§5-3波的能量(Wave Energy)

波是能量传播的一种形式。

特点: 勿需质量迁移, 能量却能向周围传播.

一、波的能量和能量密度

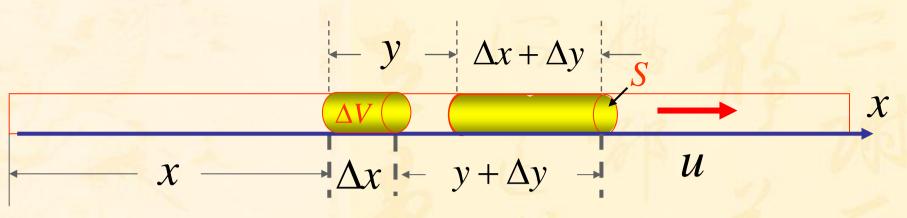
波动能量:包括媒质中各质点运动的动能和由于形变而具有的势能。

以平面简谐纵波为例
$$y = A\cos\omega(t - \frac{x}{u})$$

1. 体积元的动能

$$\Delta V \rho Y$$

i



$\Delta m = \rho \Delta V$ 。 ΔV 内各质点的振动速度可视为相同:

$$v = \frac{\partial y}{\partial t} = -A\omega\sin\omega(t - \frac{x}{u})$$

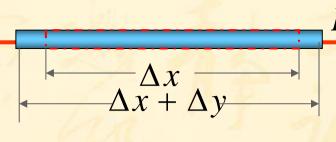
$$\Delta E_k = \frac{1}{2} \Delta m v^2 = \frac{1}{2} \rho \Delta V A^2 \omega^2 \sin^2 \omega (t - \frac{x}{u})$$

2.体积元的势能

形变Δy产生的势能:

$$\Delta E_P = \frac{1}{2}k(\Delta y)^2$$

由胡克定律可以证明: $k = \frac{YS}{\Delta x}$



 $\frac{YS}{\Delta x}$ Δx 为体元 ΔV 的原长.

$$\therefore \Delta E_P = \frac{1}{2}k(\Delta x)^2(\frac{\Delta y}{\Delta x})^2 = \frac{1}{2}SY\Delta x(\frac{\Delta y}{\Delta x})^2$$

$$\Delta x \to 0$$
, $\Delta E_P = \frac{1}{2} Y \Delta V (\frac{\partial y}{\partial x})^2$ $(\Delta V = S \Delta x)$

$$\overline{m} \quad \frac{\partial y}{\partial x} = A \frac{\omega}{u} \sin \omega (t - \frac{x}{u})$$

$$\Delta E_P = \frac{1}{2} \rho \Delta V A^2 \omega^2 \sin^2 \omega (t - \frac{x}{u})$$

$$u = \sqrt{Y/\rho}$$
$$Y = u^2 \rho$$

3.体积元的总能量

$$\Delta E = \Delta E_K + \Delta E_P$$

$$= \frac{1}{2}\rho\Delta VA^2\omega^2\sin^2\omega(t-\frac{x}{u}) + \frac{1}{2}\rho\Delta VA^2\omega^2\sin^2\omega(t-\frac{x}{u})$$

讨论

$$\Delta E = \rho \Delta V A^2 \omega^2 \sin^2 \omega (t - \frac{x}{u})$$

波动的动能和势能都是时间的周期函数,其周期为振动周期的一半。

体元中的动能与势能变化同相。

 ΔV 内波动总能在 $0\sim \rho\Delta V\omega^2A^2$ 之间变化。

 ΔE^{\uparrow} , 能量传入 ΔV ; $\Delta E \downarrow$, 能量传出 ΔV 。

反映出波动能量沿波线传播。

4.波的能量密度

单位体积内的波动能量:

$$w = \frac{\Delta E}{\Delta V} = \rho A^2 \omega^2 \sin^2 \omega (t - \frac{x}{u})$$

平均能量密度---能量密度的周期平均值:

$$\overline{w} = \frac{1}{T} \int_0^T \rho A^2 \omega^2 \sin^2 \omega (t - \frac{x}{u}) dt = \frac{1}{2} \rho A^2 \omega^2$$

二、波的能流密度

 $\wedge \overline{w} \propto A^2, \omega^2, \rho$

1.平均能流---单位时间通过垂直于波传播方向的面积 S 的平均能量。

$$\overline{P} = \overline{w}uS = \frac{1}{2}uS\rho A^2\omega^2$$

2.波的能流密度(波的强度)

单位时间内通过垂直于波传播方向上单位面积的平均能量:

$$I = \frac{\overline{P}}{S} = \overline{w}u = \frac{1}{2}\rho A^2 \omega^2 u$$

波的能量是沿波线并以波速u而传播的。

定义: 烏莫夫--玻印廷矢量(波强矢量):

$\vec{S} = \vec{w}\vec{u}$

单位:
$$[I] = \frac{ P }{ |S|} = \frac{J/s}{m^2} = W/m^2$$

讨论: 1.平面波
$$S_1 = S_2$$
 无吸收: $\bar{P}_{S_1} = \bar{P}_{S_2}$ 振幅A不变! $\bar{P} = \frac{1}{2}uS\rho A^2\omega^2$ S_1 S_2 $\bar{P}_{S_1} = \frac{1}{2}uS_1\rho A_1^2\omega^2$ $\bar{P}_{S_1} = \frac{1}{2}uS_1\rho A_2^2\omega^2$ $\bar{P}_{S_2} = \frac{1}{2}uS_2\rho A_2^2\omega^2$ $\bar{P}_{S_2} = 4\pi r_1^2$ $S_2 = 4\pi r_2^2$ $A_r \propto \frac{1}{r}$

三、声强、声强级

声强--声波的波强

$$I = \frac{1}{2} \rho A^2 \omega^2 u \propto \omega^2$$

声源	声强 (W m ⁻²)	响度
引起痛觉的声音		I An
炮 声	1	17
铆钉 机	10-2	震耳
交通繁忙的街道	10-5	响
通常谈话	10-6	正常
耳语	10-10	轻
树叶沙沙声	10-11	极轻
引起听觉的最低声	10-12	8

声波的声强不大,大小相差十几个数量级。

声强级(L)

定义:某声波的声强为1,则声强级:

$$L = \lg \frac{I}{I_0}$$
 (bel) $(I_0 = 10^{-12} \,\mathrm{W/m}^2)$

 I_0 为人耳听得到的最小声强(标准声强).

单位:贝尔(bel)

或"分贝"
$$L = 10 \lg \frac{I}{I_0} \text{(db)}$$

四、波的衰减

实际媒质对波的能量存在吸收,使波的振幅越来越小,称为波的衰减。

设
$$x$$
处振幅为 A ; $x + dx$ 处为 $A - dA$.

实验指出: $-dA \propto Adx$

$$-dA = \alpha A dx$$

积分得:
$$A = A_0 e^{-\alpha x}$$

$$x = 0, A = A_0$$

波强
$$I = I_0 e^{-2\alpha x}$$

$$(I = \frac{1}{2}u\rho\omega^2 A^2 = \frac{1}{2}u\rho\omega^2 A_0^2 e^{-2\alpha x} = I_0 e^{-2\alpha x})$$

$$I_0 = \frac{1}{2}u\rho\omega^2 A_0^2$$

$$x = \frac{1}{2\alpha} \ln \frac{I_0}{I}$$

§5-4 惠更斯原理 (Huygen's Principle)

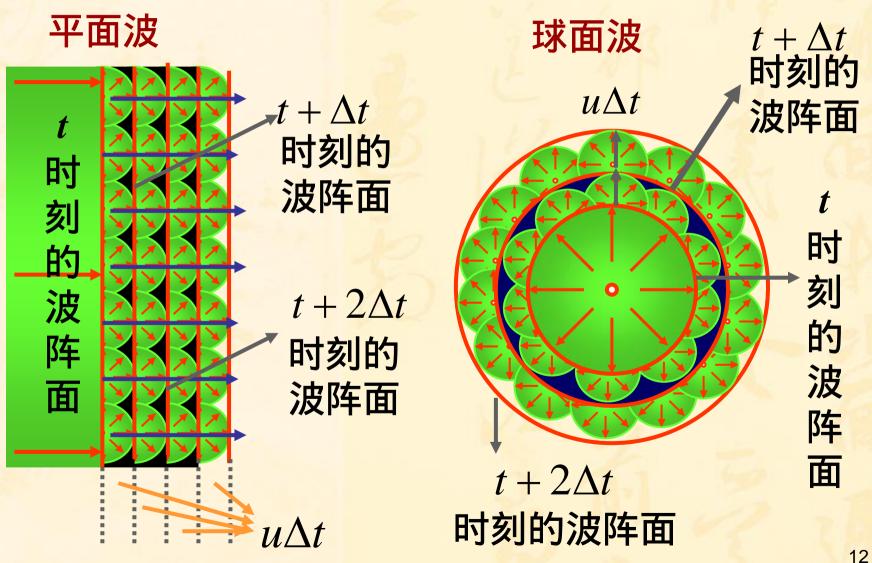
一、惠更斯原理

基本概念:在连续媒质中,任何一点的振动都将引起邻近各点的振动。所以,媒质中任何一点都可以看作是新的波源。

惠更斯原理---媒质中波动传达到的各点都可看作发射同频率子波的波源,在其后任一时刻,这些子波波面的包迹就是原波动在该时刻的波阵面。

应用:利用惠更斯原理可以求出新的波面,解释波的衍射等现象。

1.用惠更斯原理求平面波和球面波



2. 用惠更斯原理解释衍射现象

行射(绕射)---波在传播过程中遇到障碍物时能 绕过障碍物的边缘前进的现象。

"室内讲话,墙外有耳"

水波的衍射