
AuroraLight: Improved prover efficiency and SRS size in a Sonic-like

system

Ariel Gabizon
Protocol Labs

Abstract

Using ideas from the recent Aurora zk-STARK of Ben-Sasson et al. [BCR+19], we present a
zk-SNARK with a universal and updatable SRS similar to the recent construction of Maller et
al. [MBKM19], called Sonic. Compared to Sonic, our construction achieves significantly better
prover run time (less than half) and smaller SRS size (one sixth). However, we only achieve
amortized succinct verification time for batches of proofs, either when the proofs are generated
in parallel or in [MBKM19]’s helper setting, and our proofs are longer than those of [MBKM19]
(but still contain a constant number of field and group elements).

1 Introduction

Due to real-world deployments of zk-SNARKs, e.g. Zcash; it has become of significant interest to
have the structured reference string (SRS) be constructible in a “universal and updatable” fashion.
Meaning that the same parameters (a different term for the SRS) can be used for statements about
all circuits/computations of a certain bounded size; and that at any point in time the parameters
can be updated by a new party, such that the honesty of only one party from all updaters up to
that point is required for soundness. A natural direction to achieve this, is by having an “SRS of
monomials” meaning that the SRS consists solely of elements gx

i
for a secret uniform x. Roughly

speaking, such elements are easy to update as the new party can just raise them to power si for
their secretly chosen s.

Maller et al. [MBKM19] noticed that the polynomial commitment scheme of Kate, Zaverucha
and Goldberg [KZG10] is very helpful in this context, as such an SRS of monomials is sufficient
in [KZG10] to verifiably evaluate values of low-degree polynomials committed to by the prover -
this being perhaps the main problem to be dealt with (without the luxury of an SRS) in PCP
constructions using techniques such as low-degree testing (starting from [BFL91]) and PCP’s of
proximity [BS08] (and in more modern works also IOP’s of proximity [BCG+17]).

The Sonic approach [MBKM19]’s Sonic uses a variant of the arithmetization of Bootle et al.
[BCC+16] to create a situation where a certain polynomial of the prover can have a zero constant
coefficient only when the prover has a satisfying assignment. Roughly, this is achieved by using
Laurent polynomials with both negative and positive powers, such that their product cancels out
in the constant term only when a satisfying assignment was used to construct them. A lot of the
ingenuity of [MBKM19] is that though the polynomials from [BCC+16] are bi-variate and [KZG10]
is only efficient for univariate polynomials (in the sense of linear time proving in the degree) they

1

are able to maneuver in a way that only requires to commit and evaluate univariate restrictions
of the original bi-variates. However, using negative powers for the cancellation trick comes at a
price of having the polynomials ultimately plugged in to the [KZG10] scheme have a larger range of
powers - roughly a 7n size range from −4n to 3n (where n is the number of multiplication gates in
our circuit). Furthermore, [MBKM19] need to put a “hole” in this range to disallow the constant
coefficient, which doubles the SRS size.

The main point is that the number of prover exponentiations and SRS size is directly tied to the
size of this range when using [KZG10].

The Aurora approach Instead, we use a nice algebraic trick from the Aurora IOP[BCR+19].
[BCR+19] uses a lemma (Lemma 4.1) connecting between the value of a polynomial’s constant
coefficient, and its sum on a multiplicative subgroup. Together with a randomized sum check
arithmetization in the style of [BCG+17, BCR+19], this allows us to create a “constant coefficient=0
iff prover has witness” situation without using negative powers. This enables only dealing with
(regular not Laurent) polynomials of degree at most 2n; i.e. we have reduced the “monomial
range” of Sonic from 7n to 2n, and do not need to deal with a “hole” in this range disallowing a
constant coefficient. Morever, all but one of the prover polynomials will have degree at most n,
which further helps reduce prover run time. On the other hand, we have five polynomials to deal
with rather than two as in [MBKM19], which is why our proofs are longer than Sonic’s.

Before comparing performance with [MBKM19] in more detail, we discuss the three settings in
which both our construction and Sonic can be used.

1.1 The three modes of Sonic

The basic version of the Sonic verifier, as well as ours, is succinct (i.e. polylog(λ) running time)
except for the need to evaluate a polynomial s(X,Y) of O(n) monomials. The evaluation of s in
Sonic is done once per proof, at a point (z, y) chosen by the verifier during the protocol. There are
three ways to deal with this evaluation.

Parallel proof generation for a batch: The crucial point is that the values z, y are only
revealed to the prover at certain points in the protocol; but beyond this, there is no dependence
between the values z, y and the specific statement proven - they just need to be uniform. It follows
that if proofs are generated in parallel, e.g. in practice by posting the first part of all proofs on a
blockchain and getting the random challenge z afterwords and continuing similarly for y - then the
verifier can use the same (z, y) for a whole batch of proofs and do the non-succinct s evaluation only
once per batch.1 Our construction also has the property that the non-succinct verifier computations
can be done only once per batch.

Arbitrary batching using an untrusted helper: [MBKM19] develop a method where a batch
of evaluations {s(zj , yj)}j∈[m] can be performed by an untrusted helper and a proof can be given to
the verifier that the evaluations are all correct. Verification of this proof only requires one evaluation
of s. Hence, using this “helper mode” we can verify an arbitrary batch of proofs generated without
any synchronization, with a non-succinct operation done only once per batch. This mode incurs the

1[MBKM19] do not explicity discuss this mode, but we think it may be the most practical both for their construc-
tion and ours.

2

cost of needing such a helper, and adding the evaluation s(zj , yj) and proof of correct evaluation,
which increase the proof size. Our scheme can also leverage the Sonic helper, however with larger
cost to proof size as we have six polynomials per proof that need to be evaluated by the verifier
instead of one. See details in Section 5.

Fully succinct mode: [MBKM19] in fact manage to design a proof system that allows a fully
succinct (i.e. not just in the amortized sense) verifier to verify that the evaluation s(z, y) is correct.
However, their fully succinct mode requires significant increase of the constants in proof size, proving
and verification time and may be less practical. Our construction does not currently support this
mode, but it seems possible an extension to this mode can be done. We pose this as an open
question with more details in Section 7.

1.2 Our results compared to [MBKM19]

We compare the performance of Sonic to our system when generating proofs for arithmetic circuits
with n multiplication gates, or analogously, an R1CS system with n constraints. Motivated by the
discussion in Section 1.1 about settings of batched proofs - we omit from the tables the once per
batch computations of the verifier. These are similar in Sonic and our system and are linear in the
circuit size.

The first two columns in Table 1 describe SRS size when only knowing a bound d on the circuit
size/number of R1CS constraints; and then the reduced size possible to work with when knowing
the exact size n of the circuit.

When describing proof sizes, we separate between the elements from the prover in the parallel
generation setting, and the additional elements from the helper in the helped setting.

We omit O(1) factors. For example, in the fixed circuit size SRS size, we omit the constant
number of G2 elements needed in the SRS both in Sonic and our system. We also mention that
adding zero-knoweldge increases by a small constant the number of prover exponentiations both in
our system, and it seems, in Sonic.

In a nutshell, our construction has better prover run time and SRS size; while Sonic has smaller
proofs, less auxiliary data and extra verifier work in helper mode, and a fully succinct verifier mode.
Thus, the advantage of this work is most prominent in the parallel proof generation setting.

size ≤ d
SRS

size = n
SRS

prover
work

proof
length

Sonic 12d G1, 12d G2 12n G1 18n G1 exp 4 G1, 2 F
This work 2d G1, 2d G2 2n G1 8n G1 exp 6 G1, 4 F

Table 1: Prover comparison

1.3 Organization of paper

Section 2 contains terminology we will use. Section 3 contains an adaptation of the [KZG10] scheme
similar to that of [MBKM19] that we will use. Section 4 contains our main construction assuming
a polynomial commitment scheme as a black box. Section 5 shows how to adapt the Sonic helper

3

verifier
work

elem. from
helper

extra verifier
work in

helper mode
fully succinct
ver. mode?

Sonic 5P 3 G1, 2 F 4P Yes

This work 5P 8 G1, 10 F 12P No

Table 2: Verifier comparison per proof in batch, P=pairing

mode to our construction. Section 6 shows how to add zero-knoweldge to our construction. Section
7 discusses a possible extension to get a fully succinct verifier.

2 Terminology/conventions

We assume our field F is of prime order. We denote by F<d[X] the set of univariate polynomials over
F of degree smaller than d. We assume all algorithms described receive as an implicit parameter
the security parameter λ.

Whenever we use the term “efficient”, we mean an algorithm running in time poly(λ). Further-
more, we assume an “object generator” O that is run with input λ before all protocols, and returns
all fields and groups used. Specifically, in our protocol O(λ) = (F,G1,G2,Gt, e, g1, g2, gt) where

• F is a prime field of super-polynomial size r = λω(1) .

• G1,G2,Gt are all groups of size r, and e is an efficiently computable non-degenerate pairing
e : G1 ×G2 → Gt.

• g1, g2 are uniformly chosen generators such that e(g1, g2) = gt.

We usually let the λ parameter be implicit, i.e. write F instead of F(λ). We write G1 and G2

additively. We use the notations [x]1 := x · g1 and [x]2 := x · g2.

Random oracles We describe public-coin interactive protocols between a prover and verifier;
when deriving results for non-interactive protocols, we implicitly assume we can get a proof length
equal to the total communcation of the prover, using the Fiat-Shamir transform/a random oracle.
Using this reduction between interactive and non-interactive protocols, we can refer to the “proof
length” of an interactive protocol.

3 The [KZG10] scheme as used in Sonic

We recall the [KZG10] scheme with two enhancements of [MBKM19] that will be important for us:
The first is enabling a commitment to all degrees up to a certain size, rather than just the maximal
degree. The second is “batch openings” of several polynomials at the same point z ∈ F. We define
a polynomial commitment scheme with these enhancements in mind.

Definition 3.1. A d-polynomial commitment scheme consists of

• Gen(d)- is a randomized algorithm that outputs an SRS σ.

4

• com(f,max, σ)- that given a polynomial f ∈ F<max[X], where max ≤ d, returns a commit-
ment cm to f .

• A public coin protocol open between parties Ppoly and Vpoly. Ppoly is given f1, . . . , ft ∈ F<d[X].
Ppoly and Vpoly are both given integer t = poly(λ), cm1, . . . , cmt - the alleged commitments to
f1, . . . , ft, integers 0 < d1, . . . , dt ≤ d, z ∈ F and s1, . . . , st ∈ F - the alleged correct openings
f1(z), . . . , ft(z). At the end of the protocol Vpoly outputs acc or rej.

such that

• Completeness: Fix integer t, z ∈ F, f1, . . . , ft ∈ F<d[X] and 0 < d1, . . . , dt ≤ d such that
deg(fi) < di. Suppose that for each i ∈ [t], cmi = com(fi, di, σ). Then if open is run correctly
with values t, z, {cmi, di, fi(z)}i∈[t], Vpoly outputs acc with probability one.

• Knowledge soundness in the generic group model: There exists an efficient E such that
for any efficient generic group model adversary A and arbitrary efficient A′, the probability
of (A,A′) winning the following game is negl(λ) over the randomness of (A,A′) and Gen.

1. Given σ, A outputs t, cm1, . . . , cmt.

2. E, given access to the state of A outputs f1, . . . , ft ∈ F<d[X].

3. A′ outputs 0 < d1, . . . , dt ≤ d, s1, . . . , st ∈ F, z ∈ F.

4. A′ takes the part of Ppoly in the protocol open with inputs cm1, . . . , cmt, d1, . . . , dt, s1, . . . , st.

5. (A,A′) wins if

– V outputs acc at the end of the protocol.

– For some i ∈ [t], si 6= fi(z) or deg(fi) ≥ di.

We describe the following scheme based on [KZG10, MBKM19]. It is in fact a slightly simpler
scheme than in [MBKM19] because, as explained in the introduction, there is no need to deal with
holes in the allowed range of degrees.

1. Gen(d) - choose uniform x ∈ F. Output σ = ([1]1 , [x]1 , . . . ,
[
xd−1

]
1
, [1]2 ,

[
x−1

]
2
, . . . ,

[
x−(d−1)

]
2
).

2. com(f, d′, σ) :=
[
xd−d

′ · f(x)
]
1
.

3. open({cmi} , {di} , {si} , z)

(a) Vpoly sends random γ ∈ F.

(b) Ppoly computes the polynomial

h(X) :=

t∑
i=1

γi · fi(X)− fi(z)
X − z

and using σ computes and sends W := [h(x)]1.

(c) Vpoly computes the elements

F :=
∏
i∈[t]

e
(
γi · cmi,

[
xdi−d

]
2

)
, v :=

∑
i∈[t]

γi · si


1

5

(d) Vpoly computes outputs acc if and only if

F = e (v − z ·W, [1]2) · e(W, [x]2).

Note that |σ| = 2d in the above scheme. However, a crucial point is that once we fix ` values from
which we will always choose {d1, . . . , dt}, we can work with a subvector of σ of size d + `. In our
SNARK, given a circuit size, we will only need ` = 3 of the G2 values from σ in our SRS.

The following is implied almost directly by Theorem 6.1 and Appendix C.1 of [MBKM19]. We
leverage that the pairings in step 3c can be batched for indices i, j such that di = dj .

Lemma 3.2. Fix any d and assume the d-power bi-linear Strong Diffie Hellman assumption holds.
Then the above scheme is a d-polynomial commitment scheme such that

1. Ppoly requires max G1 exponentiations for computing com(f,max, σ).

2. Ppoly requires
∑t

i=1O(di log(di)) field operations and
∑t

i=1 di exponentiations for computing
open({cmi}i∈[t] , {di}i∈[t] , {si}i∈[t] , z).

3. Vpoly requires t∗ + 2 pairings, where t∗ is the number of distinct values amongst d1, . . . , dt.

4 The main construction

We begin by converting R1CS to a format that is convenient for us. We denote by n the number
of private inputs and the number of constraints which we assume our equal (can be achieved by
adding dummy variables or constraints if needed). We denote by ` the number of public inputs;
and define N := n+ `. We assume the first n variables correspond to the private inputs.

We assume we have a multiplicative subgroup H ⊂ F of size n. Somewhat confusingly, it will
be convenient to identify the elements of H with the integers {0, 1, . . . , n− 1} when using them as
exponents.

Tweaking r1cs to our format Our original R1CS consists of the constraints:
For all i ∈ [n]

(ai · x)(bi · x)− (ci · x) = 0,

where · denotes inner product of vectors of length N . We modify the system to “flatten” linear
combinations to variables. That is, we add two vectors of variables y, z ∈ Fn and look at the
following system with 3n constraints:
For all i ∈ [n]

1. yi · zi − (ci · x) = 0.

2. yi − (ai · x) = 0.

3. zi − (bi · x) = 0.

Note that above yi, zi ∈ F but ai, bi, ci, x ∈ FN . Similarly to the original system, we call xn+1, ..., xN
the public variables of this system, and all other variables private variables.

6

A lemma about sums on subgroups We use the following fact mentioned in Remark 5.6 in
[BCR+19] that is crucial to the Aurora system, as well as ours:

Lemma 4.1. Fix any f ∈ F<n[X]. Then for any multiplicative subgroup H ⊂ F with |H| = n,∑
a∈H

f(a) = 0

if and only if f has a zero constant term.

4.1 The main protocol

When describing the protocol we assume we have a 2n-polynomial commitment scheme as defined
in Section 3.

Step 1: prover commiting to witness The prover P starts by computing three polynomials
representing the satisfying assignment (x, y, z) ∈ F3n of the private variables. Specificaly, polyno-
mials W,Y,Z ∈ F<n[X], such that for each i ∈ H, W (i) = xi, Y (i) = yi, and Z(i) = zi. P sends
polynomial commitments to W,Y,Z, with parameter max = n, to the verifier V.

Step 2: verifier choosing a challenge; prover and verifier reducing to sumcheck V
chooses random r, r′, r′′ ∈ F which it sends to P. They both now independently reduce the satisfi-
ability check to a sum check as follows: Look at the sum∑

i∈H
ri(yizi − ci · x) +

∑
i∈H

r′i(yi − ai · x) +
∑
i∈H

r′′i(zi − bi · x).

Note that the sum is always zero for a satisfying assignment, and non-zero e.w.p n/|F| over r, r′, r′′

for a non-satisfying one. Rearrange the sum as∑
i∈H

riyizi +
∑
i∈H

r′iyi +
∑
i∈H

r′′izi +
∑
i∈H

αixi + α0

where αi is a coefficient containing some polynomial expression in r, r′, r′′, {ai,j , bi,j , ci,j}; and also
the public inputs xn+1, ..., xN in the case of α0. Now compute R,R′, R′′, Q ∈ F<n[X], such that for
i ∈ [n], R(i) = ri, R′(i) = r′i, R′′(i) = r′′i, Q(i) = αi. Define the polynomial D ∈ F<3n[X] by

D := R · Y · Z +R′ · Y +R′′ · Z +Q ·W + α0/n.

Our sum above becomes ∑
i∈H

D(i).

We have thus reduced our problem to a polynomial sumcheck. To be able to use Lemma 4.1, as in
[BCR+19], we use polynomial division.

Let ZH(X) :=
∏
a∈H(X − a) = Xn − 1. P computes g ∈ F<2n[X], f ∈ F<n−1[X] such that

D(X) = g(X) · ZH(X) +X · f(X).

Note that from polynomial division combined with Lemma 4.1 if the sum vanishes - such f, g indeed
exist. P sends commitments of g with parameter max = 2n and f with parameter max = n − 1
to V.

7

Step 3: Verifier verifying the sumcheck by opening commitments and checking a
polynomial identity Note that if g and f are well-formed in the sense that indeed D(X) =
g(X) · ZH(X) +X · f(X), then D(a) = a · f(a) for any a ∈ H. In such a case it thus suffices that
V check that ∑

a∈H
a · f(a) = 0.

However, since deg(f) < n − 1 is guaranteed by the commitment scheme, we have that f ′(X) :=
X · f(X) is a polynomial of degree < n with zero constant coefficient; therefore the sum vanishes
by Lemma 4.1. Hence, V need only check that indeed D = g · ZH +X · f .

For this purpose, V chooses a random z ∈ F and asks for the openings Y (z), Z(z),W (z), g(z), f(z).
Using Y (z), Z(z),W (z) together with R(z), R′(z), R′′(z), Q(z), α0 that it can compute by itself, V
computes D(z). Now V checks if

D(z) = g(z) · ZH(z) + z · f(z),

and outputs acc if and only if the equality holds. Using Schwartz-Zippel, the probability of a false
assignment leading to acceptance (via this identity or a bad choice of r, r′, r′′ above) is at most
4n/|F|.

4.2 Protocol summary

For convenience, we summarize the main protocol steps deferring to the more detailed description
above for missing details.

1. P sends cm(W,n, σ), cm(Y, n, σ), cm(Z, n, σ) to V.

2. V chooses random r, r′, r′′ ∈ F and sends them to P. They both derive the polynomials
R,R′, R′′.

3. P computes D. P computes f ∈ F<n−1[X], g ∈ F<2n[X] such that D(X) = g(X) · ZH(X) +
X · f(X).

4. P sends cm(g, 2n, σ), cm(f, n− 1, σ) to V.

5. V chooses random z ∈ F and sends z to P.

6. P sends sW = W (z), sY = Y (z), sZ = Z(z), sf = f(z), sg = g(z) to V.

7. P and V engage in the protocol open(5, {n, n, n, n− 1, 2n} , {W,Y,Z, f, g} , {sW , sY , sZ , sf , sg}).
V outputs rej if the protocol verifier did.

8. V computes the alleged value of D(z), as

sD := R(z)sY sZ +R′(z)sY +R′′(z)sZ +Q(z)sW + α0

and outputs acc if and only if

sD = sg · ZH(z) + z · sf .

8

Parallel proof generation Parallel proof generation with efficient amortized verification, as
mentioned in Section 1.1, is achieved by running most steps separately for each public input, but
jointly in steps 2 and 5, i.e. use the same verifier randomness r, r′, r′′, z for all proofs. When this is
done the values R(z), R′(z), R′′(z), Q(z) can be computed just once for all proofs in step 8.

Saving one field element as in Sonic: Note that in the equation checked by V in step 8, when
z 6= 0, the value sf that will cause acceptance is uniquely determined by the other four values
sW , sY , sZ , sg. Thus V can compute it himself as

sf := (sD − sg · ZH(z)) /z,

and check its correctness in the protocol open of step 7.

5 Batching arbitrary proofs with the Sonic helper

As in [MBKM19], the heavy/non-succinct part of the verifier computation is evaluating polynomials
whose size is as large as the circuit/number of R1CS constraints. Sonic has a clever solution for
this2 - using an untrusted helper. The helper computes the polynomial evaluations for the verifier,
and is able to prove the evaluations are correct. This is what [MBKM19] call a signature of
correct computation. As we need to use the Sonic helper on several different polynomials in related
evaluation points, it will be convenient to use a definition that supports multiple polynomials and
evaluation points, at the cost of a more complicated definition of SCC.

Definition 5.1. A protocol P between two-parties (Psc,Vsc) is a (t, {mi}i∈[t] , d)-signature of cor-
rect computation ((t, {mi}i∈[t] , d)-SCC) if, when both parties are given s1, . . . , st ∈ F<d[X,Y]

and a sequence of values S =
{

(xi,j , yi,j , si,j) ∈ F3
}
i∈[t],j∈[mi]

, Vsc ends up outputting a value

res ∈ {acc, rej} such that

1. Completeness: If for every i ∈ [t], j ∈ [mi], si,j = si(xi,j , yi,j), and (Psc,Vsc) follow the
protocol then Vsc outputs acc with probability one.

2. Soundness: For any efficient generic group adversary A playing the part of Psc, if for some
i ∈ [t], j ∈ [mi], si,j 6= si(xi,j , yi,j), then the probability that Vsc outputs acc is negl(λ).

The following lemma follows from [MBKM19]’s helped-SCC protocol, together with their batched
opening commitment scheme as described in Section 3.

Lemma 5.2. Fix integers t, {mi}i∈[t] , d. There is a pubic coin (t, {mi}i∈[t] , d)-SCC such that the

following holds. Let S =
{

(xi,j , yi,j , si,j) ∈ F3
}
i∈[t],j∈[mi]

be the common input to Psc and Vsc in the

beginning of the protocol.
Suppose that

1. m∗ is the sum over i ∈ [t] of the number of distinct values in {yi,j}j∈[mi]
.

2. m∗∗ is the number of distinct values in {yi,j}i∈[t],j∈[mi]
.

3. m∗∗∗ is the number of distinct values in {xi,j}i∈[t],j∈[mi]
.

2In fact, two different solutions for this and we’ll discuss the second in Section 7.

9

Then

• the total prover communication in the protocol consists of m∗ +m∗∗ +m∗∗∗ + t G1 elements
and m∗ + t field elements.

• The verifier computation consists of one evaluation of each si and 3(m∗∗+m∗∗∗+ t) pairings.

• The SRS required for the scheme is the same as that of the d-polynomial commitment scheme
described in Section 3.

Let us see how Lemma 5.2 helps us improve verifier efficiency in the batch helped model:
The heavy verifier computations - meaning those linear instead of polylogarithmic in the number
of constraints - are the evaluation at the point z of the polynomials Q,R,R′, R′′. Recall that
R,R′, R′′ were defined by a random choice of r ∈ F. We could in fact think of them all as bi-variate
polynomials evaluated at (r, z) (R′, R′′ are the same bi-variate polynomial as R when viewed this
way); we claim that as bivariate polynomials they are all members of F<n[X,Y]: Let {Li ∈ F[Y]}i∈H
be the Lagrange basis with respect to H. That is, Li is the unique polynomial of degree less than
n with L(i) = 1 and L(j) = 0 for i 6= j ∈ H. Now, we can see that

R(X,Y) =
∑
i∈H

Xi · Li(Y)

Similarly, Q was defined by a random choice of r, r′, r′′ ∈ F and thus can be thought of as a sum of
three bivariates Q1, Q2, Q3 with

Qj(X,Y) =
∑
i∈H

αi,j(X) · Li(Y)

for some αi,j(X) ∈ F<n[X], such that the total number of non-zero coefficients in {αi,j(X)} is
bounded by the number of wires in the circuit we constructed the R1CS from; hence we can assume
it is O(n).

What will be important for us is that given z ∈ F, the values {Li(z)}i∈H can be computed in
at most O(n) field operations (As Li(Y) = Y n−1

Y−i ·
i−1
in−1).

Thus, a helper can use the protocol of Lemma 5.2, with to computeQ(r, r′, r′′, z), R(r, z), R(r′, z), R(r′′, z)
for V and convince him the values are correct.

Mapping our situation to Lemma 5.2, for one execution of the main protocol we have

1. t = 4: Our polynomials are Q1, Q2, Q3, R.

2. m∗ = 4: Our second coordinate is always z.

3. m∗∗ = 3: The options for the first coordinate in all polynomials are r, r′, r′′.

4. m∗∗∗ = 1: Again, cause our second coordinate is always z

On the other hand, when batching arbitrary proofs, there will not be necessarily any overlap
between the values of the coordinates of evaluation points. It follow from Lemma 5.2 that, for a
batch of T proofs, the helper mode adds 8T + 4 G1 elements and 10T + 4 field elements to the
proofs (including a 6T factor for the evaluations of R,Q1, Q2, Q3 themselves), and 12T +12 pairing
operations to the verifier.

This while requiring the verifier to only perform O(n) field operations to compute the polyno-
mials Q1, Q2, Q3, R at a single point, (instead of O(n · T) without the helper).

10

6 Getting zero-knowledge

We sketch how to add zero-knowledge to our scheme. The information given by the prover is
limited to two evaluations of the polynomials W,Y,Z, f, g (one evaluation in the exponent during
commitment, and one during opening). We need these evaluations not to leak any information.
Note first that when the prover is honest, the evaluations of g are a function of the previous ones
determined by the verifier equation. Thus, it is enough to show the evaluations of W,Y,Z, f don’t
leak information.

The natural method in such cases see e.g. [GGPR13, BCGV16, BCR+19], is to add to the
polynomials random multiples of ZH . This doesn’t completely work in our case as f is the result
of a modulu ZH operation that would neutralize this randomization.3 So, we must take a slightly
more cumbersome “two-layered” randomization approach:

We assume the last two indices xn−2, xn−1, yn−2, yn−1, zn−2, zn−1 of x, y, z do not participate in
any constraints (this can be achieved by padding the original R1CS with two unused variables).
Let H0 := H \ {n− 2, n− 1}.

The prover P will choose six random degree one polynomials L0
W , L

1
W , L

0
Y , L

1
Y , L

0
Z , L

1
Z and define

• W ′ := W + L0
WZH0 + L1

WZH .

• Y ′ := Y + L0
Y ZH0 + L1

Y ZH .

• Z ′ := Z + L0
ZZH0 + L1

ZZH .

P will conduct the protocol with W ′, Y ′, Z ′ instead of W,Y,Z. We claim this results in a zero-
knowledge protocol.

Note first that W ′, Y ′, Z ′ satisfy the R1CS constraints when W,Y,Z did as they conicide on
H0.

Also, fixing any τ, z ∈ F; The twelve values W ′(τ),W ′(z), (W ′ mod ZH)(τ), (W ′ mod ZH)(z),
Y ′(τ), Y ′(z), (Y ′ mod ZH)(τ), (Y ′ mod ZH)(z), Z ′(τ), Z ′(z), (Z ′ mod ZH)(τ), (Z ′ mod ZH)(z) are
all uniform and independent.

Thus, the two evaluations of W ′, Y ′, Z ′ give no information. The two evaluations of f are a func-
tion of the verifier randomness together with the evaluations at τ, z of (W ′ mod ZH), (Y ′ mod ZH),
(Z ′ mod ZH), which can thus be simulated by chosing the latter evaluations independently and
uniformly and computing f from them.

7 Open question: getting a fully succinct verifier

[MBKM19] give a (1, d)-SCC where the run time of Vsc is polylogarithmic in d; i.e. the verifier is
fully succinct, in the following restricted case. The polynomial s(X,Y) can be written as a sum of
a constant number of polynomials of the form∑

i∈[d]

aiX
iY σ(i)

where σ is a permutation of [d]. Our polynomials Q1, Q2, Q3, R from Section 5 are not of this form.
However, it seems plausible the construction can be made to work while changing the polynomials
into this form.

3[BCR+19] has a very similar problem, that is more complex as their proof is a function, specifically the RS-IOPP
part, of much more evaluations of f .

11

Acknowledgements

We thank Mary Maller for sharing details of the [MBKM19] construction, even while it was a work
in progress, which inspired and motivated this work. We thank Sean Bowe for discussions on Sonic.

References

[BCC+16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In Advances in Cryptology
- EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part II, pages 327–357, 2016.

[BCG+17] E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner. Interactive oracle
proofs with constant rate and query complexity. In 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw,
Poland, pages 40:1–40:15, 2017.

[BCGV16] E. Ben-Sasson, A. Chiesa, A. Gabizon, and M. Virza. Quasi-linear size zero knowledge
from linear-algebraic pcps. In Theory of Cryptography - 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, pages 33–64,
2016.

[BCR+19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora:
Transparent succinct arguments for R1CS. In Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I,
pages 103–128, 2019.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991.

[BS08] E. Ben-Sasson and M. Sudan. Short pcps with polylog query complexity. SIAM J.
Comput., 38(2):551–607, 2008.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and
succinct nizks without pcps. In Advances in Cryptology - EUROCRYPT 2013, 32nd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, pages 626–645, 2013.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polyno-
mials and their applications. In Advances in Cryptology - ASIACRYPT 2010 - 16th
International Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings, pages 177–194, 2010.

[MBKM19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge snarks
from linear-size universal and updateable structured reference strings. IACR Cryptology
ePrint Archive, 2019:99, 2019.

12

