§ 1.8 基本数列和收敛原理

定义 1.9 设 $\{a_n\}$ 是一个数列. 若 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$,使得当 n > N 时, $\forall p \in \mathbb{N}^*$ 都成立

$$\left|a_{n+p}-a_n\right|<\varepsilon\,,$$

则称 $\{a_n\}$ 是 Cauchy 数列或基本数列. 显然, 收敛数列是基本数列.

引理 1.1 任意数列必有一个单调子列.

- (1) 假定 $\{a_n\}$ 有无穷多个"龙头" a_{k_1} , a_{k_2} , a_{k_3} , …, 则子列 $\{a_{k_n}\}$ 严格递减.
- (2) 假定 $\{a_n\}$ 只有有限个"龙头",则 $\exists N \in \mathbb{N}^*$,使得当 $n \geq N$ 时,每个 a_n 都不是"龙头".令 $a_{k_1} = a_N$;因为 a_{k_1} 不是"龙头",故存在正整数 $k_2 > k_1$ 使得 $a_{k_2} \geq a_{k_1}$;又因为 a_{k_2} 不是"龙头",故存在正整数 $k_3 > k_2$ 使得 $a_{k_3} \geq a_{k_2}$; ….于是,子列 $\{a_{k_n}\}$ 递增.□

定理 1.11 (Bolzano-Weierstrass 列紧性定理)任意有界数列必有一个收敛子列.

注记 1.10′ 定理 1.10 是实数完备性或连续性的一种表现形式.

定理 1.12 (Cauchy 收敛原理)数列收敛的充要条件是它为基本数列.

证: 只需证充分性. 设 $\{a_n\}$ 是基本数列, 故 $\exists N_1 \in \mathbb{N}^*$, 使得 $\forall p \in \mathbb{N}^*$ 都成立 $\left|a_{N_1+1+p} - a_{N_1+1}\right| < 1$, 这说明 $\{a_n\}$ 是有界数列. 由列紧性定理, $\{a_n\}$ 有一个子列 $\{a_k\}$ 收敛于a.

 $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, 使得当 n > N$ 时, $\forall p \in \mathbb{N}^*$ 都成立 $\left| a_{n+p} - a_n \right| < \frac{\varepsilon}{2}$,

于是当m > n 时成立 $\left|a_{k_m} - a_n\right| < \frac{\varepsilon}{2}$,从而 $\left|a_n - a\right| \le \left|a_{k_m} - a\right| + \left|a_{k_m} - a_n\right|$ $< \left|a_{k_m} - a\right| + \frac{\varepsilon}{2} . \ \diamondsuit m \to \infty \ \text{ 使得到} \left|a_n - a\right| \le \frac{\varepsilon}{2} < \varepsilon \ , \ \text{这说明} \left\{a_n\right\}$ 收敛于a.

数域的完备性或连续性 称满足 Cauchy 收敛原理的数域是完备的(或连续的). 于是, 实数域是完备的, 而有理数域是不完备的.

例 设 $\{a_n\}$ 是数列. 若 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$ 和A,使得当n > N时成立 $|a_n - A| < \varepsilon$,问 $\{a_n\}$ 是否收敛?说明理由.

解: $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$ 和 A,使得当 n > N 时成立 $\left| a_n - A \right| < \frac{\varepsilon}{2}$,从而当 n > N 时, $\forall p \in \mathbb{N}^*$ 都成立 $\left| a_{n+p} - A \right| < \frac{\varepsilon}{2}$.于是,当 n > N 时, $\forall p \in \mathbb{N}^*$ 都成立 $\left| a_{n+p} - a_n \right| < \varepsilon$.由 Cauchy 收敛原理便知 $\{a_n\}$ 收敛.但要注意, $\{a_n\}$ 未必以 A 为极限.

练习题 1.8 (P_{38}) 1,2(1,2),3(2,4),5,6.

§1.9 上确界和下确界

实数集的上、下界 设 $E \subset \mathbb{R}$. 若 $\exists A \in \mathbb{R}$, 使得 $\forall x \in E$ 都成立 $x \leq A$, 则称E有上界, 并A是E的一个上界; 若存在 $B \in \mathbb{R}$ 使得 $\forall x \in E$ 都成立 $x \geq B$, 则称E有下界, 并称B是E的一个下界; 称既有上界又有下界的数集为有界集. 显然, 数集E有界 $\Leftrightarrow \exists M > 0$, 使得 $\forall x \in E$ 都成立 $|x| \leq M$. 注意,空集也被认为是有界集.

定义 1.10(最大数的推广) 设 $E \subset \mathbb{R}$ 非空. 当E有上界时,称E的最小上界 β 是E的上确界,记为 $\sup E = \beta$. β 是E的最小上界,意思是(1) β 是E的上界;(2) $\forall \varepsilon > 0$, $\exists x \in E$ 使得 $x > \beta - \varepsilon$. 当E无上界时,称+ ∞ 是E的上确界,记为 $\sup E = +\infty$.

定义 1.11(最小数的推广) 设 $E \subset \mathbb{R}$ 非空. 当E有下界时, 称E的最大下界 α 是E的下确界, 记为 $\inf E = \alpha$. α 是E的最大下界,意思是(1) α 是E的下界; (2) $\forall \varepsilon > 0$, $\exists x \in E$ 使得 $x < \alpha + \varepsilon$. 当E无下界时, 称 $-\infty$ 是E的下确界, 记为 $\inf E = -\infty$.

命题 1 若非空实数集 $E \subset \mathbb{R}$ 中有最大数 $\max E$ (或最小数 $\min E$),则 $\sup E = \max E$ (或 $\inf E = \min E$);若 $\emptyset \neq E_1 \subset E_2 \subset \mathbb{R}$,则 $\sup E_1 \leq \sup E_2$, $\inf E_1 \geq \inf E_2$.

例1 求下列数集的上、下确界

- (1) $\sup(a,b] = b = \max(a,b], \inf(a,b] = a$ 不是 (a,b] 的最小数;
- (2) $\sup \mathbb{Z} = +\infty$ 不是 \mathbb{Z} 的最大数, $\inf \mathbb{Z} = -\infty$ 不是 \mathbb{Z} 的最小数;
- (3) $\sup[(0,1) \cap \mathbb{Q}] = 1$ 不是 $(0,1) \cap \mathbb{Q}$ 的最大数, $\inf[(0,1) \cap \mathbb{Q}] = 0$ 不是 $(0,1) \cap \mathbb{Q}$ 的最小数.

定理 1.13(确界原理) 非空实数集必有上确界和下确界.

- (1) $\forall x \in E$, 总成立 $x \le b_n$, 故 $x \le \lim_{n \to \infty} b_n = \beta$, 这说明 β 是 E 的上界.
- (2) $\forall \varepsilon > 0, \exists n \in \mathbb{N}^*$ 使得 $a_n > \beta \varepsilon$. 由于 $[a_n, b_n] \cap E \neq \emptyset$,故 $\exists x \in E$ 使得 $x > \beta \varepsilon$. 这说明 β 就是 E 的上确界. \square

注记 1. 13′ 定理 1. 13 是实数完备性或连续性的一种表现形式.

命题 2 设 $E \subset \mathbb{R}$ 非空. 若E没有最大数(或最小数),则必存在严格递增(或递减)的数列 $\{x_n\} \subset E$ 趋向于 $\sup E$ (或 $\inf E$).

证: 设 E 无 上 界. $\exists x_1 \in E$ 使 得 $x_1 > 1$; $\exists x_2 \in E$ 使 得 $x_2 > \max(x_1, 2)$; $\exists x_3 \in E$ 使 得 $x_3 > \max(x_2, 3)$; · · · . 于 是, 数 列 $\{x_n\} \subset E$ 严格递增 趋 向 于 $+\infty = \sup E$.

设E有上界, 记 $\beta = \sup E$. $\exists x_1 \in E$ 使得 $\beta > x_1 > \beta - 1$; $\exists x_2 \in E$ 使得

例 2(\mathbb{R} **的连通性**) 若 $A,B \subset \mathbb{R}$ 满足 $A \neq \emptyset, B \neq \emptyset, A \cap B = \emptyset, A \cup B = \mathbb{R}$, 则或者有 A 中的数列收敛于 B 中的点,或者有 B 中的数列收敛于 A 中的点(这也是实数完备性或连续性的一种表现形式).

证: (用确界原理证)取 $a \in A, b \in B$,不妨设 a < b,并记 $\beta = \sup(A \cap [a,b])$,显然 $a \le \beta \le b$.

- (1) $\beta \in B$. 因为 β 不是 $A \cap [a,b]$ 的最大值, 故存在严格递增的数列 $\{x_n\} \subset A \cap [a,b] \subset A$ 收敛于 $\beta \in B$ (命题 2), 定理得证;
- (2) $\beta \in A$. 这时, $\beta < b$, $A \cap (\beta, b] = \emptyset$,从而 $(\beta, b] \subset B$,故存在严格 递减的数列 $\{x_n\} \subset (\beta, b] \subset B$ 收敛于 $\beta \in A$. \square

练习题 1.9(P₄₁) 1, 2, 3, 4.

§ 1.10 有限覆盖定理

定义 1. 12 设 Λ 是指标集 (即非空集合), $J = \{I_{\lambda} : \lambda \in \Lambda\}$ 是开区间族. 若实数集 $A \subset \bigcup_{i \in \Lambda} I_{\lambda}$, 则称开区间族 J 覆盖了 A.

定理 1.14 (Heine-Borel 有限覆盖定理) 若开区间族 J 覆盖了有限闭区间 [a,b],则必可从 J 中选出有限个开区间,这有限个开区间所组成的族仍然覆盖了 [a,b].

证: (用闭区间套定理反证) 假定 [a,b] 不能被 J 中的有限个开区间所覆盖,则 $[a,\frac{a+b}{2}]$ 和 $[\frac{a+b}{2},b]$ 中必有一个不能被 J 中的有限个开区间所覆盖,以 $[a_1,b_1]$ 记之; $[a_1,\frac{a_1+b_1}{2}]$ 和 $[\frac{a_1+b_1}{2},b_1]$ 中必有一个不能被 J 中的有限个开区间所覆盖,以 $[a_2,b_2]$ 记之; ··· . 于是,闭区间 $I_n = [a_n,b_n](n \in \mathbb{N}^*)$ 满足 $I_1 \supset I_2 \supset I_3 \supset \cdots$ 和 $|I_n| = \frac{b-a}{2^n} \to 0$ $(n \to \infty)$.由 闭区间套定理, $\bigcap_{n \to \infty} I_n$ 是独点集 $\{\beta\}$.取 J 中的开区间 I_{λ_0} 使得 $\beta \in I_{\lambda_0}$.因为 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \beta$,故当 n 充分大时 $[a_n,b_n] \subset I_{\lambda_0}$,得到矛盾. \square 注记 1 . 14' 定理 1 . 14 是实数完备性或连续性的一种表现形式.

实数完备性或连续性的 7 个等价命题

Cauchy收敛原理→单调有界收敛定理→闭区间套定理→有限覆盖定理

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ MR的连通性

练习题 1. 10 (P₄₃) 1, 2.