DOI:10.13228/j.boyuan.issn1000-7571.010277

电感耦合等离子体质谱法测定烟道灰中铟

 倪文山^{1,2,3},张宏丽^{1,2,3},高小飞^{1,2,3},姚明星^{1,2,3},肖 芳^{*1,2,3},毛香菊^{1,2,3}
 (1. 中国地质科学院郑州矿产综合利用研究所,河南郑州 450006;2. 国家非金属矿资源综合利用工程技术研究中心, 河南郑州 450006;3. 国土资源部多金属矿评价与综合利用重点实验室,河南郑州 450006)

要:电感耦合等离子体质谱法(ICP-MS)测定了烟道灰中 In 时,多原子分子离子和同量异 摘 位素115 Sn 的干扰不可忽略。采用 HCl、HNO、、HF 和 HClO4 溶解烟道灰样品,选择115 In 为被 测同位素,100 ng/mL¹⁸⁵ Re 作为内标,以动能歧视碰撞池(KED)消除多原子分子离子干扰,以 数学校正方程消除同量异位素115Sn的干扰,实现了电感耦合等离子体质谱法对烟道灰中 In 的测定。详细考察了¹¹⁵Sn 对¹¹⁵In 测定的干扰,结果表明,¹¹⁵Sn 对¹¹⁵In 的干扰量与 Sn 的含量 呈线性相关,因此得到了对115Sn 干扰进行校正的数学校正方程。在测定中,考虑到样品溶液 中 Sn 的含量较高,一般超出了 ICP-MS 的测定范围,故选择以 ICP-AES 对 Sn 进行测定,再采 用数学校正方程对其干扰进行校正。分别在标准模式和 KED 模式下对烟道灰样品中 In 进行 了测定,结果表明,KED模式下 In 的测定结果与对照值(乙酸丁酯萃取-原子吸收光谱法测定 值)基本一致,而标准模式下的测定结果相对偏高;同时试验表明,KED模式下 In 的背景等效 浓度和方法检出限约比标准模式低一个数量级。因此实验选用 KED 模式进行测定并对其条 件进行了优化,最终确定碰撞气流量为4.90 mL/min。在选定的实验条件下, In 质谱强度与 其质量浓度在 5~100 ng/mL 范围内呈良好的线性关系,校准曲线相关系数为 0.9994,方法 检出限为 0.0046 ng/mL。将实验方法应用于实际烟道灰样品中 In 的测定,所得结果的相对 标准偏差(RSD,n=6)为 0.20%~1.3%,加标回收率为 98%~102%。

关键词:烟道灰;铟;数学校正;动能歧视碰撞池(KED);电感耦合等离子体质谱法(ICP-MS) 文献标志码:A 文章编号:1000-7571(2018)03-0008-06

钢(In)在地壳中的平均质量分数为 0.00001%, 属于稀有稀散元素;是制造低熔合金、轴承合金、半 导体、电光源和无线电工业的重要材料。烟道灰是 冶炼多金属元素的副产品,是提取 In 的主要原料之 一,故准确分析烟道灰中的 In 具有很高的实际意 义。分析 In 的方法一般有伏安法^[1]、分光光度 法^[2]、原子吸收光谱法(AAS)^[3]、X 射线荧光光谱 法(XRF)^[4]和电感耦合等离子体原子发射光谱法 (ICP-AES)^[5]等。伏安法和分光光度法样品处理手 续十分繁琐;AAS测定 In 的灵敏度不高,且多有干 扰,一般利用有机物萃取 In 的溴化物后在有机相中 直接测定,手续非常复杂;XRF 对标准物质要求高 且背景干扰大,而烟道灰没有标准物质;ICP-AES 受共存元素光谱背景干扰严重。由于电感耦合等离 子体质谱法(ICP-MS)在分析痕量元素方面具有多 元素同时检测、线性动态范围宽和检出限低等优 点^[6-9],其常应用在 In 的分析方法中^[10]。实验采用 HCl、HNO₃、HF 和 HClO₄等混合酸溶解烟道灰样 品,选择¹¹⁵ In 为被测同位素,选择¹⁸⁵ Re 为内标进行 校正以提高测定精密度,以动能歧视碰撞池(KED) 消除多原子分子离子干扰,并以数学校正方程消除 同量异位素¹¹⁵ Sn 的干扰,最终实现了对烟道灰中 In 的测定。

1 实验部分

1.1 主要仪器及工作条件

ICAP Q。电感耦合等离子体质谱仪(美国 Thermo Scientific 公司),选定的仪器分析参数见表 1。ICAP

收稿日期:2017-11-03

基金项目:重要矿产和土地资源节约集约综合利用标准研究(2016YFF0201604)

作者简介:倪文山(1980—),男,高级工程师,主要从事无机元素测试和分析方法的研究;E-mail:44622725@sina.com * 通讯联系人:肖 芳(1986—),女,硕士,主要从事无机元素测试和分析方法及标准物质的研究;E-mail:xiaofang889667@ 126.com

Table 1 The operation paramenters for ICP-MS 仪器参数 仪器参数 数值 数值 Instrument Instrument Value Value parameters parameters 功率/W 1550 数据采集方式 跳峰 采样深度/mm 5 扫描次数 30 冷却气流量/(L/min) 14 读数通道 1 辅助气流量/(L/min) 0.80 测量时间/ms 10雾化气流量/(L/min) 1.00 He 气/(mL/min) 4.90

表1 ICP-MS 工作参数

7400型电感耦合等离子体原子发射光谱仪(美国 Thermo Scientific 公司); contrAA700型原子吸收 光谱仪(德国耶拿)。

1.2 主要试剂

质谱仪分析参数校正溶液(美国 Thermo Scientific 公司):Li、Co、In、U、Ba、Bi、Ce 各元素质量浓 度均为 1.0 μ g/L,介质为 2% HNO₃(体积分数)-0.5% HCl(体积分数);Sn 标准溶液:1.0 mg/mL, 准确称量 0.1000g 光谱纯 Sn 粉于 100 mL 玻璃烧 杯中,加入 20 mL HCl,加热搅拌至完全溶解,冷却 至室温后移入 100 mL 容量瓶中,并用水洗烧杯,清 洗液也移入容量瓶中,定容,摇匀;In 标准溶液: 1.0 mg/mL,准确称量 0.1209g 在 110℃干燥至恒 重的光谱纯 In₂O₃ 于 100 mL 玻璃烧杯中,加入 20 mL 水和 5 mL HCl,加热搅拌至完全溶解,冷却 至室温后移入 100 mL 容量瓶中,并用水洗烧杯,清 洗液也移入容量瓶中,定容,摇匀。

实验用水均为去离子水。

1.3 实验方法

将样品于 60℃干燥至恒重,称取 0.05000g 于 100 mL 聚四氟乙烯烧杯中,用水润湿样品,加入 15 mL HCl,盖上表面皿,置于电热板上加热沸腾约 5 min,取下稍冷,再加入 5 mL HNO₃,置电热板上加 热沸腾约 5 min,取下稍冷,用水清洗表面皿和杯壁, 并加入 5 mL HF 和 2 mL HClO₄,置电热板上加热至 发大烟约 3 min,取下冷却至室温,用水清洗表面皿及 烧杯四壁,加入 2 mL 20 mg/mL 酒石酸溶液,轻轻摇 匀并等待约 5 min,再加入 20 mL HCl(1+1)继续置 电热板上加热至微沸约 2 min,取下冷却至室温,将 溶液移入 100 mL 容量瓶中,定容,摇匀,并随样品 带空白溶液。待溶液澄清或干过滤,移取 10 mL 至 100 mL 容量瓶中,加入 2 mL HCl,用水定容,摇匀。 以三通在线加入方式加入 100 ng/mL Re 进行内标 校正,用 ICP-MS 测定。

2 结果与讨论

2.1 溶样方法

烟道灰是冶炼多金属元素的副产品,一般含有 Si, Al, Fe, Na, K, S, Pb, Zn, Cu, Cd, Sn, Sb, Bi, As, Mn 和 In 等元素。采用 3 种溶解方法对烟道灰样品 进行样品前处理试验。方法 1:加入 20mL 王水加 热至沸 10 min 左右:方法 2: 先加入 15 mL HCl 加 热溶解,再加入 5mL HNO。加热溶解至沸腾约 5 min 左右,再加入 5 mL HF 和 2 mL HClO₄ 加热 至发大烟约 2min,最后加入 20mL 水和 2mL HNO3 继续置电热板上加热至微沸;方法 3:先加入 15 mL HCl 加热至沸腾溶解,再加入 5 mL HNO3 加热至沸腾约5min 左右,再加入5mL HF和2mL HClO₄ 加热至发大烟约 3 min,加入 2 mL 20 mg/ mL酒石酸溶液,轻轻摇匀并等待约5min,再加入 20 mL HCl(1+1)继续置电热板上加热沸腾约 2min。试验表明:方法1和2制成的样品溶液浑 浊,方法3制成的样品溶液清亮透明。方法1加入 王水会使 PbS 被氧化成 PbSO4 产生沉淀;方法 2 加 入 HNO3 溶解盐类会使 Sn 和 Sb 形成锡酸和锑酸 沉淀:方法 3 先加入 HCl 加热溶解使样品中的 S 形 成 H₂S 而被挥发出去,避免王水溶解样品使 PbS 被 氧化成 PbSO4;HF 可分解样品中的硅酸盐;HClO4 发烟可使 SiF₄ 和多余的 HF 挥发;加入酒石酸溶液 和 20 mL HCl(1+1)溶解盐类是为了使酒石酸与样 品溶液中 Sb 形成络合物,避免 Sb 的水解,并使 $HCl 与 Pb^{2+} 形成 [PbCl_3]^-$ 络合物进入溶液,避免 生成 PbCl₂ 沉淀。故实验采用方 3 进行溶样。

2.2 同位素

In 有¹¹⁵ In 和¹¹³ In 两个同位素,丰度分别为 95.7% 和 4.30%,这两种同位素均受到样品溶液共存元 素的同量异位素和多原子分子离子的干扰,具体 为:¹¹⁵ In 受¹¹⁵ Sn、⁴⁰ Ar⁺⁷⁵ As、¹H⁺¹¹⁴ Cd 和¹H⁺¹¹⁴ Sn 干扰;¹¹³ In 受¹¹³ Cd、¹H⁺¹¹² Cd、和¹H⁺¹¹² Sn 干扰。表 2

表 2 烟道灰中¹¹⁵ In 和¹¹³ In 的测定结果

Table 2	Determination	results of ¹¹⁵ In and	¹¹³ In in flue dust
ドロ	¹¹⁵ In 测定值	¹¹³ In 测定值	对照值

样品 Sample	¹¹³ In 测定值 Found of ¹¹⁵ In/ (µg/g)	¹¹³ In 测定值 Found of ¹¹³ In/ (µg/g)	对照阻 Compared/ (µg/g)
1	298	34 806	284
2	401	38390	387
3	1982	125 050	1945
4	898	92041	912
5	1 1 2 3	94 217	1108

- 9 -

表明,即使采用数学校正和 KED 模式消除了同量 异位素和多原子分子离子的干扰,以¹¹³ In 为测定同 位素对烟道灰样品中 In 进行测定所得结果依然严 重偏高(对照值是乙酸丁酯萃取-AAS^[11]测定所得 值);而采用¹¹⁵ In 为测定同位素时所得结果与对照 值较为一致。故实验选择丰度高的¹¹⁵ In 作为被测 同位素。

2.3 ¹¹⁵Sn 的干扰及其消除方法

由于烟道灰样品溶液中常含有较高含量的 Sn, 而同量异位素115 Sn 对115 In 产生质谱干扰,故必须对 同量异位素115Sn产生的干扰进行校正。以HCl(2+ 98)和40µg/mL酒石酸溶液作为介质,配制成Sn 质量浓度分别为4、8、12和16µg/mL的溶液系列,在 与测定 In 的同样仪器条件下进行测定。结果发 现,¹¹⁵Sn 对¹¹⁵In 的干扰量与 Sn 的含量呈线性相关, 如图1所示。在测定中,考虑到烟道灰样品溶液中 Sn的含量较高,一般超出了 ICP-MS 的测定范围, 若采用 ICP-MS 测定,即使稀释 10 倍, Sn 质量浓度 也超出了其测定范围。故实验选择以 ICP-AES 对 样品母液中 Sn 进行测定,再将 Sn 的量经换算后代 人数学校正方程 $\rho_{\text{In}(t)} = \rho_{\text{In}(m)} - 5.2904\rho_{\text{Sn}} - 0.012$ (式中: $\rho_{In(t)}$ 为经过校正后 In 的质量浓度; $\rho_{In(m)}$ 为 In 的表观质量浓度; psn 为 Sn 的质量浓度)来计算 In 的质量浓度。

2.4 多原子分子离子的干扰及消除方法

2.4.1 KED 模式

由于烟道灰样品溶液含有较高含量的 As、Cd 和 Sn,故多原子分子离子⁴⁰ Ar⁺⁷⁵ As、¹H⁺¹¹⁴ Cd 和¹H⁺¹¹⁴ Sn 会严重干扰¹¹⁵ In 的测定。选取烟道灰样品,以标准模式(STD)-ICP-MS 和 KED-ICP-MS 两种模式分别测定样品中铟,并在各自模式下用

数学校正方程校正了同量异位素的干扰,结果见 表 3(对照值是乙酸丁酯萃取-AAS^[11]的测定值)。 由表 3 可以看出,STD模式下,In 的测定结果较对 照值偏高,而 KED模式下的测定值与对照值保 持基本一致。进一步试验表明,STD 和 KED 两 种模式下的背景等效浓度分别为 0.11 ng/mL 和 0.042 ng/mL,检出限分别为 0.016 ng/mL 和 0.0046 ng/mL,即 KED模式下 In 的背景等效浓度 和检出限更低。实验采用 KED模式测定。

表 3 标准模式和碰撞池模式对 In 的测定结果对比 Table 3 Comparison for determination results of In

with the mode of STD and KED $\mu g/g$							
样品编号	测定值	Found	对照值				
Sample No.	KED	STD	Compared				
1	298	387	284				
2	401	533	387				
3	1982	2 5 4 0	1945				
4	898	1312	912				

 $1\,582$

1108

1123

2.4.2 He 气流量

固定其他实验条件,改变 He 气流量,在 KED 模式下分析质谱仪分析参数校正溶液,结果见表 4。 表 4 表明,当 He 气流量为 4.70~5.00 mL/min 时, I_{59Co} (代表被测元素强度)大于 30000 cps,同时 $I_{59Co}/I_{35Cl^{16}O}$ ($^{35}Cl^{16}O$ 代表多原子分子离子, $I_{59Co}/I_{35Cl^{16}O}$ 代表去除多原子分子离子干扰但保持被测元 素的灵敏度)大于 18。实验选择 He 气流量为 4.90 mL/min。

表 4 He 气流量试验 Table 4 Experiment of He gas flow

He 气流量 Flow of He gas/(mL/min)	I 59 Co/ cps	I 59 Co/ I 35 Cl16 O	He 气流量 Flow of He gas/(mL/min)	I 59 Co/cps	I 59 Co / I 35 Cl16 O
1.00	124360	0.0498	4.30	74888	9.432
2.00	103250	0.1066	4.40	68314	12.24
3.00	98523	0.6628	4.50	65404	14.67
4.00	89352	5.602	4.60	59910	16.21
5.00	43281	30.28	4.70	55383	20.82
6.00	18521	109.3	4.80	52302	22.78
4.10	81666	6.123	4.90	48996	27.83
4.20	79245	7.789			

2.5 内标法

ICP-MS一般选择 Rh 或 Re 作为内标元素,但 样品溶液中共存的²⁰⁶ Pb²⁺ 对¹⁰³ Rh 产生质谱干扰, 而 Rh 无其它同位素;且多原子分子离子¹²C⁺¹⁰³ Rh 对被测同位素¹¹⁵ In 产生质谱干扰,故实验不选择 Rh 作为内标元素。一般情况下烟道灰没有 Re,¹⁸⁵ Re 无 同量异位素且不对¹¹⁵ In 产生干扰, Re 第一电离能 (7.877 eV)与 In(5.786 eV)接近,故选择 100 ng/ mL¹⁸⁵ Re 作为内标进行试验。选取 1 号烟道灰样 品,按照实验方法制备待测溶液,并分别以无内标和 在线加入 100 ng/mL¹⁸⁵ Re 为内标进行测定,考察两 种方法对测定结果精密度的影响。实验表明:在选定的实验条件下,连续测定 8 次,分别每隔 5 min 读取一次无内标时 In 的强度计数和有内标时 In 和 Re 的强度计数,结果见表 5。由表 5 可见,无内标时 In 强度计数的相对标准偏差(RSD)为 5.3%,其对应质量浓度的 RSD 为 5.0%;有内标法时,In 和 Re 的强度计数比值的 RSD 为 1.4%,其对应质量浓度的 RSD 为 1.3%。由此可见,内标法精密度优于

	表 5	内标校正试验
able 5	Internal s	tandard correction experimen

次数 Time	无内标 Withou	ıt internal standard	内标法 With internal standard			
	$I_{ m ln}/ m cps$	$ ho_{\mathrm{In}}/(\mathrm{ng/mL})$	$I_{ m In}/ m cps$	$I_{ m Re}/ m cps$	$I_{ m In}/I_{ m Re}$	$ ho_{\mathrm{In}}/(\mathrm{ng}/\mathrm{mL})$
1	1 498 979	48.98	1 294 413	2865434	0.4517	48.54
2	1365314	44.61	1279677	2822128	0.4534	48.72
3	1554942	50.80	1259483	2809927	0.4482	48.16
4	1610652	52.62	1261814	2805678	0.4497	48.33
5	1513638	49.45	1302532	2876259	0.4529	48.66
6	1584399	51.77	1284600	2937830	0.4373	47.02
7	1597053	50.26	1281744	2867437	0.4470	48.04
8	1479483	48.34	1326586	2897025	0.4579	49.23
RSD/%	5.3	5.0			1.4	1.3

无内标法。故实验选择 100 ng/mL¹⁸⁵ Re 为内标。

2.6 校准曲线和检出限

以 HCl(2+98)作为溶液介质,配制成质量浓度 分别为 0、5、25、50、75 和 100 ng/mL 的 In 标准溶液, 在实验条件下以 KED-ICP-MS 测定各标准溶液中 In 的质谱强度,以 In 的质量浓度和其对应的质谱强度绘 制校准曲线。由校准曲线可知: In 质量浓度在 5~ 100 ng/mL范围内与其对应的质谱强度 I(cps)呈线性 关系,方程为 $I(cps) = 56762\rho(ng/mL) + 2372, 相关$ 系数 r = 0.9994。由空白溶液测得背景等效浓度 (BEC)为 0.042 ng/mL,并以连续测定 11 次空白溶 液所得到的空白标准偏差的3倍计算出方法检出限为0.0046ng/mL。

3 样品分析

按实验方法对烟道灰样品进行测定,并进行加标回收试验,结果见表 6。由表 6 可知: In 的加标回收率为 98% ~ 102%; 测得结果的相对标准偏差 (RSD, n = 6)为 0.20% ~ 1.3%。根据 DZ/T 0130—2006标准(质量分数大于 10^{-4} 时,加标回收率为 95% ~ 105%),本实验分析烟道灰样品中 In 的结果符合国家地质矿产行业标准。

	表 6	烟道灰样品中铟的测定结果
ble 6	Determin	ation results of indium in flue dust sample

				•	
样品编号	测定值	相对标准偏差	加标量	测得总量	回收率
Sample No.	$Found/(\mu g/g)$	RSD $(n=6)/\%$	$Added/(\mu g/g)$	Total found/($\mu g/g$)	Recovery/ %
1	298	1.0	500	793	99
2	401	1.1	500	906	101
3	1982	1.3	1000	3 0 0 2	102
4	898	0.30	1 000	1878	98
5	1123	0.20	1 000	2113	99

参考文献:

[J].冶金分析,1986,8(3):35-39.

[1] 陈荣礼,张晓丽,邵华,等.络合吸附伏安法测定痕量铟

CHEN Rong-li, ZHANG Xiao-li, SHAO Hua, et al. Voltammetric determination of trace amounts adsorptive complex of indium cupferron [J]. Metallurgical Analysis, 1986,8(3):35-39.

[2] 钟勇.乙酸丁酯萃取-苯基荧光酮-溴化十六烷基三甲基 胺光度法测定化探样及冶金物料中微量锅[J].冶金分 析,2001,21(6):55-57.

ZHONG Yong. Spectrophotometric determination of micro amounts of indium in geological samples and metallurgical materials with phenylfluorone and cetyltrimethyl ammonium bromide after extraction of $[InBr_4]^-$ with *n*-butyl acetate[J].Metallurgical Analysis,2001,21(6):55-57.

[3] 周耀明.火焰原子吸收法测定铅锌冶炼物料中低含量钢 [J].冶金分析,2002,22(1):48-49. ZHOU Yao-ming.Determination of trace amounts of in-

dium in the smelting charge of lead and zinc by flame AAS[J].Metallurgical Analysis,2002,22(1):48-49.

- [4] 郭龙滨,赖万昌,张永涛,等.便携式能量色散X射线荧光 仪测定矿渣中钢[J].冶金分析,2011,31(1):19-22.
 GUO Long-bin, LAI Wan-chang, ZHANG Yong-tao, et al.Determination of indium in slag using portable energy dispersive X-ray fluorescence spectrometer[J]. Metallurgical Analysis,2011,31(1):19-22.
- [5] 李清彩,赵庆令,荀红梅.电感耦合等离子体原子发射光 谱法测定多金属矿石中砷镉铟硫锑[J].冶金分析,2015, 35(2):61-64.

LI Qing-cai, ZHAO Qing-ling, XUN Hong-mei. Determination of arsenic, cadmium, indium, sulfur and antimony in polymetallic ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2015, 35(2):61-64.

[6] 靳兰兰,王秀季,李会来,等.电感耦合等离子体质谱技术 进展及其在冶金分析中的应用[J].冶金分析,2016,36 (7):1-14.

JIN Lan-lam, WANG Xiu-ji, LI Hui-lai, et al. Progress in inductively coupled plasma mass spectrometry tecnology and its application in metallurgical analysis[J]. Metallurgical Analysis, 2016, 36(7):1-14.

- [7] HU Sheng-hong, HU Zhao-chu, LIU Yong-sheng, et al. Determination of sub-trace Sc, Y and Ln in carbonate by ICP-MS with inter-element matrix-matched technique
 [J].Journal of Rare Earths, 2003, 21(2):124-128.
- [8] 刘虎生,邵宏翔.电感耦合等离子体质谱技术与应用[M].北京:化学工业出版社,2005:120-121.
- [9] 王小如.电感耦合等离子体质谱应用实例[M].北京:化 学工业出版社,2005:271.
- [10] 黎卫亮,程秀花,张明祖,等.乙醇增强-电感耦合等离子体质谱法测定地质样品中镓铟铊锗碲[J].冶金分析,2014,34(3):13-18.
 LI Wei-liang,CHENG Xiu-hua,ZHANG Ming-zu, et al. Determination of gallium, indium, thallium, germanium and tellurium in geological samples by inductively coupled plasma mass spectrometry with ethanol as a signal enhancer[J].Metallurgical Analysis,2014,34(3):13-18.
- [11] 岩石矿物分析编写组.岩石矿物分析:第1分册[M].3 版.北京:地质出版社,1991:749-750.

Determination of indium in flue dust by inductively coupled plasma mass spectrometry

NI Wen-shan^{1,2,3},ZHANG Hong-li^{1,2,3},GAO Xiao-fei^{1,2,3},YAO Ming-xing^{1,2,3} XIAO Fang^{*1,2,3},MAO Xiang-ju^{1,2,3}

(1. Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou 450006, China;

2. China National Engineering Research Center for Utilization of Industrial Minerals, Zhengzhou 450006, China;

3. Key Laboratory of Evaluation and Multipurpose Utilization of Polymetallic Ores Ministry of Land and

Resources, Zhengzhou 450006, China)

matical correction equation for the correction of ¹¹⁵Sn interference was obtained. The content of Sn in sample solution was relatively high, which usually exceeded the determination range of ICP-MS. Thus ICP-AES was selected for determination of Sn followed by correction of Sn with mathematical correction equation. The content of indium in flue dust sample was determined in standard mode and KED mode, respectively. The results indicated that the determination results of indium in KED mode were basically consistent with the comparison values (the determination results obtained by butyl acetate extraction-atomic absorption spectrometry), while the determination results in standard mode were relatively high. Meanwhile, it was found that the background equivalent concentration of indium and detection limit of method in KED mode were about one order of magnitude lower than those in standard mode. Therefore, the KED mode was employed and its experimental conditions were optimized. The flow rate of collision gas at 4.90 mL/min was selected. Under the selected experimental conditions, the mass spectral intensity showed good linear relationship with the corresponding mass concentration in range of 5-100 ng/mL. The correlation coefficient of calibration curve was 0.9994. The detection limit of method was 0.0046 ng/mL. The proposed method was applied for determination of indium in actual samples of flue dust. The relative standard deviations (RSD, n=6) were between 0.20% and 1.3%. The recoveries were between 98% and 102%.

Keywords: flue dust; indium; mathematical correction; kinetic energy discrimination collision cell (KED); inductively coupled plasma mass spectrometry

《冶金分析》入选"第4届中国精品科技期刊"通知

为了进一步推动我国科技期刊的发展,更好地宣传和利用我国的优秀学术成果,中国科学技术信息研究 所在中国精品科技期刊中遴选优秀学术论文,建设了"领跑者 5000一中国精品科技期刊顶尖学术论文平台 (F5000)",集中对外展示和交流我国的优秀科技论文。根据中国精品科技期刊遴选指标体系综合评价结 果,《冶金分析》入选"第4届中国精品科技期刊",即"中国精品科技期刊顶尖学术论文(F5000)"项目来源期 刊。后期我刊会陆续推荐优秀论文参与 F5000 的评选,入选的 F5000 论文将与 SCI 被引用的数据实时链 接,供国外同行检索和利用,使更多的科研成果走向世界。

欢迎积极投稿!