AES-128 encrypted under a weak-key k ∈ Kweak.

With probability 1, the ciphertexts are distributed as follows:

• there exist 232 (in 264) different cosets ofM0,2 s.t. each one of them contains exactly
232 ciphertexts;

• there exist 232 (in 264) different cosets ofM1,3 s.t. each one of them contains exactly
232 ciphertexts.

For a random permutation, each one of the two previous properties is satisfied with
probability (

264

232

)
·

232−1∏
i=0

[(
2−64)232−1·

(
1− i · 2−64)]≈ 2−270

.

Proof. As already showed, a subspace IS is mapped into a coset of IS after 2 rounds
AES-128 under a weak-key. By definition of IS ⊕ a, the first and the third diagonals (resp.
the second and the fourth) are equal. This means that:

• there are 232 texts that are equal in the first and the third diagonals, and that differ
in the second and in the fourth ones. By definition, these 232 texts belong to the
same coset of D1,3. It follows that after 2-round encryption, the 264 texts are divided
into 232 different cosets of D1,3;

• equivalently, there are 232 texts that are equal in the second and in the fourth
diagonals, and that differ first and the third ones. By definition, these 232 texts
belong to the same coset of D0,2. It follows that after 2-round encryption, the 264

texts are divided into 232 different cosets of D0,2.
13Observe that the first and the third diagonals of each text in IS are equal, as well as the second and

the fourth ones.
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The result follows immediately from the fact that each coset of DI is mapped into a coset
ofMI after 2-round AES encryption – see Theorem 1.

In the case of a random permutation, note that

• there are
(264

232

)
different ways to divide 264 texts in sets of 232 elements;

• for each set, 232 texts are equal on two diagonals with prob.
(
2−64)232−1;

• the probability that these two diagonals are different for each set is equal to∏232−1
i=0

264−i
264 =

∏232−1
i=0

(
1− i · 2−64).

As a result, the probability for the case of a random permutation is given by

(
264

232

)
·

232−1∏
i=0

[(
2−64)232−1·

≤1︷ ︸︸ ︷(
1− i · 2−64)]≤ (264

232

)
·
(
2−64)264−233+1≈

≈ 1√
2π · (232 − 1)

·
(
264)264(

232
)232
·
(
264 − 232

)264−232 ·
(
2−64)264−233+1≈

≈
(
232)232

·(1− 2−32)264−232
·
(
2−64)264−233+1≈ 2−270

using Stirling’s approximation x! ≈ xx · e−x ·
√

2π · x.

5.1.2 Weak-key subspace trails over 5-round AES-128

Exploiting the fact that Pr[x ∈ CJ | x ∈ MI ] = (28)−4|I|+|I|·|J| (see e. g. [Gra+16] for
details) together with Eq. (6), it is possible to set up a 5-round weak-key subspace trail
distinguisher on AES.

Proposition 2. Let I ⊆ {0, 1, 2, 3} fixed. Then, the following probability holds:

Pr
[
R5(x)⊕R5(y) ∈MI

∣∣ x, y ∈ IS, k ∈ Kweak
]

= 2−95+16·|I| + 2−128+32·|I|. (7)

Since for a random permutation Π the probability is equal to (2−32)4−|I|, it is possible
to distinguish the two cases.

Proof. To compute the previous probability, we first recall the law of total probability.
Given a finite (or countably infinite) partition B1, . . . , Bn of a sample space events in a
probability space (Ω,F ,P) s. t. first Bi ∩ Bj = ∅ for each i 6= j and second

⋃
iBi is the

entire sample space, then

Pr [A] =
n∑
i=1

Pr [A|Bi] · Pr [Bi]

It follows that for a fixed I:

Pr
[
R5(x)⊕R5(y) ∈MI

∣∣ x, y ∈ IS, k ∈ Kweak
]

=

=
{

Pr
[
R5(x)⊕R5(y) ∈MI

∣∣ R4(x)⊕R4(y) ∈M′
]
× Pr

[
R4(x)⊕R4(y) ∈M′

]}
+

+
{

Pr
[
R4(x)⊕R4(y) /∈M′

]
× Pr

[
R5(x)⊕R5(y) ∈MI

∣∣ R4(x)⊕R4(y) /∈M′
]}

=

= 2−64+16·|I| · 2−31 + 2−32·(4−|I|) · (1− 2−31) ' 2−95+16·|I| + 2−128+32·|I|

whereM′ =M0,2 ∪M1,3.
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To have concrete numbers:

• if |I| = 3 (I fixed), then

Pr
[
R5(x)⊕R5(y) ∈MI

∣∣ x, y ∈ IS, k ∈ Kweak
]
' 2−32 + 2−47,

while for a random permutation Pr [Π(x)⊕Π(y) ∈MI | x, y ∈ IS] = 2−32;

• if |I| = 2 (I fixed), then

Pr
[
R5(x)⊕R5(y) ∈MI

∣∣ x, y ∈ IS, k ∈ Kweak
]

= 3 · 2−64,

while for a random permutation Pr [Π(x)⊕Π(y) ∈MI | x, y ∈ IS] = 2−64;

• if |I| = 1 (I fixed), then

Pr
[
R5(x)⊕R5(y) ∈MI

∣∣ x, y ∈ IS, k ∈ Kweak
]

= 2−79.

while for a random permutation Pr [Π(x)⊕Π(y) ∈MI | x, y ∈ IS] = 2−96.

To better highlight this difference, focus on the last case. Note that given a subspace IS
it is possible to construct

(264

2
)

= 263 · (264 − 1) ' 2127 different pairs of texts. In the case
e. g. |I| = 1, approximately 2127 · 2−79 = 248 different pairs of ciphertexts belong to the
same coset ofMI for |I| = 1 fixed versus 2127 · 2−96 = 231 of a random permutation.

5.2 Weak-key “Multiple-of-n” property
At Eurocrypt 2017, Grassi et al. [Gra+17] presented the first property on 5-round AES
(and AES-like ciphers) which is independent of the secret key and of the details of the
S-Box and of the MixColumns (assuming branch number equal to 5). The result can be
summarized as follows. Given 232·|I| plaintexts in the same coset of a diagonal space DI ,
the number of different pairs of ciphertexts that belong to the same coset of MJ after
5-round AES is always a multiple of 8. This result can be used to set up a distinguisher,
since for a random permutation the same property holds with probability 1/8.

In the case of a weak-key, we are able to extend the previous result up to 6-round
AES-128. The obtained results are proposed in the following theorems.

Theorem 4. Let IS andMI be the subspaces defined as before for a fixed I with 1 ≤ |I| ≤ 3.
Assume that the whitening key is a weak-key, that is it belongs to the set Kweak as defined in
Eq. (4). Given 264 plaintexts in IS, the number n of different pairs14 of ciphertexts (ci, cj)
for i 6= j that belong to the same coset of MI (that is ci ⊕ cj ∈ MI) has the following
property independently of the details of the S-Box:

• for 5-round AES-128, the number of collisions n is a multiple of 128, that is ∃n′ ∈ N
such that n = 128 · n′;

• for 6-round AES-128, the number of collisions n is a multiple of 2, that is ∃n′ ∈ N
such that n = 2 · n′.

We emphasize that similar properties hold also in the decryption direction. In the
following, we prove the theorem just given. In order to do this, we exploit a strategy
similar to the one already proposed in [Gra+17] and recently re-visited in [Bou+19], where
authors re-formulate the “multiple-of-8” property as an immediate consequence of an
equivalence relation on the input pairs, under which the difference at the output of the
round function is invariant. For this reason, we limit ourselves to highlight the main points
of the proof, and we refer to [Bou+19; Gra+17] for more details.

14Two pairs (s, t) and (t, s) are considered to be equivalent.
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Proof. First of all, note that the invariant subspace IS is mapped into a coset of IS after
2-round encryption, and similarly a coset ofMI is mapped into a coset of DI after 2-round
decryption, that is

∀k ∈ Kweak : IS R2(·)−−−−→
prob. 1

IS ⊕ a R(·) or R2(·)−−−−−−−−→ DI ⊕ a′
R2(·)−−−−→
prob. 1

MI ⊕ b′

Thus, the idea is to focus only on the middle round(s), and to prove the following equivalent
result. Given 264 plaintexts in a coset of IS, the number n of different pairs of ciphertexts
(ci, cj) for i 6= j that belong to the same coset of DI (that is ci ⊕ cj ∈ DI) after 1 or 2
round(s) has the following property:

• for 1-round AES, the number of collisions n is a multiple of 128;

• for 2-round AES, the number of collisions n is a multiple of 2.

5-round AES Given a pair of texts t1, t2 ∈ IS ⊕ a, we are going to prove that there exist
other pair(s) of texts s1, s2 ∈ IS ⊕ a such that

R(t1)⊕R(t2) ∈ DI ⇔ R(s1)⊕R(s2) ∈ DI .

where the texts s1, s2 are given by any different combination of the generating variables of
t1, t2.

By definition of IS, let t1 and t2 be as

ti = a⊕


xi0 xi4 xi0 xi4
xi1 xi5 xi1 xi5
xi2 xi6 xi2 xi6
xi3 xi7 xi3 xi7

 , that is ti = a⊕
7⊕
j=0

xij · (ej ⊕ ej+8). (8)

where xl,j or xl+4×j denotes the byte in the l-th row and in the j-th column. For simplicity,
let ti ≡ (xi0, xi1, xi2, xi3, xi4, xi5, xi6, xi7).

Consider initially the case in which all the generating variables are different, that is
x1
j 6= x2

j for j = 0, 1, . . . , 7. Let S be the set of pairs of texts s1, s2 ∈ IS ⊕ a defined by
swapping some generating variables of t1 and t2. In particular, given t1 and t2, the set
St1,t2 contains all 128 pairs of texts (s1, s2) for all I ⊆ {0, 1, 2, 3, 4, 5, 6, 7} where

s1 = a⊕
7⊕
j=0

{[(
x1
j · δj(I)

)
⊕
(
x2
j ·
[
1− δj(I)

])]
·
(
ej ⊕ ej+8

)}

s2 = a⊕
7⊕
j=0

{[(
x2
j · δj(I)

)
⊕
(
x1
j ·
[
1− δj(I)

])]
·
(
ej ⊕ ej+8

)}
where the pairs (s1, s2) and (s2, s1) are considered to be equivalent, and where δx(A) is
the Dirac measure defined as

δx(A) =
{

1 if x ∈ A
0 if x /∈ A

As we are going to show, since

∀(s1, s2) ∈ St1,t2 : R(t1)⊕R(t2) = R(s1)⊕R(s2),

it follows that

∀(s1, s2) ∈ St1,t2 : R(t1)⊕R(t2) ∈ DI ⇔ R(s1)⊕R(s2) ∈ DI .
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This is due to the facts that the S-Box operation works independently on each byte and
that the XOR-sum is commutative. To show this, we propose the detailed computation for
the byte in position (0, 0) – analogous for the other cases – of the previous difference

(R(t1)⊕R(t2))0,0 = 0x02 · [SB(x1
0 ⊕ a′0,0)⊕ SB(x2

0 ⊕ a′0,0)]⊕
⊕ 0x03 · [SB(x1

5 ⊕ a′1,1)⊕ SB(x2
5 ⊕ a′1,1)]⊕ [SB(x1

2 ⊕ a′2,2)⊕
⊕ SB(x2

2 ⊕ a′2,2)]⊕ [SB(x1
7 ⊕ a′3,3)⊕ SB(x2

7 ⊕ a′3,3)] = (R(s1)⊕R(s2))0,0

where a′i,i for i = 0, 1, 2, 3 depends on the initial constant a that defines the coset of IS and
on the secret key. Since each set St1,t2 has cardinality 128, in the case in which one focuses
on the pairs of texts with different generating variables, it follows that the multiple-of-128
property previously defined holds.

What happens if some variables are equal, e. g. x1
j = x2

j for j ∈ J ⊆ {0, . . . , 7} with
|J | ≥ 1? In this case, the difference R(t1)⊕R(t2) is independent of the value of x1

j = x2
j

for each j ∈ J (e. g. consider the difference (R(t1)⊕R(t2))0,0 in the byte (0,0) just given).
As a result, the idea is to consider all the different pairs of texts given by swapping one
or more variables x1

l and x2
l for l = 0, 1, . . . , 7, where xj for j ∈ J can take any possible

value in F28 . Note that in the case in which 0 ≤ |J | < 8 variables are equal, it is possible
to identify

27−|J|︸ ︷︷ ︸
by swapping different gen. variables

× 28·|J|︸ ︷︷ ︸
due to equal gen. variables

= 27·(1+|J|) = 1281+|J|

different texts s1 and s2 in IS ⊕a that satisfy the condition R(t1)⊕R(t2) = R(s1)⊕R(s2).
More formally, given t1 and t2, the set St1,t2 contains all 27·(1+|J|) pairs of texts (s1, s2)
for all I ⊆ {0, 1, 2, 3, 4, 5, 6, 7} \ J and for all α0, . . . , α|J| ∈ F28 where

s1 = a⊕
⊕

j∈{0,...,7}\J

{[(
x1

j · δj(I)
)
⊕
(
x2

j ·
[
1− δj(I)

])]
·
(
ej ⊕ ej+8

)}
⊕
⊕
j∈J

αj ·
(
ej ⊕ ej+8

)
s1 = a⊕

⊕
j∈{0,...,7}\J

{[(
x2

j · δj(I)
)
⊕
(
x1

j ·
[
1− δj(I)

])]
·
(
ej ⊕ ej+8

)}
⊕
⊕
j∈J

αj ·
(
ej ⊕ ej+8

)

In conclusion, given plaintexts in the same coset of IS, the number of different pairs of
ciphertexts that belong to the same coset of DI after one round is a multiple of 128.

6-round AES: Super-S-Box In order to prove the previous claim, we use the “Super-S-
Box” notation [DR06] – introduced by the designers of AES, where

Super-S-Box(·) = SB ◦ARK ◦MC ◦SB(·).

Given a pair of texts t1, t2 ∈ IS ⊕ a, we prove that there exist other pair(s) of texts
s1, s2 ∈ IS ⊕ a such that

R2(t1)⊕R2(t2) ∈ DI ⇔ R2(s1)⊕R2(s2) ∈ DI

where the texts s1, s2 are obtained by swapping the diagonals of t1, t2. In more details,
if the diagonals are different (i. e., [x1

0, x
1
5, x

1
2, x

1
7] 6= [x2

0, x
2
5, x

2
2, x

2
7] and [x1

1, x
1
4, x

1
3, x

1
6] 6=

[x2
1, x

2
4, x

2
3, x

2
6]), given t1 and t2 defined as in (8)

SR(ti) ≡
(

[xi0, xi5, xi2, xi7]︸ ︷︷ ︸
1st and 3rd columns

, [xi1, xi4, xi3, xi6]︸ ︷︷ ︸
2nd and 4th columns

)
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where SR(·) denotes the ShiftRows operation, then s1 and s2 are defined as

SR(si) ≡
(
[x3−i

0 , x3−i
5 , x3−i

2 , x3−i
7 ]︸ ︷︷ ︸

1st and 3rd columns

, [xi1, xi4, xi3, xi6]︸ ︷︷ ︸
2nd and 4th columns

)
.

To prove the previous fact, we first recall that 2-round encryption can be rewritten
using the Super-S-Box notation

R2(·) = ARK ◦MC ◦ SR ◦Super-S-Box ◦ SR(·).

Thus, we are going to prove that

Super-S-Box(t̂1)⊕ Super-S-Box(t̂2) ∈ WI ⇔ Super-S-Box(ŝ1)⊕ Super-S-Box(ŝ2) ∈ WI

where
t̂i = SR(ti) ∈ IS ⊕ SR(a) and ŝi = SR(si) ∈ IS ⊕ SR(a)

for i = 1, 2 (note that ti, si ∈ IS ⊕ a) and where the subspace WI is defined as

WI = SR−1 MC−1(DI).

Note that the first and the third columns of t̂i and ŝi are equal, as well as the second and
the fourth columns. Similar to the 5-round case, since the first and the second columns (and
so the third and the fourth ones) of t̂1 and t̂2 depend on different and independent variables,
since the Super-S-Box works independently on each column and since the XOR-sum is
commutative, it follows that

Super-S-Box(t̂1)⊕ Super-S-Box(t̂2) = Super-S-Box(ŝ1)⊕ Super-S-Box(ŝ2)

which implies the thesis.
What happens if one diagonal is in common for the two texts, e.g. [x1

0, x
1
5, x

1
2, x

1
7] =

[x2
0, x

2
5, x

2
2, x

2
7] (analogous for [x1

1, x
1
4, x

1
3, x

1
6] = [x2

1, x
2
4, x

2
3, x

2
6])? As before, in this case the

difference R2(t1)⊕ R2(t2) is independent of the values of such diagonal. It follows that
the pair of texts s1 and s2 can be constructed as

SR(si) ≡
(
[x3−i

0 , x3−i
5 , x3−i

2 , x3−i
7 ]︸ ︷︷ ︸

1st and 3rd columns

, [α0, α5, α2, α7]︸ ︷︷ ︸
2nd and 4th columns

)
or

SR(si) ≡
(

[xi1, xi4, xi3, xi6]︸ ︷︷ ︸
1st and 3rd columns

, [α0, α5, α2, α7]︸ ︷︷ ︸
2nd and 4th columns

)
where α0, α5, α2, α7 can take any possible values in F28 . Note that in the case, it is possible
to identify 2 · 232 = 233 ≥ 2 different texts s1 and s2 in IS ⊕ a that satisfy the condition
R2(t1)⊕R2(t2) = R2(s1)⊕R2(s2).

Generic Results on 5-round AES

In a similar way, it is possible to prove the following Theorem.

Theorem 5. Let IS and XI be the subspaces defined as before, for an arbitrary I ⊂
{(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3. Assume that the whitening key is a weak-
key, i. e. it belongs to the set Kweak defined in Eq. (4). Given 264 plaintexts in IS, the
number n of different pairs of ciphertexts (ci, cj) for i 6= j that belong to the same coset of
XI (i.e. ci ⊕ cj ∈ XI) has the following property independently of the details of the S-Box:

• for 5-round AES-128, the number of collisions n is a multiple of 2, that is ∃n′ ∈ N
such that n = 2 · n′.
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To prove this result, first of all note that with probability 1

∀k ∈ Kweak : IS R2(·)−−−−→
prob. 1

IS ⊕ a R2(·)−−−→ YI ⊕ a′
R(·)−−−−→

prob. 1
XI ⊕ b′

where YI = SR−1 ◦MC−1(XI) as showed in Theorem 3 (remember that SB(XI) = XI).
Using the same technique as before (i. e. working with the Super-S-Box notation and

by swapping the generating diagonals of a pair of texts), the idea is to focus on the middle
rounds only, and to show that given 264 plaintexts in a coset of IS, the number n of
different pairs of ciphertexts (ci, cj) for i 6= j that belong to the same coset of YI (that is
ci ⊕ cj ∈ YI) after 2 rounds is always a multiple of 2.

Multiple-of-n property for AES-192/256

As we have seen in Section 4.3, it is possible to set up a weak invariant subspace of length two
for 264 weak-keys of AES-192, and a weak invariant subspace of length two/three/four/five
for 2128/296/264/232 weak-keys of AES-256. Due to the argumentations just given, it
follows that the multiple-of-128 property holds for up to 7-round AES-256, while the
multiple-of-2 property holds for up to 9-round AES-256.

5.3 Practical experiments
Most of the previous properties have been practically verified15. Here we briefly present
the practical results and we compare them with the theoretical ones.

All our distinguishers are based on IS and their practical verification requires at least
264 reduced-round AES encryptions. For this reason, we performed our experiments on
small-scale AES [Cid+05], where each word is composed of 4-bit instead of 8 (note that
all previous results are independent of the details of the S-Box operation). This implies
that the dimension of IS reduces to 32 bits from 64.

Practical Results. For Theorem 4, we performed 5-round and 6-round encryptions of IS
for more than 100 randomly chosen weak-keys in Kweak. We counted the collisions in each
of the four inverse diagonals space ID and observed the multiple-of-128 and multiple-of-2
properties hold for 5-round and 6-round encryptions, respectively. Moreover, we also
verified the multiple-of-n for up to 8-round AES-256 property for the corresponding case of
weak-keys. Similar tests have been performed in order to check the multiple-of-2 property
on the subspaces XI as defined in Definition 8 for each |I| ≤ 4. Due to increased time and
memory complexity, these properties were not verified for |I| > 4.

For the follow-up, we also performed the same experiments in decryption direction. In
particular, we performed small-scale AES decryptions of IS for more than 100 randomly
chosen keys in Kweak. We counted the collisions in each of the four diagonals and observed
that multiple-of-128 and multiple-of-2 properties for 4-round and 5-round decryptions,
respectively. We got similar results for the multiple-of-2 property on the subspaces XI .
The experiment results coincide with the results provided in Tables 2 and 3.

6 New chosen-key distinguishers for AES in the single-key
setting

In this section we present new chosen-key distinguishers for AES in the single-key setting.
In particular, as major results, we are able to present the first candidate 10-round chosen-
key distinguisher for AES-128 and a 14-round candidate chosen-key distinguisher for

15The source codes of the distinguishers/attacks will be made public with the publication of this paper.
It is also part of the submission as supplement material.



24 Weak-Key Subspace Trails and Applications to AES

Table 3: AES Chosen-Key Distinguishers. The computation cost is the cost to generate
N -tuples of plaintexts/ciphertexts. “SK” denotes a chosen-key distinguisher in the Single-
Key setting, while “RK” denotes a chosen-key distinguisher in the Related-Key setting.
Distinguishers proposed in this paper are in bold. For completeness, we mention that the
known-key distinguishers presented in Gilbert [Gil14] are excluded from this Table due to
the arguments reported in Section 6.1.2.

AES Rounds Computations Property SK RK Reference

AES-128

8 224 Multiple Diff. Trail 3 [Der+12]
9 255 Multi-Collision Diff. 3 [Fou+13]

10 (full) 264 Multiple-of-n (232 keys) 3 § 6.5.1
10 (full) 264 Multiple-of-n (1 key) 3 § 6.5.2

10 264 Multiple-of-n (232 keys) 3 App. G.2.2
10 264 Multiple-of-n (1 key) 3 App. G.2.3AES-192
11 264 Multiple-of-n (1 key) 3 App. G.2.4

AES-256

9 224 Multiple Diff. Trail 3 [Der+12]
13 264 Multiple-of-n (232 keys) 3 App. G.3.2
13 264 Multiple-of-n (1 key) 3 App. G.3.3

14 (full) 264 Multiple-of-n (1 key) 3 App. G.3.4
14 (full) 2120 Multi-Collision Diff. 3 [Bir+09]

AES-256, both in the single-key setting. All the distinguishers that we present are based
on the (practically verified) multiple-of-n property proposed in Section 5.2.

The goal of an open-key distinguisher is to differentiate between a block cipher E
which allows to generate plaintext/ciphertext pairs which exhibit a rare relation, even for a
small set of keys or a single key, and an ideal cipher Π that does not have such a property.
However, this poses a definitional problem as it was shown already in [Can+04] that any
concrete implementable cipher (like the AES) can be trivially distinguished from an ideal
cipher. To the best of our knowledge, finding a proper formal definition that captures the
intuition behind chosen-key distinguishers has been a challenging task for the last fifteen
years and is still an open problem.

We do not attempt to address this formalization challenge here, but proceed in the way
that is custom in the literature to describe chosen-key distinguisher: (1st) describe the
rare property (see Section 6.2), (2nd) show that it can be efficiently constructed for the
block cipher usually using an inside-out approach (see Section 6.3 for 9-round AES-128
and Section 6.5 for 10-round AES-128), and (3rd) argue or prove in some model that any
generic method is less efficient or has low success probability (see Section 6.4).

Our results are summarized in Table 3. As before, we give all the details for the AES-128
case, and we refer to Appendix G for the corresponding distinguishers on AES-192 and
AES-256.

6.1 Open-key distinguishers – state of the art for AES
6.1.1 Chosen-key distinguishers – State of the art for AES

To the best of our knowledge, the only chosen-key distinguisher for AES in the single-
key setting is proposed in [Der+12]. In their paper, the chosen-key model asks the
adversary to find two plaintexts/ciphertexts pairs and a key such that the two plaintexts
are equal in 3 diagonals and the two ciphertexts are equal in 3 anti-diagonals (if the final
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MixColumns is omitted). Equivalently, using the subspace trail notation, the goal is to find
(p1, c1 ≡ R8(p1)) and (p2, c2 ≡ R8(p2)) for p1 6= p2 s.t. p1 ⊕ p2 ∈ DI and c1 ⊕ c2 ∈ MJ

for a certain I, J ⊆ {0, 1, 2, 3} s.t. |I| = |J | = 1.
This problem is equivalent to the one proposed in [GP10; Jea+14] in the known-key

scenario. In particular, the main (and only) difference between the known-key and chosen-
key distinguishers is related to the freedom to choose the key, and consequently to the
computational cost. In more details, due to this freedom, for the 8-round AES-128 case
it is possible to find the required pairs of plaintexts/ciphertexts with 224 computations
instead of 244, while the computational cost in the case of an ideal cipher is of 264 in both
cases. For completeness, a similar result is proposed for 9-round AES-256.

The chosen-key model has been popularized some years before by Biryukov et al.
[Bir+09], since a distinguisher in this model has been extended to a related-key attack on
full AES-256. A related distinguisher for 9-round AES-128 has been proposed by Fouque
et al. [Fou+13]. Both the chosen-key distinguisher proposed in these papers are in the
related-key setting. Here we briefly recall them, but we emphasize that we do not consider
related-keys in this article. In [Bir+09], authors show that it is possible to construct
a q-multicollision on Davies-Meyer compression function using AES-256 in time q · 267,
whereas for an ideal cipher it would require on average q · 2

q−1
q+1 128 time complexity. A

similar approach has been exploited in [Fou+13] to set up the first chosen-key distinguisher
for 9-round AES-128. Here, the chosen-key model asks the adversary to find a pair of
keys (k, k′) satisfying k ⊕ k′ = δ with a known (fixed) difference δ, and a pair of messages
(p1, c1 ≡ R9(p1)) and (p2, c2 ≡ R9(p2)) conforming to a partially instantiated differential
characteristic in the data part.

We conclude observing that an attack/distinguisher with no key difference is (logically)
harder, since the attacker has less freedom.

6.1.2 Gilbert’s Known-Key Distinguisher for AES

For completeness, we mention that a 10-round known-key distinguisher for AES has been
proposed by Gilbert [Gil14] at Asiacrypt 2014. In order to highlight the main differences
with our work, we briefly recall it here. Here, the known-key model asks the adversary to
find a set of 264 (plaintext, ciphertext) pairs, that is (pi, ci) for i = 0, . . . , 264 − 1, and a
key k with the following properties16:

1. there exists a key k0 s. t. the bytes of {Rk0(pi)}i are uniformly distributed, or
equivalently that the texts {Rk0(pi)}i are uniformly distributed among the cosets of
DI for each I with |I| = 3;

2. there exists a key k10 s. t. the bytes of {MC−1 ◦R−1
k10(ci)}i are uniformly distributed

(MC−1 denotes the inverse MixColumns operation), or equivalently that the texts
{R−1

k10(ci)}i are uniformly distributed among the cosets of MJ for each J with
|J | = 3.

We emphasize that such properties are not verified directly by the plaintexts and by the
ciphertexts but after one round encryption/decryption, and they involve keys k0 and k10

that can be different from the “real” encryption subkeys derived from k.
We briefly recall that the probability that 264 (plaintext, ciphertext) generated by

a random permutation satisfy the previous property is 2−7 200. Thus, given 264 + 28

plaintexts/ciphertexts, the probability to find among them a subset of 264 pairs of texts that
satisfy the previous property is close to 1.

16For this distinguisher, we abuse the notation kr to denote a key of a certain round r. We emphasize
that kr is not necessarily equal to the secret key, that is kr can be different from the r-th subkey. In other
words, it is only required that such a key exists, and not that it is equal to the real secret key.
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As a result, a distinguisher based on the Gilbert’s technique is different from all the
previous distinguishers up to 8 rounds present in the literature. For all distinguishers up to
8-round (and for the distinguishers proposed in this paper), the property/relation R – that
the N-tuple of (plaintexts, ciphertexts) must satisfy – does not involve any operation of
the block cipher E. When R does not re-use operations of E, this provides some heuristic
evidence that this distinguisher can be considered meaningful. On the other hand, the
previous Gilbert’s like distinguishers do not satisfy this requirement, since in these cases
the property/relation R involves and re-uses some operations of E. The crucial point
is that instead to consider properties “directly” on the plaintexts/ciphertexts, the idea
is to show that there exist certain keys for which some properties hold after one round
encryption/decryption.

In [Gil14], argumentation are given in order to support such known-key distinguishers
and why they should not be systematically ruled out as if they were artificial (see [Gil14,
Section 3] for details). On the other hand, even if Gilbert’s known-key distinguisher leads
to statements on more rounds of AES than ever before (without related keys), in the
same paper it is also observed that its “impact on the security of [. . . ] AES when used
as a known key primitive, e. g. in a hash function construction, is questionable” ([Gil14,
Abstract]).

Moreover, in order to support such a new kind of distinguisher, it is claimed in Gilbert
[Gil14] that (1st) it seems technically difficult to use a stronger property than the uniform
distribution one to extend an 8-round known-key distinguisher to a 10-round one and
(2nd) it is impossible to use the same technique in order to extend a distinguisher for
more than 2 rounds. Recently, both claims have been disproved in Grassi and Rechberger
[GR17], in which authors exploit the same technique to propose (1st) a distinguisher on
10-round AES based on truncated differential trails and (2nd) the first distinguisher on
12-round AES obtained by extending an 8-round distinguisher.

As a result, the problem to set up a 9 (or more) rounds open-key distinguisher in
the single-key setting for AES-128 without exploiting the Gilbert’s technique (i. e. that
exploits a property which can be directly verified on the plaintexts/ciphertexts without
any key-guessing) is still open. In the following, we are able to provide the first solution
to this problem.

6.2 The “Simultaneous Multiple-of-n” property
In our distinguisher, the chosen-key model asks the adversary to find a set of 264 (plaintexts,
ciphertexts), that is (pi, ci ≡ R9(pi)) for i = 0, . . . , 264 − 1 – where all the plaintexts/ci-
phertexts are generated by the same key – and a key such that the following “simultaneous
multiple-of-n” property is satisfied:

• for each J, I ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that belong to
the same coset ofMJ and the number of different pairs of plaintexts that belong to
the same coset of DI are a multiple of 128 = 27;

• for each J, I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of differ-
ent pairs of ciphertexts that belong to the same coset of MC(XI) and the number of
different pairs of plaintexts that belong to the same coset of XJ are a multiple of 2,
where X is defined as in Definition 8.

For the follow-up, we remark and highlight that the subspaces X are independent, in
the sense that e. g. the fact that the multiple-of-2 property is satisfied by XI and/or XJ
does not imply anything on XI∪J and vice-versa. This is due to the fact that given XI
and XJ , then XI ∪ XJ $ XI∪J if XI∪J 6= F4×4

28 . As a result, any information about the
multiple-of-n property on XI ,XJ (and so XI ∪ XJ) is useless to derive information about
the multiple-of-n property on XI∪J \ (XI ∪ XJ) – assuming XI∪J 6= F4×4

28 .
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6.3 9-round chosen-key distinguisher for AES-128
To find a set of 264 plaintexts/ciphertexts with the required “simultaneous multiple-of-n”
property, the distinguisher exploits the fact that the required property can be fulfilled by
starting in the middle with a suitable set of texts. In particular, the idea is simply to choose
the key such that the subkey of the 4-th round k4 belongs the subset Kweak defined as in
Eq. (4). Thus, consider the invariant subspace IS defined as in Eq. (2), and define the
264 plaintexts as the 4-round decryption of IS and the corresponding ciphertexts as the
5-round encryption of IS. Due to the secret-key distinguishers just presented, this set
satisfies the required “simultaneous multiple-of-n” property.

In more details, due to the assumption on the key (that is, k4 ∈ Kweak ⊆ IS), note
that the subspace IS is mapped into a coset of IS after two rounds of encryption and one
round of decryption, that is

∀k4 ∈ Kweak : IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃.

Due to the results of Section 5.2 and since k4 ∈ Kweak, the multiple-of-n properties hold
with probability 1 on the plaintexts and on the ciphertexts

Multiple-of-n R−3(·)←−−−− IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃ R3(·)−−−→ Multiple-of-n

It follows that the required set can be constructed using 264 computations. Moreover,
we emphasize that our experiments on the secret-key distinguishers of Section 5.2 implies
the practical verification of this distinguisher. What remains is to give arguments as to
why producing that property simultaneously on the plaintext and ciphertext side of an
ideal cipher is unlikely to be as efficient.

6.4 Achieving the “Simultaneous Multiple-of-n” property generically
In this case, the adversary faces a family of random and independent ideal ciphers17
{Π(K, ·),K ∈ {0, 1}k}, where k = 128, 192, 256 respectively for the cases AES-128/192/256.
His goal is to find a key k and a set of 264 plaintexts/ciphertexts (pi, ci = Π(k, ci)) s.t. the
“simultaneous multiple-of-n” property is satisfied. As we are going to show, the probability
to find a set of 264 plaintexts/ciphertexts pairs (Xi, Yi) that satisfies the “simultaneous
multiple-of-n” property for a random permutation is upper bounded by 2−65 618.

As first thing, we discuss the freedom to choose the key. Since the adversary does
not know the details of the ideal cipher Π, he does not have any advantage to choose a
particular key instead of another one. For this reason, in the following we limit to consider
the case in which the permutation Π is instantiated by a key chosen at random in the set
{0, 1}k.

Our goal is to prove that the success probability of any oracle algorithm of overall time
complexity upper bounded by 264 is negligible18.

Proposition 3. Given a perfect random permutation Π or Π−1 of {0, 1}128 (e. g. instan-
tiated by an ideal cipher with a fixed key uniformly chosen at random in {0, 1}k), consider
N = 264 oracle queries made by any algorithm A to the perfect random permutation Π or
Π−1. Denote this set of 264 plaintexts/ciphertexts pairs by (Xi, Yi) for i = 0, . . . , 264 − 1,
where Yi = Π(Xi). The probability that A outputs a set of 264 plaintexts/ciphertexts pairs
(Xi, Yi) for i = 0, . . . , 264 − 1 that satisfies the “simultaneous multiple-of-n” property is
upper bounded by 2−65 618.

17An ideal cipher Π is defined as Π : (k, p) ∈ {0, 1}k×{0, 1}n → c = Π(k, p) ∈ {0, 1}n such that for each
fixed k ∈ {0, 1}k, Π(k, ·) is a permutation, that is ∃Π−1(k, ·) : {0, 1}n → {0, 1}n s. t. Π−1(k, Π(k, ·)) = I(·)
where I(·) is the identity function.

18We highlight that the proof of Proposition 3 is based on a strategy (very) similar to the one proposed
in Gilbert [Gil14] to prove that the uniform distribution (on 8- and 10-round AES) is generically hard.
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Proof. For completeness, consider first the case of a dishonest algorithm A. Given N − 1
pairs (Xi, Yi) generated by the perfect random permutation Π or Π−1, assume the player
chooses XN and YN in order to satisfy the “simultaneous multiple-of-n” property. If at
least one of the N pairs (Xi, Yi) output by A does not result from a query Xi to Π or a
query Yi to Π−1, then the probability that for this pair Yi = Π(Xi) and consequently the
success probability of A is upper bounded19 by 1

2128−(N−1) .
From now one, we consider only the case of honest algorithm A, that is we assume

all the pairs (Xi, Yi) result from queries to Π or Π−1. Consider a (random) set of 264 − 1
plaintexts/ciphertexts pairs {(Xi, Yi)}i=0,...,264−2 such that there exists (at least) one
plaintext/ciphertext pair (X̂, Ŷ ) for which the required multiple-of-n property is satisfied.
By assumption, the player can always find X̂ ′ (resp. Ŷ ′) such that the “simultaneous
multiple-of-n” property is satisfied for the plaintexts (resp. for the ciphertexts). However,
the oracle’s answer Ŷ ′ (resp. X̂ ′) is uniformly drawn from {0, 1}128 \ {Y1, Y2, . . . , Y264−1}
(resp. from {0, 1}128 \ {X1, X2, . . . , X264−1}). Therefore, the probability that the answer to
the N -th query allows the output of A to satisfy property R (i. e. multiple-of-n) is upper
bounded by (2−1)216−16 · (2−7)14 = 2−65 618 ' 2−216 since

• there are
∑15
i=1
(16
i

)
= 216 − 2 different subspaces XI for which the multiple-of-2

property holds, and among them there are 14 subspacesMI for which the multiple-
of-128 property holds;

• the probability that the number of collisions is a multiple of N is (approximately)
1/N .

In order to prove this second point, we first show that the probabilistic distribution of
the number of collisions is a binomial distribution20.

Given a set of n pairs texts, consider the event that m pairs belong to the same coset
of a subspace X . As first thing, we show that the probabilistic distribution of number
of collisions is simply described by a binomial distribution. By definition, a binomial
distribution with parameters n and p is the discrete probability distribution of the number
of successes in a sequence of n independent yes/no experiments, each of which yields
success with probability p. In our case, given n pairs of texts, each of them satisfies or
not the above property/requirement with a certain probability. Thus, this model can be
described using a binomial distribution, for which the mean µ and the variance σ2 are
respectively given by µ = n · p and σ2 = n · p · (1− p).

In our case, the number of pairs is given by
(264

2
)
' 2127, the probability that a pair of

texts belong to the same coset of XI is equal to 2−8·(16−|I|), while it is equal to 2−32·(4−|J|)

for the subspaces DJ andMJ . A detailed analysis of these probabilities21 is provided in
Appendix D.

Probability that “the number of collision is even” is (approximately) 1/2 – Case:

19Note that there are 2128 different pairs (X, Y ). If N − 1 are already given, the probability that
Yi = Π(Xi) holds is (2128 − (N − 1))−1.

20We highlight that the fact that “the probability that the number of collisions is a multiple of N is
1/N” is obvious if the probabilistic distribution of the number of collisions is a uniform one, which is not
the case.

21Given n texts generated by a random permutation Π(·), one can construct
(

n
2

)
different pairs which

are not independent. For example, consider a pair of texts (t1, t2). Given another text t3, if t1 ⊕ t3 ∈ X
and t2⊕ t3 ∈ X , then (t1, t2) belong to the same coset of X with prob. 1 (by definition of subspace). Thus,
one may think that the probability that (t1, t2) are in the same coset of X is different than 2−8·(16−|I|).
In Appendix D, we prove that even if the pairs are not independent, the probability that each pair (t1, t2)
satisfies the property to belong to the same coset of X is exactly 2−8·(16−|I|). Similar arguments hold for
the subspaces D andM.
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subspaces XI . The probability that the number of collisions is even is given by

1
2 + 1

2 · (1− 2p)n

where note that n is an even number. In our case, since n ' 2127 and 2−120 ≤ p ≤ 2−8

(where the prob. 2−120 and 2−8 correspond resp. to the cases |I| = 15 and |I| = 1), the
previous probability is well approximated by 1/2 + 1/2 · (1− 2−7)2127 ≈ 1/2.

In order to prove the previous result, let X be a binomial distribution X ∼ B(n, p).
Combining the facts that

Pr [X even] + Pr [X odd] =
n∑
k=0

(
n

k

)
· pk · (1− p)n−k = [(1− p) + p]n = 1

Pr [X even]− Pr [X odd] =
n∑
k=0

(
n

k

)
· (−p)k · (1− p)n−k = [(1− p)− p]n

where

Pr [X even] =
n/2∑
k=0

(
n

2k

)
· p2k · (1− p)n−2k

Pr [X odd] =
n/2−1∑
k=0

(
n

2k + 1

)
· p2k+1 · (1− p)n−2k−1,

it follows that Pr [X even] = 1
2 + 1

2 · (1− 2p)n.
Probability that “the number of collision is a multiple of N” is (approximately) 1/N

– Case: subspaces MJ and DJ . In order to prove this result, we first approximate the
binomial distribution with a normal one. De Moivre-Laplace Theorem claims that the
normal distribution is a good approximation of the binomial one if the skewness of the
binomial distribution – given by (1− 2p)/

√
n · p · (1− p) – is close to zero. In our case,

since n ' 2127 and 2−96 ≤ p ≤ 2−32 (where the prob. 2−96 and 2−32 correspond resp.
to the cases |J | = 3 and |J | = 1), it follows that 2−47.5 ≤ skew ≤ 2−15.5, which means
that the normal approximation is sufficiently good. Thus, we approximate the binomial
distribution with a normal one N (µ = n · p, σ2 = n · p · (1 − p)), where the probability
density function is given by ϕ(x) = 1√

2π·σ2 e
− (x−µ)2

2σ2 .
In this case, what is the probability that the multiple-of-N collisions is satisfied? To

answer this question, it is sufficient to sum all the probabilities where the number of
collisions is a multiple-of-N (for N ∈ N and N 6= 0), that is∑

x∈Z

1√
2π · σ2

e−
(N·x−µ)2

2σ2 = 1
N
·
∑
x∈Z

1√
2π · σ̃2

e−
(x−µ̃)2

2σ̃2

︸ ︷︷ ︸
=1 by definition

= 1
N

where µ̃ = µ/N and σ̃2 = σ2/N2. Obviously, if N = 1, then this probability is equal to 1.

What happens if the adversary performs more than 264 computations? To answer this
question, we first compute the probability that a random set of 264 plaintexts/ciphertexts
generated by the same key satisfies the “simultaneous multiple-of-n” property. As we
have just seen, the “simultaneous multiple-of-n” property is satisfied with probability
(2−65 618)2 = 2−131 236 ' 2−217.002 (see Appendix D for details). As a result, given 264 + 212
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random texts, the player can find a set of 264 texts that satisfy the required property both
on the plaintexts and on the ciphertexts, since it is possible to construct(

264 + 212

264

)
≈ (264)212

212! ' 2217.7

different sets of 264 texts (where n! ' (n/e)n ·
√

2πn by Stirling’s approximation).
On the other hand, the cost to identify the right 264 texts among all the others is in

general much higher than 264 computations. Indeed, to have a chance of success higher
than 95%, one must consider approximately 3 · 2131 236 different sets, since 1 − (1 −
2−131 236)3·2131 236 ' 1 − e−3 ≡ 0.95, which implies an overall cost much higher than the
cost of the shortcut player.

Moreover, consider the following. Given a set of random texts, suppose to change
one plaintext in order to modify the number of collisions in the subspace XI (or/and
DI) for a particular I. The problem is that all the other numbers of collisions in the
subspace XJ (or/and DJ) for all J 6= I change. Even if it is possible to have control of
these numbers, also the numbers of collisions among the ciphertexts in each subspace
MC(XK) and MK change, and in general it is not possible to predict such change in
advance. In particular, we recall that the number of collisions in a subspace DI (resp.
MI) is on average 2127 · 2−128+32·|I| = 232·|I|−1 � 1, which implies that the change in
one text modifies all the numbers of collisions in each subspaces DI or/andMI for each
I ⊆ {0, 1, 2, 3}. Similarly, the number of pairs of texts with 1 ≤ |J | ≤ 15 equal bytes
(that is, that belong to the same coset of a particular subspace XJ) is on average equal
to 2127 · 2−8·|J| ≥ 2127 · 2−8·15 = 27, which implies that the change in one text modifies
all the numbers of collisions in each subspaces XJ or MC(XJ) for each J ⊆ {ei,j}0≤i,j≤3.
We conjecture that that there is no (efficient) strategy – that does not involve brute force
research – to fulfill the required “simultaneous multiple-of-n” property for which the cost is
approximately of 264 computations (or lower). The problem to formally prove this fact is
left for future work.

Remarks Before going on, we highlight that this claim/result is not true in general if
one considers only the multiple-of-n property (for n < 8) in the subspaces DI andMJ ,
that is, not for the generic subspaces X . In particular, in Appendix G.4 we consider a
distinguisher on full AES-192 which is based on the simultaneous multiple-of-2 property
both on the plaintexts (in DI) and the ciphertexts (inMJ ). In that section, we present a
strategy that an adversary who does not know the key can use to generate a set of texts
with the required property R at (almost) the same cost of one who knows the key.

Finally, for a broader understanding of the role of the invariant subspace in the
previous distinguishers, in Appendix F we discuss the (im)possibility to set up an open-key
distinguisher using the multiple-of-8 property proposed in [Gra+17] for more than 8-round
AES.

6.5 Chosen-key distinguisher for 10-round AES-128
To set up the chosen-key distinguisher for 10-round AES-128, two possible approaches can
be considered:

• use the previous distinguisher on 9-round as a starting point and add one round at
the beginning (or at the end) by exploiting a weaker property on the plaintexts (or
on the ciphertexts);

• use the previous distinguisher on 9-round as a starting point and add one round in
the middle by using the remaining degrees of freedom in the choice of the key.
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Chosen-Key Distinguishers for AES-192 and (full) AES-256. Before going on, we
mention that same techniques are used in Appendix G in order to propose “simultaneous
multiple-of-n” distinguishers on 11-round AES-192 and on 14-round AES-256, which is
the first open-key distinguisher on full AES-256 in the single-key setting. Finally, we also
present a chosen-key distinguisher on 10-round AES-128 instantiated with the key-schedule
proposed in [Nik11]. We refer to Appendix G for all details.

6.5.1 Chosen-key distinguisher on 10-round AES – Exploit a weaker property

In the first approach, the chosen-key model asks the adversary to find a set of 264

(plaintexts, ciphertexts), that is (pi, ci ≡ R10(pi)) for i = 0, . . . , 264 − 1 – where all the
plaintexts/ciphertexts are generated by the same key – and a key such that the following
“simultaneous multiple-of-n” property is satisfied:

Plaintext: on the plaintexts, we re-use the previous properties:
(1st) for each J ⊆ {0, 1, 2, 3}, the number of different pairs of plaintexts that belong
to the same coset of DJ is a multiple of 128 = 27;
(2nd) for each I ⊆ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of
different pairs of plaintexts that belong to the same coset of XI are a multiple of 2;

Ciphertext: for each J ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that
belong to the same coset ofMJ is a multiple of 2.

Choosing one of the 232 keys proposed for the 9-round distinguisher given in Section 6.3,
it is possible to construct such set with a computational cost of 264. In more details:

• due to the assumption on the key (that is, k4 ∈ Kweak ⊆ IS), note that the
subspace IS is mapped into a coset of IS after two rounds encryption and one round
decryption, that is

∀k4 ∈ Kweak : IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃;

• due to the results of Section 5.2, given k4 ∈ Kweak, (1st) the multiple-of-128 property
(on DJ) and the multiple-of-2 property (on XI) hold on the plaintexts while (2nd)
the multiple-of-2 property (onMJ) holds on the ciphertexts

Multiple-of-n R−3(·)←−−−− IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃ R4(·)−−−→ Multiple-of-2

What about an adversary facing a family of random and independent ideal ciphers?
Due to previous analysis, the property on the plaintexts is satisfied with prob. 2−32 809 '
2−215 while the property on the ciphertexts is satisfied with prob. 2−14, for an overall
probability of 2−32 809 · 2−14 = 2−32 823 ' 2−215 .

In other words, the property on the ciphertexts is much weaker than the property on the
plaintexts. This fact can be potentially used to generate a set of 264 plaintexts/ciphertexts
with the required properties with a data cost of 3 · 278. Indeed, the attacker can easily
generate a set of 264 plaintexts that satisfy the “Multiple-of-n” property as described
before (e.g. he can generate such set using the fact that the 4-round AES decryption of
IS – namely R4(IS) – has the required “Multiple-of-n” property). Then, he simply asks
the oracle for the corresponding ciphertexts, which satisfy the “Multiple-of-2” property
with prob. 2−14. By repeating this process 3 · 214, the probability of success22 is higher
than 95%. The cost of such strategy (which includes both the generation of the texts and
the check that the property is satisfied) is at least of 278.

22The probability of success is given by 1− (1− 2−14)3·214≥0.95.
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Even if this attack is faster than 2128, its cost is still (much) bigger than 264, which is
the cost to generate the required set of plaintexts/ciphertexts for the case of 10-round AES.
Remember that the goal in an open-key distinguisher is indeed to be able to generate the
requires set of plaintexts/ciphertexts with a similar (or even the same) cost for AES (or
the studied cipher) and for the ideal cipher. In this case, it is very unlikely that any generic
attack can get close to that: even if we would allow unlimited time, the data complexity of
a generic attack would still need to be higher than 264. Indeed, working as in the 9-round
case, a simple brute force attack requires at least23 264 + 211 plaintexts/ciphertexts in
order to find a set of 264 plaintexts with the required properties. For all these reasons and
same as for the 9-round case (see our arguments from Section 6.4), we conjecture that the
data/computational cost of an adversary to generate such set is (much) higher than 264

computations.

6.5.2 Chosen-key distinguisher on 10-round AES – Exploit degrees of freedom in the
weak-key

In the second approach, the idea is to extend it to 10-round by adding one round in the
middle using the remaining degrees of freedom in the choice of the key.

In more details, referring to the 9-round distinguisher proposed in Section 6.3, if the
subkey k4 of the 4-th round belongs in Kweak (defined as in Eq. (4) and Section 4), it
follows that

Multiple-of-n R−3(·)←−−−− IS ⊕ a R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ b R3(·)−−−→ Multiple-of-n

In other words, one exploits the fact that the subspace IS is mapped into a coset of it
after 2-round encryption and 1-round decryption for any subkey in Kweak.

By simple computation, there is a key in Kweak for which the subspace IS is mapped
into a coset of it after two rounds decryption. In more details, for the key k̂ ∈ Kweak
defined by

k̂ ≡ (A = 0x63⊕R[5], B = 0x63, C = 0x63, D = 0x63) ∈ Kweak

it follows that
IS ⊕ a R−2(·)←−−−− IS R2(·)−−−→ IS ⊕ b.

To see this, it is sufficient to compute one round of the key schedule
A⊕ 0x63⊕R[5] 0 0 0

B ⊕ 0x63 0 0 0
C ⊕ 0x63 0 0 0
D ⊕ 0x63 0 0 0

 1-round Key Schedule−−−−−−−−−−−−−−→ Kweak ≡


A A A A
B B B B
C C C C
D D D D

 ,
and to look for a key in Kweak that belongs to IS one round before. As a result, it follows
that for the key k̂ ≡ (A = 0x63 ⊕ R[5], B = 0x63, C = 0x63, D = 0x63) ∈ Kweak it is
possible to set up a distinguisher on 10 rounds24 since

Multiple-of-n R−3(·)←−−−− IS ⊕ a R−2(·)←−−−− IS R2(·)−−−→ IS ⊕ b R3(·)−−−→ Multiple-of-n

23Note that
(264+211

264

)
≥ 232 823.

24For completeness, we discuss the relevance of a distinguisher that can be constructed for a single key
(which this does not mean – in general – that it holds for one key only). A single collision/near-collision/
or similar distinguishing property for a block-cipher based compression function or hash function would be
also a property of the cipher that holds (depending on the mode) for a single key. Assume this is found
with a non-generic approach. This simple example shows that, in principle, properties even for single keys
can be interesting.
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Using this observation, we can construct the distinguisher. Exactly as before, the
chosen-key model asks the adversary to find a set of 264 plaintexts/ciphertexts, i.e. (pi, ci ≡
R10(pi)) for i = 0, . . . , 264 − 1 – where all the plaintexts/ciphertexts are generated by the
same key – and a key such that

• for each J, I ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that belong to
the same coset ofMJ and the number of different pairs of plaintexts that belong to
the same coset of DI are a multiple of 128 ≡ 27;

• for each J, I ⊆ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of differ-
ent pairs of ciphertexts that belong to the same coset of MC(XI) and the number of
different pairs of plaintexts that belong to the same coset of XJ are a multiple of 2.

Similar to the 9-round case, due to our arguments from Section 6.4 we conjecture that
the computational cost of an adversary to generate such set is (much) higher than 264

computations.

6.6 Key schedule and chosen-key distinguisher: an open problem for
future research

As showed in detail in Appendix G.1, similar chosen-key distinguishers can be set up for
other key schedules present in the literature. As a result, an open problem is left for future
research. As we have already re-called, several key schedules have been proposed in the
literature in order to improve the security of AES against related-key attacks, while the
security against open-key distinguisher always had less attention.

For this reason, for future research, one should look for a key schedule for which (1st)
the security of AES against the related key attack is improved, (2nd) for which it is not
possible to set up a chosen-key distinguisher on full AES-128/256 and – if necessary – (3rd)
it does not use the S-Box function (if one requires a lightweight key-schedule composed
only of linear operations).
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A Generic subspace trail of length 1 for AES - Proof
Here we give a complete proof regarding the subspace trail of length 1 set up using the
generic subspace X defined in Section 3.1.

First of all, we recall the definition of X .

Definition 9. Let I a subset of {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3. Let the
subspace XI be defined as

XI = 〈{ei,j}(i,j)∈I〉 ≡
{ ⊕

(i,j)∈I

αi,j · ei,j
∣∣∀αi,j ∈ F28

}
.

In other words, XI is the set of elements given by linear combinations of {ei,j}(i,j)∈I ,
where ei,j ∈ F4×4

28 has a single 1 in row i and column j.

Theorem 6. For each I ⊆ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3 and for each
a ∈ X⊥I , there exists one and only one b ∈ Y⊥I such that

R(XI ⊕ a) = YI ⊕ b

where YI = MC ◦ SR(XI).

Observe that for each I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, there exists
J ⊆ {(i, j)}0≤i,j≤3 such that SR(XI) = XJ (or equivalently SR−1(XI) = XJ ). As a result,
{XI ,MC ◦ SR(XI)} is a subspace trail of length 1. Let XI defined as in Definition 8.

Proof. To prove the Theorem, we simply compute R(XI ⊕ a). Since SubBytes is bijective
and operates on each byte independently, its only effect is to change the coset. In other
words, it simply changes the coset XI ⊕ a to XI ⊕ a′, where a′i,j = SB(ai,j) for each
i, j = 0, . . . , 3. ShiftRows simply moves the bytes of XI ⊕ a′ into SR(XI) ⊕ b

′ , where
b′ = SR(a′). Since MixColumns is a linear operation, it follows that MC(SR(XI)⊕ b

′) =
MC ◦ SR(XI)⊕MC(b′) = MC ◦ SR(XI)⊕ b

′′ . Key addition then changes the coset to
MC ◦ SR(XI)⊕ b.

B Subkeys and key schedule of AES – Details
B.1 SubKeys of AES-256 – Details about Section 4.3
In order to prove the results proposed for AES-256 in Section 4.3, we list here the subkeys
involved. Referring to Section 4.3, consider the set of subkeys defined by Kweak.

(1st) Consider the 296 keys that satisfy

A0 = A1, B0 = B1, C0 = C1, D0 = D1

that is

{
A A A A E0 E1 E0 E1

B B B B F 0 F 1 F 0 F 1

C C C C G0 G1 G0 G1

D D D D H0 H0 H0 H1

 ∣∣ ∀A,B,C,D, . . . ,H0, H1 ∈ F28

}

The next subkey is given by
A⊕ SB(F 1)⊕R[1] SB(F 1)⊕R[1] A⊕ SB(F 1)⊕R[1] SB(F 1)⊕R[1]

B ⊕ SB(G1) SB(G1) B ⊕ SB(G1) SB(G1)
C ⊕ SB(H1) SB(H1) C ⊕ SB(H1) SB(H1)
D ⊕ SB(E1) SB(E1) D ⊕ SB(E1) SB(E1)


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(2nd) Consider the 264 keys that satisfy

A0 = A1, B0 = B1, C0 = C1, D0 = D1, . . . , H0 = H1

The next subkey is given by
SB(F̂ ⊕R[1])⊕ E SB(F̂ ⊕R[1]) SB(F̂ ⊕R[1])⊕ E SB(F̂ ⊕R[1])

SB(Ĝ)⊕ F SB(Ĝ) SB(Ĝ)⊕ F SB(Ĝ)
SB(Ĥ)⊕G SB(Ĥ) SB(Ĥ)⊕G SB(Ĥ)
SB(Ê)⊕H SB(Ê) SB(Ê)⊕H SB(Ê)


where

Ê := SB(E), F̂ := SB(F ), Ĝ := SB(G), Ĥ := SB(H).
(3rd) Consider the 232 keys that satisfy

A0 = A1 = B0 = . . . = D0 = D1 = 0, E0 = E1, F 0 = F 1, . . . H0 = H1.

Then, the next subkeys satisfy
SB( ˆ̂

G)⊕ F̂ ⊕R′[2] SB( ˆ̂
G)⊕R[2] SB( ˆ̂

G)⊕ F̂ ⊕R′[2] SB( ˆ̂
G)⊕R[2]

SB( ˆ̂
H)⊕ Ĝ SB( ˆ̂

H) SB( ˆ̂
H)⊕ Ĝ SB( ˆ̂

H)
SB( ˆ̂

E)⊕ Ĥ SB( ˆ̂
E) SB( ˆ̂

E)⊕ Ĥ SB( ˆ̂
E)

SB( ˆ̂
F )⊕ Ê SB( ˆ̂

F ) SB( ˆ̂
F )⊕ Ê SB( ˆ̂

F )


where

ˆ̂
E := SB(SB(E)), ˆ̂

F := SB(F̂ ⊕R[1]),
ˆ̂
G := SB(SB(G)), ˆ̂

H := SB(SB(H))

and R′[2] := R[1]⊕R[2].

B.2 Key-schedule based on Permutations
In Section 4.2, we discuss the security of the key-schedule based on permutation of the bytes
proposed in [Kho+17]. Similar key-schedules have been recently proposed at SAC 2018
[Der+18]. Here we show that also for one of them it is possible to set up an “infinitely-long”
weak invariant subspace (again, a simple way to avoid this is to add random round-constants
which break the symmetry).

The key-schedule proposed in [Der+18, Sect. 4.2] is defined by the following byte-
permutation: (

8 1 7 15 10 4 2 3 6 9 11 0 5 12 14 13
)
.

This key-schedule permutation guarantees that at least 20 S-Boxes are active in every
possible related-key truncated differential.

It’s simple to verify that the subspace

IS(1) :=



a a a a
b a b a
a a a a
a a a a

 ∣∣∣∣∀a, b ∈ F28


(where IS(1) ⊆ IS) is invariant w.r.t. the previous byte permutation. Since IS(1) ⊆ IS
where IS is defined as in Eq. (2), this allows to set up an “infinitely-long” weak invariant
subspace.
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Remark Note that a generic subspace

IS(x) :=



a a a a
a a a a
a a a a
a a a a

 ∣∣∣∣∀a ∈ F28


is always invariant under a byte-permutation. The previous results are of some impor-
tance/relevance since the subspaces IS and IS(1) are not trivial (they have dimension 8
and 2, w.r.t. dimension 1 of IS(x)).

B.3 AES-like key schedule
As discussed in Section 4.4, a possible variant of the AES key schedule has been proposed at
SAC 2010 by Nikolić [Nik11]. This variant is obtained by introducing a small change in the
current AES key schedule, which allows to improve the security against related-key attacks.
As we are going to show, even if this change improves the security against related-key
attack, it is possible to get the same results just presented for the original AES key schedule
also in this case.

For simplicity, we focus on AES-128 for which the new key schedule is defined as
W [i][j] = K[i][j] for j < 4 and as

W [i][j] =
{
W [i][j − 4]⊕ SB(W [i− 1][j − 1])⊕R[i][j/4] if j mod 4 = 0
W [i− 1][j − 1]⊕W [i][j − 4] otherwise

where i = 0, 1, 2, 3, j = 4, . . . , 43 and R[·] is an array of predetermined constants. Also in
this case it is possible to find a set (not a subspace) of weak-keys K ′weak for which it is
possible to construct a weak invariant subspace trail of length 2 as before, where K ′weak is
defined as

K ′weak :=


SB(B)⊕ SB(D)⊕B ⊕R[1] A SB(B)⊕ SB(D)⊕B ⊕R[1] A

SB(A)⊕ SB(C)⊕ C B SB(A)⊕ SB(C)⊕ C B
SB(B)⊕ SB(D)⊕D ⊕R[1] C SB(B)⊕ SB(D)⊕D ⊕R[1] C

SB(A)⊕ SB(C)⊕A D SB(A)⊕ SB(C)⊕A D


for all A,B,C,D ∈ F28 . Similar results hold also for the cases AES-192 and AES-256.

C Secret-Key distinguisher for round-reduced AES in the
case of weak-keys – Details

Here we give more details about the secret-key distinguishers for round-reduced AES in
the case of weak-keys.

C.1 Weak-key impossible differential over 4-round AES-128
SinceMI ∩ DJ = {0} for |I|+ |J | ≤ 4, it follows that for an AES permutation and for a
weak-key

Pr
[
R4(x)⊕R4(y) ∈MI

∣∣ x, y ∈ IS, k ∈ Kweak
]

= 0 if I 6= {0, 2}, {1, 3},

while for a random permutation Π the probability is given by Eq. (5).
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C.2 Zero-sum property

Another distinguisher is the integral one and exploits the zero-sum property. Given a set
of 28 plaintexts with one active byte25, the XOR-sum of the corresponding ciphertexts
after 3-round is equal to zero, independently of the secret key, of the details of the S-Box
and of the MixColumns matrix. Similarly, given a set of 232 plaintexts with one active
diagonal, then the XOR-sum of the corresponding ciphertexts after 4-round is equal to
zero, that is ⊕

p∈DI⊕a
R4(p) = 0.

Such result holds on 4-round AES-128 also in the case of a weak-key. In particular,
under a weak-key and given 264 plaintexts in the subspace IS, it follows that the XOR-sum
of corresponding ciphertexts after 4-round is equal to zero, that is⊕

p∈IS
R4(p) = 0. (9)

Here we present a theoretical proof.
First of all, we recall the definition of active/constant/balance bytes. Let Γ be a

collection of state vectors X = (x0, . . . , x2n−1) where xi ∈ F4×4
2m . Each byte of xi can be

• Active (A): if all each possible value in F2m is assumed the same number of times;

• Balance (B): if the sum of all bytes can predicted (e. g. equal to zero);

• Constant (C): if the values are equal.

Remember that a subspace IS is mapped into a coset of it after two rounds in the
presence of a weak-key. This means that it is sufficiently to prove that⊕

p∈IS⊕k̂

R2(p) = 0 for k̂ ∈ IS⊥.

Observe that each byte of IS is active. Indeed

R(IS ⊕ k̂) = MC ×


SB(a) SB(b) SB(a⊕ k̂0,2) SB(b⊕ k̂0,3)
SB(c) SB(d) SB(c⊕ k̂1,2) SB(d⊕ k̂1,3)
SB(e) SB(f) SB(e⊕ k̂2,2) SB(f ⊕ k̂2,3)
SB(g) SB(h) SB(g ⊕ k̂3,2) SB(h⊕ k̂3,3)


for each a, b, . . . , h ∈ F28 . Since each column takes a particular value F4

28 exactly four times
and since the MixColumns matrix is bijective, each byte is active after the MixColumns
operation.

What happens after the second round? It is simple to prove that the balance property
holds. Indeed, since the S-Box is bijective, each active byte remains active after the
S-Box and the ShiftRows operation. Finally, since an active byte satisfies also the balance
property (i. e. sum equal to zero), and since the MixColumns operation is linear, the
zero-sum property survives after one-round. The result is proved.

25A byte is active if every value in F28 appears the same number of times, while it is constant if it is
fixed to a constant for all texts.
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D Proof of Proposition 3 – the pairs are not independent!
In order to estimate the number of collisions of Prop. Proposition 3, the probabilistic
distribution of number of collisions that the previous computation, we assume that all the
pairs are independent. However, this is not the case. However, here we show that the
previous approximation is still a good approximation. To do this, we focus on the subspace
MJ , but analogous results hold for the subspaces XI and DI . Moreover, we assume for
simplicity |J | = 3 (analogous for the other cases).

Indeed, consider three texts, that is t1, t2 and t3, and the corresponding three couples,
that is (t1, t2), (t1, t3) and (t2, t3). Three possible events can happen:

• if t1 ⊕ t2 ∈MJ and t1 ⊕ t3 ∈MJ , then t2 ⊕ t3 ∈MJ with probability 1 (sinceMJ

is a subspace);

• if t1⊕ t2 ∈MJ and t1⊕ t3 /∈MJ (or vice-versa), then t2⊕ t3 /∈MJ with probability
1 (sinceMJ is a subspace);

• if t1⊕t2 /∈MJ and t1⊕t3 /∈MJ , then both the events t2⊕t3 ∈MJ and t2⊕t3 /∈MJ

are possible; in particular, t2 ⊕ t3 ∈MJ with approximately prob. 2−32·(4−|J|).

On the other hand, what is the probability that a pair of texts (p, q) satisfy p⊕ q ∈MJ?
To answer this question, first of all, it is important to focus on the previous last event

and to theoretically compute a better approximation of this probability. For our goal, we
focus on the case |J | = 3 with J fixed. We are going to show that the last probability is
well approximated by 2−32 · (1− 2−32)−1. Since t1⊕ t2 /∈MJ , it follows that the difference
on the J-th anti-diagonal is different from (0, 0, 0, 0), i. e. they can take only one of 232 − 1
possible values different from (0, 0, 0, 0). Similar consideration holds for t1 ⊕ t3 /∈ MJ .
Since t2 ⊕ t3 = (t1 ⊕ t2)⊕ (t1 ⊕ t3), it follows that the difference of the J-th anti-diagonal
of t2 ⊕ t3 is equal to zero if the difference of the J-th anti-diagonal of t1 ⊕ t2 is equal to
the difference of the J-th anti-diagonal of t1 ⊕ t3. Since this happens with probability
(232 − 1)−1, it follows that the probability that t1 ⊕ t3 ∈MJ is

(232 − 1)−1 = 2−32 · (1− 2−32)−1 ≈ 2−32 + 2−64 − 2−96 + . . .

To have more confidence about this fact, note that:

• t1 ⊕ t2 ∈MJ , t1 ⊕ t3 ∈MJ and t2 ⊕ t3 ∈MJ occurs with probability (2−32)2;

• t1⊕t2 ∈MJ , t1⊕t3 /∈MJ and t2⊕t3 /∈MJ occurs with probability 2−32 ·(1−2−32)
(similar for the other 3 cases);

• t1 ⊕ t2 /∈MJ , t1 ⊕ t3 /∈MJ and t2 ⊕ t3 /∈MJ occurs with probability (1− 2−32)2 ·
(1− 2−32 · (1− 2−32)−1).

All the other cases have probability 0 (sinceMJ is a subspace). By simple computation,
the probability of all the possible events is equal to

(2−32)2 + 3 · 2−32 · (1− 2−32) + (1− 2−32)2 · (1− 2−32 · (1− 2−32)−1) = 1,

as expected. In other words, if one uses the probability (1− 2−32)3 for the last case, it
follows that the probability of all the possible events is equal to 1−2−96, which is obviously
wrong.

Thus, what is the probability that t2 ⊕ t3 ∈ MJ? Given the events A1, . . . , An in a
probability space (Ω,F ,P), we recall that

Prob

( n⋃
i=1

Ai

)
=

n∑
k=1

(
(−1)k−1

∑
J⊂{1,...,n}, |J|=k

Prob
(⋂
j∈J

Aj
))
,
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where the last sum runs over all subsets J of the indexes 1, . . . , n which contain exactly k
elements. Thus:

Pr
[
t2 ⊕ t3 ∈MJ

]
= 2−32 · 2−32 · 1︸ ︷︷ ︸

1st Case

+ 2 · 2−32 · (1− 2−32) · 0︸ ︷︷ ︸
2nd Case

+

+ (1− 2−32)2 · 2−32 · (1− 2−32)−1︸ ︷︷ ︸
3rd Case

= 2−32.

As a result, even if the pairs are not independent, the probability that two texts s and t
belong in the same coset ofMJ for |J | = 3 is exactly 2−32 (analogous for the other cases).

E Chosen-key distinguisher and “high” number of colli-
sions

In Section 6.3, we propose a chosen-key distinguisher for 9-round AES-128.
Referring to the scenario described in Section 6, the chosen-key model asks the adversary

to find a set of 264 (plaintexts, ciphertexts), that is (pi, ci ≡ R9(pi)) for i = 0, . . . , 264 − 1,
such that the following property is satisfied

• for each J, I ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that belong to
the same coset ofMJ and the number of different pairs of plaintexts that belong to
the same coset of DI are a multiple of 128 = 27;

• for each J, I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of differ-
ent pairs of ciphertexts that belong to the same coset of MC(XI) and the number of
different pairs of plaintexts that belong to the same coset of XJ are a multiple of 2,
where X is defined as in Definition 8.

Another possible property that can be taken in account is the following:

• for each J ⊆ {0, 1, 2, 3} with |J | = 1, the number of different pairs of ciphertexts that
belong to the same coset ofMJ is higher than 242; similarly, for each I ⊆ {0, 1, 2, 3}
with |I| = 1, the number of different pairs of plaintexts that belong to the same coset
of DI is higher than 242.

Here we show why such property is useless in order to set up the distinguisher.

Chernoff’s and Chebyshev’s Inequalities For the follow-up, let us recall the Chernoff’s
Inequality. The generic Chernoff bound for a random variable X is obtained by applying
Markov’s inequality to etX . For every t > 0:

Pr [X ≥ a] ≤
E
[
et·X

]
et·a

.

In the case of a binomial distribution X ∼ B(n, p) (where µ = n · p), it follows that:

• for any 0 ≤ t ≤ 1:

Pr [(X ≥ (1 + t) · µ] 6 exp(−µ · t2/3);
Pr [(X ≤ (1− t) · µ] 6 exp(−µ · t2/3);

• for any t ≥ 1:
Pr [X ≥ (1 + t) · µ] 6 exp(−µ · t/3).
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Secondly, let’s recall the Chebyshev’s inequality. Let X be a random variable with
finite expected value µ and finite non-zero variance σ2. Then for any real number k > 0:

Pr [|X − µ| ≥ kσ] ≤ 1
k2 .

The distinguishing algorithm Assume to use the strategy proposed in Section 6.3 to
construct the required set of texts. What is the probability that the property regarding
the number of collisions higher than 242 holds?

As we have just seen, given two texts in a coset of IS, they belong to the same coset
ofMI after 3-round for |I| = 1 with probability 2−79 – see Eq. (7). Note that given 264

plaintexts in a coset of IS and the corresponding ciphertexts, the distribution probability
of the number of pair of ciphertexts that belong to the same coset ofMI is simply described
by a binomial distribution. By definition, a binomial distribution with parameters n and
p is the discrete probability distribution of the number of successes in a sequence of n
independent yes/no experiments, each of which yields success with probability p. In our
case, given n pairs of texts, each of them satisfies or not the above property/requirement
with a certain probability. Thus, this model can be described using a binomial distribution.
We remember that for a random variable X that follows the binomial distribution, that
is X ∼ B(n, p), the mean µ and the variance σ2 are respectively given by µ = n · p and
σ2 = n · p · (1− p).

In our case, since n =
(264

2
)
' 2127 and p ' 2−79, it follows that µ ' 248 and σ2 ' 248.

Using Chebyshev’s inequality, it follows that the second property is verified with probability
approximately equal to 1 (≥ 1− 2−47). Indeed, note that

Pr
[
X ≥ 242] > Pr

[
|X − 248| ≤ 248 − 242] ≥ 1− 1

(224 − 218)2 ≈ 1− 2−47.95.

Thus, this property is achieved without any additional cost.

Adversary. Consider now the strategy that an adversary - who does not know the
key - can use to fulfill this second property. In order to estimate the probability that a
random set of texts satisfies the second property (regarding the number of collisions higher
than 242), we use again the Chebyshev’s inequality. To do this, we first approximate the
probabilistic distribution of the number of collisions with a binomial distribution with
parameter n ' 2127 and p = 2−96. Since the mean value is equal to µ = 231 and the
variance is equal to σ2 ' 231, and using Chernoff’s inequality, it follows that the second
property is satisfied with probability

Pr
[
X ≥ 242 ≡ (1 + (211 − 1)) · 231] ≤ exp(− (211 − 1) · 231

3

)
≈ 2−241.86

,

that is, much smaller than for the distinguishing algorithm.
On the other hand, it is quite simple to find a strategy in order to satisfy this extra-

property without affecting the total cost. The goal is to find a set of 264 texts such that
the number of different pairs of plaintexts that belong to the same coset of DI for |I| = 1
is higher than 242 (analogous for the ciphertexts). For each I with |I| = 1, the idea is
simply to consider 223 plaintexts in the same coset of DI ⊕ a for a random a. It is simply
to observe that the number of collisions in the same coset of DI is at least

(223

2
)
' 245,

that is the property is fulfilled. Similarly, for each J with |J | = 1, the idea is simply to
consider 223 ciphertexts in the same coset ofMJ ⊕ b for a random b. Using this strategy,
4 · 223 = 225 plaintexts and 4 · 223 = 225 ciphertexts are chosen, for a total of 226 texts
over 264, that is 264 − 226 ' 264 are still “free”.

It follows that this extra-property can be achieved also in this case with no additional
cost. In other words, it can be considered useless in order to set up the known-key
distinguisher.
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F On the difficulty to set up multiple-of-n open-key dis-
tinguishers that do not rely on weak-keys

In order to better understand the role of the invariant subspace, and hence the dependence
on weak-keys, in the previous construction, we briefly discuss the following problem: is
it possible to set up a similar distinguisher using the multiple-of-8 property proposed
in [Gra+17] which holds for any key? We conjecture that this is hard.

Given a coset of a diagonal space DI , the multiple-of-8 property holds (1) after 5-round
encryption and (2) after 3-round decryption. It follows that given a coset of CI in the
middle, then

∀k : Multiple-of-8 R−4(·)←−−−− CI ⊕ a
R4(·)−−−→ Multiple-of-8,

it is possible to set up a distinguisher on 8 rounds.
To extend this distinguisher to more rounds, a possibility can be to use a coset of

DI ⊕MJ in the middle. Here we show why this solution does not work. First of all,
observe that

DI ⊕MJ ⊕ a ≡
⋃

b∈DI⊕a

MJ ⊕ b ≡
⋃

b∈MJ⊕a

DI ⊕ b

Thus, consider 5-round encryption (similar for the decryption direction). The number of
collisions between the pairs of ciphertexts whose corresponding plaintexts are in the same
coset of DI is a multiple of 8 with prob. 1. However, it is not possible to claim anything
about the the pairs of ciphertexts whose corresponding plaintexts are in the same coset of
MJ , or for which one plaintext is in DI ⊕ a′ and the other inMJ ⊕ b′. As a result, one
looses any multiple-of-n property. A similar argumentation works also in the decryption
direction.

As we have just seen, the invariant subspace allows to solve this problem in the case
of weak-keys. The problem to set up a known-key distinguisher (for which the key does
not satisfy any particular property) that exploits the multiple-of-n property for more than
8-round AES is still open.

G Chosen-key distinguishers for 10-round AES-128, 11-
round AES-192 and 14-round AES-256

In Sections 6.3 and 6.5, we have proposed two ways to set up a chosen-key distinguisher
for full AES-128. Here we propose the details in the case in which AES is instantiated by
the key-schedule defined in [Nik11]. Moreover, using the same strategies, here we present
similar results for 11-round AES-192 and 14-round AES-256. Since the strategies used
to set up these distinguishers is similar to the ones proposed for AES-128, we refer to
Sections 6.3 and 6.5 for all the details and we highlight here the main differences.

G.1 Chosen-key distinguisher on AES-128 instantiated by other key-
schedule

In Section 4, we consider key schedules different than the original AES one. One may ask
what happens to the chosen-key distinguisher just presented in these cases. Since this is
obvious for the cases of identical subkeys (or weak round constants) and for the key schedule
proposed in [Kho+17] (due to the possibility to set up “infinitely-long” weak invariant
subspace trail), we limit ourselves to discuss the key schedule proposed by I. Nikolić in
[Nik11]. Here we briefly show that an analogous 10-round chosen-key distinguisher can be
set up for AES-128.
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As before, the idea is to find a weak-key such that the invariant subspace IS is mapped
into a coset of it after two rounds decryption and two rounds encryption. By simple
computation, there exists a key k̂′ in K ′weak – defined as in Section 4 – with such property,
which is defined by

k̂′ ≡ (A = C = 0x63⊕R[4], B = D = SB(R[5])⊕R[4]) ∈ K ′weak.

G.2 Chosen-key distinguisher for 11-round AES-192
G.2.1 9-round AES-192 distinguisher

In order to set up the 9-round distinguisher of AES-192, one exploits the fact that

∀k4 ∈ Kweak : IS ⊕ a R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ b

for each key in Kweak defined in Section 4.3 where the round constant R[1] that defines
Kweak must be replaced with R[4].

G.2.2 10-round AES-192 distinguisher – “Weaker” property

As for AES-128, the simplest way to extend the previous distinguisher to 10-round is
to exploit a weaker property on (e.g.) the ciphertexts. As a result, while the property
on the plaintexts is unchanged, the chosen-key model asks the adversary to find a set of
264 (plaintexts, ciphertexts), that is (pi, ci ≡ R10(pi)) for i = 0, . . . , 264 − 1 – where all
the plaintexts/ciphertexts are generated by the same key – and a key such that for each
J ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that belong to the same coset
ofMI is a multiple of 2.

G.2.3 10-round AES-192 distinguisher – Freedom of the key

In order to set up the distinguisher on 10 round, we need a weak invariant subspace trail
on 4-round. By simple computation, it is sufficient to choose the subkey26

k̂ ≡ (A = 0, B = 0, C = 0, D = 0, E = 0, F = 0, G = 0, H = 0) ∈ Kweak

(where R[1] that defines Kweak must be replaced with R[5])) for which

IS ⊕ a R−2(·)←−−−− IS R2(·)−−−→ IS ⊕ b.

Due to the results of Section 5.2, the multiple-of-128 property (on DJ ) and the multiple-of-2
property (on XI) hold with probability 1 on the plaintexts while the multiple-of-2 property
(onMJ) holds on the ciphertexts

Multiple-of-n R−3(·)←−−−− IS ⊕ k̂ R−2(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃ R4(·)−−−→ Multiple-of-2

G.2.4 11-round AES-192 distinguisher

Finally, it is possible to combine the previous two distinguishers on 10-round AES-192 in
order to set up a distinguisher on 11-round AES-192. In this case, the chosen-key model
asks the adversary to find a set of 264 (plaintexts, ciphertexts), that is (pi, ci ≡ R11(pi))
for i = 0, . . . , 264 − 1 – where all the plaintexts/ciphertexts are generated by the same key
– and a key such that the following “simultaneous multiple-of-n” property is satisfied:

26For completeness, another possible key can be used. In particular, given the key k̂ ∈ Kweak defined
by k̂ ≡ (A = 0x63⊕ R[5], B = 0x63, C = 0x63, D = 0x63, E = 0, F = 0, G = 0, H = 0) (where R[1] that

defines Kweak must be replaced with R[4]), then for IS ⊕ a
R−1(·)
←−−−−− IS

R3(·)
−−−−→ IS ⊕ b. We highlight that

there is no key that allows to extend both 1-round forward and 1-round backward.
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Plaintext: on the plaintexts, we re-use the previous properties:

(1st) for each J ⊆ {0, 1, 2, 3}, the number of different pairs of plaintexts that belong
to the same coset of DJ is a multiple of 128 = 27;

(2nd) for each I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of
different pairs of plaintexts that belong to the same coset of XI are a multiple of 2;

Ciphertext: for each J ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that
belong to the same coset ofMJ is a multiple of 2.

In order to set up the chosen-key distinguisher, the idea is to exploit the fact that for the
key k̂ ∈ Kweak defined by k̂ ≡ (A = 0, B = 0, C = 0, D = 0, E = 0, F = 0, G = 0, H = 0) ∈
Kweak (where R[1] that defines Kweak must be replaced with R[5])), it holds that

IS ⊕ a R−2(·)←−−−− IS R2(·)−−−→ IS ⊕ b.

Due to the results of Section 5.2, the multiple-of-128 property (on DJ ) and the multiple-of-2
property (on XI) hold with probability 1 on the plaintexts while the multiple-of-2 property
(onMJ) holds on the ciphertexts

Multiple-of-n R−3(·)←−−−− IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃ R4(·)−−−→ Multiple-of-2

as required.
What about an adversary facing a family of random and independent ideal ciphers?

As we showed in detail in Section 6.5, the required properties on the plaintexts and on
the ciphertexts hold with prob. 2−32 823 ' 2−215 for a random set of texts. Due to our
argumentations from Section 6.4, we conjecture that the computational cost of an adversary
to generate such set is (much) higher than 264 computations.

G.3 Chosen-key distinguisher for (full) AES-256

G.3.1 Chosen-Key distinguisher for 12-round AES-256

Similarly, to set up the 12-round distinguisher of AES-256, one exploits the fact that

∀k ∈ Kweak : IS ⊕ a R−1(·)←−−−− IS R5(·)−−−→ IS ⊕ b

for each key in Kweak defined in Section 4.3 where

A0 = A1 = B0 = . . . = D0 = D1 = 0, E0 = E1, F 0 = F 1, . . . ,H0 = H1.

G.3.2 13-round AES-256 distinguisher – “Weaker” property

As for AES-128, the simplest way to extend the previous distinguisher to 13-round is to
exploit a weaker property on (e.g.) the ciphertexts. As a result, while the property on
the plaintexts is unchanged, the chosen-key model asks the adversary to find a set of 264

(plaintexts, ciphertexts), that is (pi, ci ≡ R13(pi)) for i = 0, . . . , 264 − 1 – where all the
plaintexts/ciphertexts are generated by the same key – such that for each J ⊆ {0, 1, 2, 3},
the number of different pairs of ciphertexts that belong to the same coset ofMI is a multiple
of 2.
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G.3.3 13-round AES-256 distinguisher – Freedom of the key

Another possibility to extend the previous distinguisher to 13-round is to exploit the
freedom in the key. In more details, in order to set up the distinguisher on 13 round and
using the same argumentation proposed for AES-128, among the previous weak-keys the
idea is to choose the sub-key defined by

k̂ ≡ (E0 = E1 = 0x63⊕R[5], F 0 = F 1 = 0x63, . . . ,H0 = 0, H1 = 0x63) ∈ Kweak

for which
IS ⊕ a R−2(·)←−−−− IS R5(·)−−−→ IS ⊕ b.

or
k̂ ≡ (E0 = E1 = F 0 = F 1 = . . . = H0 = 0, H1 = 0) ∈ Kweak

for which
IS ⊕ a R−1(·)←−−−− IS R6(·)−−−→ IS ⊕ b.

G.3.4 Chosen-key distinguisher on full AES-256

The previous chosen-key distinguisher covers 13 rounds of AES-256. Here we show that it
is possible to consider a weaker property (e.g.) on the plaintexts to cover full AES-256
in the single-key setting. In this case, the chosen-key model asks the adversary to find a
set of 264 (plaintexts, ciphertexts), that is (pi, ci ≡ R14(pi)) for i = 0, . . . , 264 − 1 – where
all the plaintexts/ciphertexts are generated by the same key – and a key such that the
following “simultaneous multiple-of-n” property is satisfied:

Plaintext: on the plaintexts, we re-use the previous properties:
(1st) for each J ⊆ {0, 1, 2, 3}, the number of different pairs of plaintexts that belong
to the same coset of DJ is a multiple of 128 = 27;
(2nd) for each I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of
different pairs of plaintexts that belong to the same coset of XI are a multiple of 2;

Ciphertext: for each J ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that
belong to the same coset ofMJ is a multiple of 2.

Choosing the key as before and due to the same arguments given for AES-128 and AES-192,
the computational cost to construct such set is of 264.

What about an adversary facing a family of random and independent ideal ciphers?
Due to previous analysis, the required properties holds with prob. 2−32 823 ' 2−215 for
a random set of texts. As before, a simple brute force attack requires at least 264 + 211

plaintexts/ciphertexts in order to find a set of 264 plaintexts with the required properties.
Due to our argumentations from Section 6.4, we conjecture that the computational cost of
an adversary to generate such set is (much) higher than 264 computations.

G.4 Open problem – chosen-key distinguishers on full AES-192
We have just seen how to set up chosen-key distinguisher for 11-round AES-192. An open
problem is to set up a chosen-key distinguisher in the single-key setting on full AES-192.

As we have seen in Section 5.2, the multiple-of-2 property holds for one more round
than the multiple-of-128 property independent of the secret weak-key. Thus, a possible
idea/starting point is to exploit such property to construct the distinguishers. Here, the
chosen-key model asks the adversary to find a set of 264 plaintexts/ciphertexts (pi, ci) –
where all the plaintexts/ciphertexts are generated by the same key – and a key such that:
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• for each I ⊆ {0, 1, 2, 3} the number of different pairs of plaintexts that belong to the
same coset of DI for each I is a multiple of 2 ; similarly, for each J ⊆ {0, 1, 2, 3} the
number of different pairs of ciphertexts that belong to the same coset of MJ for
each J is a multiple of 2.

Observe that for a random set, the previous properties hold with probability (2−1)2·14 =
2−28. Note that such property can be potentially used to set up both a distinguisher on
full AES-192 and on full AES-256.

Here we discuss this distinguisher, focusing on the adversary strategy. By simple
computation, 264 + 1 oracle queries are sufficient to generate the required set with high
probability. Indeed, given 264 + 1 texts, it is possible to construct

(264+1
264

)
= 264 different

sets of 264 texts. Since each one of them satisfies the required property, the probability
to find a good set is close to one27. On the other hand, if one considers the total cost
of the adversary to find the required sets of 264 texts using a “simple” brute force, the
computational cost is in general higher than 264. In Appendix G.4, we propose a possible
strategy that the adversary can use to find the required set. However, even if such
strategy has a computational cost of approximately 264 computations, the memory cost
is approximately of 296. It follows that the total cost (computations + memory) can be
considered higher than the 264. For completeness, we highlight that such strategy requires
264 computations only if a random set satisfies the multiple-of-n property with probability
at most 2−64, which implies that n must satisfy n < 8. It follows that such strategy can
not be used for the previous distinguishers where the multiple-of-128 property is exploited.

As a result this can be a candidate for a possible distinguisher on full AES-192/256. We
leave the open problem to confute or to prove this fact for future work28. In conclusion, the
problem to set up a chosen-key distinguisher in the single-key setting on full AES-192/256
is still open for future research.

“Simultaneous Multiple-of-2” chosen-key distinguisher – (inefficient) strategy for the
adversary

We have just discussed the possibility to set up chosen-key distinguishers on full AES-
192/256 by exploiting the multiple-of-2 property. Here we claim that an adversary - who
does not know the key - is able to construct a set of 264 plaintexts/ciphertexts (pi, ci) such
that:

• for each I ⊆ {0, 1, 2, 3} the number of different pairs of plaintexts that belong to the
same coset of DI for each I is a multiple of 2; similarly, for each J ⊆ {0, 1, 2, 3} the
number of different pairs of ciphertexts that belong to the same coset of MJ for
each J is a multiple of 2.

with a computational cost of 264 computations and a memory cost of 296. Here we present
such strategy.

1) As first thing, the adversary consider a set of 264 random plaintexts and corresponding
ciphertexts, and count the number of collisions. To do this, we propose to use the strategy
proposed in Algorithm 2 – described in the following – for each possible subspace DI and
MJ .

The basic idea is to implement the distinguisher using a data structure. Assume
J ⊆ {0, 1, 2, 3} with |J | = 3 is fixed (the other cases are analogous). The goal is to count

27In particular, 3 · 228 sets are sufficient to find the required sets with probability higher than 95%, since
1− (1− 2−28)3·228 ' 1− e−3 ' 95%.

28In more details, in order to confute this fact one has to find a strategy that the adversary can use
for which the total cost is of 264. To prove this result, one has to show that no strategy exists with the
required cost.
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Algorithm 2 Count number of collisions in the same coset ofMJ for |J | = 3.
Precondition: 264 (plaintext, ciphertext) pairs (pi, ci) for i = 0, . . . , 264 − 1.
Postcondition: Number of Collisions n inMJ for |J | = 3.

1 for all j ∈ {0, 1, 2, 3} do
2 Let A[0, . . . , 232 − 1] an array initialized to zero
3 for i from 0 to 232 − 1 do
4 x ← 0
5 for k from 0 to 3 do
6 x ← x+MC−1(ci)k,j−k · 256k . MC−1(ci)k,j−k denotes the byte of
MC−1(ci) in row k and column j − k mod 4

7 A[x] ← A[x] + 1 . A[x] denotes the value stored in the x-th address of the
array A

8 n ← 0 . n ≡ Number of Collisions
9 for i from 0 to 232 − 1 do

10 n ← n+A[i] · (A[i]− 1)/2
11 return n

the number of pairs of ciphertexts (c1, c2) such that c1 ⊕ c2 ∈MJ , or equivalently

MC−1(c1)i,j−i = MC−1(c2)i,j−i (10)

for all i = 0, 1, 2, 3 where j = {0, 1, 2, 3} \ J , and the index is computed modulo 4. To do
this, consider an array A of 232 elements completely initialized to zero. The element of A
in position x for 0 ≤ x ≤ 232 − 1 – denoted by A[x] – represents the number of ciphertexts
c that satisfy the following equivalence (in the integer field N):

x = c0,0−j + 256 ·MC−1(c)1,1−j +MC−1(c)2,2−j · 2562 +MC−1(c)3,3−j · 2563.

It’s simple to observe that if two ciphertexts c1 and c2 satisfy (10), then they increment
the same element x of the array A. It follows that given r ≥ 0 texts that the same element
x of the array A, then it is possible to construct

(
r
2
)
different pairs of texts that satisfy

(10).
For eachMJ and for each DI , the idea is to store the array A[·] (28 in total). These

arrays are then used in the following to construct the required set of texts.

2) If the previous set does not satisfy the required property, the idea is simply to
change one text with a random one until the multiple-of-2 property is verified: with high
probability, 3 ·228 texts are sufficient, for a total of 264 +3 ·228 ' 264 oracle queries. Indeed,
using 3 · 228 texts, the multiple-of-2 property is verified with probability

1− (1− 2−28)3·228
' 1− e−3 ' 95%

Equivalently, one can use a single random query, for a total of 264 + 1 queries. Given
264 + 1 texts, one simply considers 3 · 228 different subsets of 264 texts.

3) How to count the new number of collisions? Assume we change one text that
contributes the entry A[i] of the array with one that contributes A[j]. It is simple to
observe that the new number of collisions is given by

n← n−
(
A[i]

2

)
+
(
A[i]− 1

2

)
+
(
A[j] + 1

2

)
−
(
A[j]

2

)
= n+A[j]2 + (A[i]2 − 2 ·A[i] + 1).

That is, 2 table look-ups are sufficient to compute the new number of collisions for each
subspaceMI and DJ .
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On the other hand, a more efficient strategy can be considered. Note indeed that we
are only looking for the parity of the number of collisions, and not for the real number.
Thus, observe that(

A[i]
2

)
≡ A[i] · (A[i]− 1)

2 = 0 mod 2 iff A[i] = 0 or 1 mod 4.

This implies that each entry of the table can be computed module 4, that is A[x]← (A[x]+1)
mod 4. Using this observation, it follows that each entry of the table is composed of only
2 bits, for a total of 4 (possible indexes I with |I| = 3) ×4 × 232 = 236 bits in the case
of subspace of dimension 12 (e. g. MJ for |J | = 3), 6 (possible indexes I with |I| = 2)
×4× 264 = 268.6 bits in the case of subspace of dimension 8 and 4 (possible indexes I with
|I| = 1) ×4× 296 = 2100 bits in the case of subspace of dimension 4. It follows that the
total memory cost is well approximated by 2100/16 = 296 equivalently texts.

H Practical collisions for 7-round AES-256 compressing
modes

Many block cipher hashing modes contain XOR of input and output of the cipher. E.g.
given an input x = (x0, x1, ..., xn), the corresponding hash H = (H0 ≡ IV,H1, ...,Hn) can
be produced using

• the Davies–Meyer hash function: Hi = Exi(Hi−1)⊕Hi−1;

• the Matyas-Meyer-Oseas hash function Hi = Eg(Hi−1)(xi)⊕ xi;

• the Miyaguchi–Preneel hash function Hi = Eg(Hi−1)(xi)⊕Hi−1 ⊕ xi.

In this section, we show how to produce collisions for some of such constructions exploiting
our invariant subspace IS. Since we assume the attacker is able to choose the initial value
IV , we propose our results in the compressing mode.

Using the result proposed in Appendix G.3.3 and when the first and second round keys
(namely, k1 and k2) are all zero, we have

IS ⊕ k0
R−1(·)←−−−− IS R6(·)−−−→ IS ⊕ k6,

where k0 and k6 are the initial and final round keys.
Since dimension of IS is 64, we expect to find a collision with (at least) 232 elements

in IS. In fact, since one can construct
(232

2
)

= 232 · (232 − 1)/2 ≈ 263, the probability to
find a collision is approximately 1− (1− 2−64)263 ≈ 1− e−1/2 ≈ 39.35%.

We performed two experiments by encrypting 232 elements in IS in an inside out
fashion by choosing the AES-256 key as

[k0‖k1] = [62636363 00000000 00000000 00000000‖00000000 00000000 00000000 00000000],

which makes first and second round keys zero. In our first experiment we used the smaller
invariant subspace29 IS ′ of dimension 32 where every column is identical

IS ′ :=


a a a a
b b b b
c c c c
d d d d


∣∣∣∣∣∣∣ ∀a, b, c, d ∈ F28

,
29This choice is motivated by the fact that k1, k2, k3, k4 ∈ IS′. As a result:

IS′ ⊕ k0
R−1(·)
←−−−−− IS′

R5(·)
−−−−→ IS′ ⊕ k5

where IS′ ⊕ k5 ⊆ IS (since k5 ∈ IS \ IS′).
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Table 4: Examples of compression collisions for 6 and 7-round AES-256 used in Matyas-
Meyer-Oseas construction where k0‖k1 = 62636363 00000000 00000000 00000000 00000000
00000000 00000000 00000000. Last round contains the matrix multiplication but not the
final key addition, which does not affect the collisions. These plaintexts are also collisions
for Miyaguchi-Preneel mode and pseudo-collisions for Davies-Meyer mode.

Plaintext Hash (Plaintext ⊕ Ciphertext)

7-round Collisions
6407503c0664335f 0664335f0664335f

4a2e96618b438711 284df5028b438711
c2e01a46a0837925 a0837925a0837925
fa8cca8ad93ff889 98efa9e9d93ff889
02cc0aa7b96b44b3 60af69c4b96b44b3

79b1f1b3c1415dd7 1bd292d0c1415dd7

6-round Collisions
b1b602e8d3d5618b d3d5618bd3d5618b

f85752eeb3488419 9a34318db3488419
d0122734b2714457 b2714457b2714457
e75dd657853eb534 853eb534853eb534
27f4f3b1459790d2 459790d2459790d2

c99eec4ba84135a3 abfd8f28a84135a3

e00159e982623a8a 82623a8a82623a8a
09315bee8a3b5978 6b52388d8a3b5978

be9c9a2adcfff949 dcfff949dcfff949
6eed06230c8e6540 0c8e65400c8e6540
497163fb2b120098 2b1200982b120098

a77bf28d6e087b35 c51891ee6e087b35

345684eb5635e788 5635e7885635e788
c82e26780c32ed63 aa4d451b0c32ed63

5ee850813c8b33e2 3c8b33e23c8b33e2
439ad67621f9b515 21f9b51521f9b515
7e4032701c235113 1c2351131c235113

2ecfb051888f27dd 4cacd332888f27dd

which is the same invariant subspace independently used in the cryptanalysis of construc-
tions using the unkeyed AES round permutation, recently e.g. for cryptanalysis of Haraka
hash function in [Jea16], and in the second one we chose 232 random elements in IS.

As a result, we got a 7-round collision in both cases for the Matyas-Meyer-Oseas or
Miyaguchi-Preneel compressing functions constructed with 7-round AES-256, where the
attacker choose IV (= H0) as k0. Note that since AES-256 block size is 128 bits and
key size is 256 bits, a g(·) conversion/padding function is used on the output to make it
suitable as the key. A very natural function g(·) : F2n 7→ F22n that turns out to be good
for our purpose is given by

g(x) = x‖ 0...0︸︷︷︸
n bit

∈ F22n

where ‖ denotes concatenation. Our collisions for 7-round AES-256 hashing modes are
provided in Table 4. Moreover, an perhaps a more natural application, these collisions
turn into collisions for Davies-Meyer compressing mode where the message block is fixed
to k0‖k1 and the plaintexts of Table 4 are used as IV s.

To the best of our knowledge, the best known collision attacks on AES compressing
modes are the trivial conversion of the Whirlpool attacks of [Lam+15]. They turn into
6-round collision attacks on every key length of AES which require 256 time and 232

memory complexity. Our collisions are on 7 rounds and require 232 time and 232 memory
complexity where a time-memory tradeoff is also possible. Our attack is also valid for 6
rounds with the same complexities. It may be conceivable that local collision methods
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from [Bir+09] can be adapted to the compression collision setting we consider here. Note
however that this approach can not avoid to simultaniously require differences in both the
chaining as well as the message input of an AES-256-based compression functions, whereas
we only need a difference in one of the two.
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I Sage code

Listing 1: Sage code for Algorithm 1
 def wkst(f, ks , n, max_rnd , finv=None ,
 ksinv=None , backwards_at =[]):
 """
 Return the set of all subspace trails containing
 W_{i,alpha}


 INPUT:
 - ’’f’’ -- function ; mapping from
 F_2^n -> F_2^n

 - ’’ks ’’ -- function ; mapping from
 F_2^n -> F_2^n
 - ’’n’’ -- integer ; the same n as in F_2^n
 - ’’max_rnd ’’ -- integer ; upper bound on
 the number of
 rounds to cover
 - ’’finv ’’ -- function ; mapping from
 F_2^n -> F_2^n
 - ’’ksinv ’’ -- function ; mapping from
 F_2^n x Z -> F_2^n
 - ’’backwards_at ’’ -- list of integers ;
 rounds in which to
 compute backwards
 """
 if backwards_at != []:
 assert finv is not None
 assert ksinv is not None


 vs = VectorSpace (GF(2), n)
 rnd_cnt = 0
 S = [vs.zero ()]
 Us = [(vs. subspace ([]) ,
 vs. subspace ([ks(s, rnd_cnt ) for s in S])
 )]


 while Us [ -1][0]. dimension () != n:
 rnd_cnt += 1


 Ui_next = [f(vs.zero ())]
 for _ in range(n *1.3):
 u = Us [ -1][1]. random_element ()
 Ui_next . append (f(u))


 Ui_next = vs. subspace ( Ui_next )
 Ui_next_prime = vs. subspace ( Ui_next .basis ()
 + [ks(s, rnd_cnt ) for s in S])
 Us += [( Ui_next , Ui_next_prime )]


 if rnd_cnt in backwards_at :
 backwards_at . remove ( rnd_cnt )


 Ui_next_prime = Us [ -1][1]
 for _ in range( Ui_next_prime . dimension ()+10):
 ki = Ui_next_prime . random_element ()
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 k0 = ksinv(ki , rnd_cnt )
 if k0 not in S:
 S. append (k0)


 Us = backwards (finv , n, rnd_cnt , Us [ -1][0])
 rnd_cnt = 0


 if max_rnd != 0 and rnd_cnt >= max_rnd :
 break


 return Us , S




 def backwards (finv , n, rnd , Ui):
 """
 Given a weak -key -subspace -trail Us , compute
 backwards for rnd many rounds , using the
 inverse round function finv , from its last
 subspace and return a new starting point
 (U_0 , U_0 ’)


 INPUT:
 - ’’finv ’’ -- function ; mapping from
 F_2^n -> F_2^n
 - ’’n’’ -- integer ; the same n as in F_2^n
 - ’’rnd ’’ -- integer ; number of rounds
 to invert
 - ’’Ui ’’ -- subspace ;
 """
 vs = VectorSpace (GF(2), n)
 Ui_prev , Ui_prev_prime = Ui , Ui


 # compute rnd many rounds backwards
 for i in range(rnd , -1, -1):
 Ui_prev = list( Ui_prev_prime .basis ()
 + [finv(vs.zero ())])
 for _ in range(n *1.3):
 u = Ui_prev_prime . random_element ()
 Ui_prev . append (finv(u))
 Ui_prev = vs. subspace ( Ui_prev )
 return [( Ui_prev , Ui_prev )]
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