https://doi.org/10.3799/dqkx.2019.001

塔里木盆地盐下地区奥陶系火山碎屑物质特征

侯明才^{1,2}, 江文剑³, 邓 敏⁴, 蔡鹏程²

1.成都理工大学油气藏地质及开发工程国家重点实验室,四川成都 610059
2.成都理工大学沉积地质研究院,四川成都 610059
3.东华理工大学核资源与环境国家重点实验室,江西南昌 330013
4.中国地质调查局成都地质调查中心,四川成都 610081

摘要:奥陶纪是古亚洲洋演化的关键时期,也是塔里木盆地周缘板块构造环境转换的重要时期.然而,南天山洋向北俯冲一消减的时间一直存在争议.通过对保存在塔里木盆地盐下地区奥陶系鹰山组和良里塔格组的火山碎屑物质的岩石学和地球化学特征研究,结合岩相古地理演化格局,约束了南天山洋向北俯冲削减的时间.研究表明,鹰山组碳酸盐岩中主要发育基性沉凝灰岩薄夹层,良里塔格组火山碎屑物质主要为基性火山岩屑.鹰山组和良里塔格组火山碎屑物质的 Th/Yb-Ta/Yb 图解指示它 们来源于活动大陆边缘弧环境.U/Th-Th 图解显示大部分样品落在典型弧火山岩区,且多数位于混有沉积物来源的弧火山岩 与典型弧火山岩重叠区域,表明研究区火山物质源区曾受到与俯冲相关流体或熔体的改造.Ba/Th-(La/Sm)。图解进一步表 明火山碎屑物质源区具有上地壳沉积物质起源的熔体混染,且良里塔格组沉积时期,火山碎屑物质源区受沉积物起源熔体混 染的程度更深,改造得更加明显和强烈.上述地球化学特征表明,在早奥陶世鹰山组沉积时期南天山洋已经俯冲消减,且在晚奥陶世良里塔格组沉积时期处于强烈俯冲期.

Characteristics of Ordovician Volcaniclastic Materials in Yanxia Area of Northern Tarim Basin and Their Geological Significance

Hou Mingcai^{1,2}, Jiang Wenjian³, Deng Min⁴, Cai Pengcheng²

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China 2. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China

3. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China 4. Chengdu Center of China Geological Survey, Chengdu 610081, China

Abstract: The petrologic and geochemical signatures of volcaniclastic material preserved within carbonate platform deposits from boreholes in the Yanxia area of northern Tarim Basin indicate the presence of an active continental margin volcanic arc during the Middle and Late Ordovician. The volcaniclastics within the Middle Ordovician Yingshan Formation occur as thin layers of basic tuffites in which the vitric grains have undergone partial replacement by carbonate and clay. The volcaniclastics within the Upper Ordovician Lianglitage Formation are primarily basic volcanic clasts within oolitic and grainstone shoal deposits. Geochemical ratios, especially those of Th/Yb-Ta/Yb,U/Th-Th and Ba/Th-(La/Sm),fall within the fields for typical volcanic arcs on continental margins and with a variable admixture of fluids that had interacted with pre-volcanic terrestrial sediments. The degree of admixture is greatest in the volcaniclastics within the Lianglitage Formation, which suggests that the inferred

作者简介:侯明才(1968-),男,教授,博导,主要从事大地构造沉积学和层序岩相古地理学的教学和科研工作.ORCID:0000-0001-7583-9159. E-mail:houmc@cdut.edu.cn

基金项目:国家自然科学基金面上项目(No.41672102);油气藏地质及开发工程国家重点实验室开放基金(No.PLC20180302).

Key words, Tarim Basin; Yanxia area; Ordovician; volcaniclastic material; geochemistry.

塔里木盆地是中国西部大型叠合复合盆地,位 于中亚造山带西段南部,而中亚造山带作为西伯利 亚板块与中朝、塔里木板块之间由古亚洲洋削减而 形成的巨型缝,其复杂洋一陆格局演化与造山作用 一直是前人研究的热点和难点(Dobretsov et al., 1995; Xu et al., 2013; Zhang et al., 2013; 张光亚 等,2015).塔里木盆地内部地层记录着塔里木板块、 伊犁一中天山微地块、西伯利亚板块之间的拼合作 用过程以及古亚洲洋的演化历史.奥陶纪时期是古 亚洲洋演化关键时期,作为古亚洲洋的一部分,南天 山洋盆开始逐渐由拉张转变为俯冲削减,但是其俯 冲一削减开始的时间和洋盆最终关闭的时间一直存 在着较大争议(汤良杰,1994,1997a,1997b;何登发 等,2007;于炳松等,2011),如肖序常等(1991)认为 南天山洋在志留纪仍处于拉张作用时期,直到晚志 留世一早泥盆世才开始向北俯冲;朱志新等(2006) 通过对中天山南缘那拉提山闪长花岗岩锆石年龄测 定(436 Ma),认为南天山洋至少在早志留世就已经 开始向伊犁一中天山板块俯冲;汤良杰(1997a)认为 南天山洋东段从早奥陶世开始发生俯冲作用,至早 二叠世才闭合;何登发等(2007)认为奥陶纪时南天 山洋盆仍处于扩展发育时期.Hopson et al.(1989) 和杨天南等(2006)通过对南天山造山带产出黑云母 花岗岩、二长花岗岩、花岗闪长岩等俯冲型花岗岩类 年龄测试(其年龄分布在 436~355 Ma 之间),认为

南天山洋在晚古生代时期一直处于俯冲过程;于炳 松等(2011)综合现有的蛇绿岩、高压变质岩和花岗 岩类一火山岩类的年龄资料,认为我国境内南天山 造山带西段(塔里木与伊犁一中天山地块)的碰撞起 始时间在早石炭世(345 Ma),结束时间为石炭纪末 (300 Ma 左右).近年来,笔者对塔里木盆地北部的 盐下地区奥陶系碳酸盐岩进行研究时,首次在鹰山 组和良里塔格组中发现了火山碎屑物质.这些火山 碎屑物质可能会记录同时期的板块构造活动状态, 从而可能为平息南天山洋向北俯冲消减时间的争议 提供新的证据.本文通过对保存在碳酸盐岩内部的 火山碎屑物质的岩石学特征、地球化学特征所揭示 的构造环境的判识,探讨奥陶纪塔里木盆地北缘南 天山洋的板块构造活动状态.

1 地质背景

盐下地区位于新疆塔里木盆地北部,地理位置 位于新疆库车县和轮台县境内.构造上主体位于沙 雅隆起阿克库勒凸起中南部,西与哈拉哈塘凹陷相 接,南面过渡为满加尔坳陷(图1).奥陶系自下而上 可划分为下奥陶统蓬莱坝组、鹰山组,中奥陶统一间 房组、恰尔巴克组和上奥陶统良里塔格组、桑塔木组 (图 2).奥陶纪时期,塔里木盆地逐渐由区域拉张环 境向挤压环境转变,盆地边缘由被动大陆边缘向活

图 1 塔里木盆地构造分区及取样位置 Fig.1 Tectonic units and sampling location of Tarim Basin

动大陆边缘转换.在盆地东部为半深海一深海相深 水沉积,西部为碳酸盐岩台地和浅海陆棚相环境(图 3)(何登发等,2007).研究区自早寒武世开始,直到 奥陶纪末期,一直接受碳酸盐岩沉积,其沉积环境主 要为碳酸盐台地.全球海平面变化在纵向上控制了 碳酸盐台地的发育与淹没消亡,加里东运动则在空 间上控制着碳酸盐台地亚相及微相的分布(张丽娟 等,2007;赵宗举等,2009;林畅松等,2013;赵宗 举,2015;岳勇等,2018).本文研究目的层鹰山组和 良里塔格组主要为碳酸盐岩沉积,其中鹰山组沉积 环境为开阔台地相(图 2,图 3),主要发育泥晶灰岩、 含生物碎屑泥微晶灰岩、生物碎屑灰岩、砂屑灰岩

图 3 塔里木盆地及邻区早一中奥陶世(a)和晚奥陶世(b)原型盆地 Fig.3 Prototype of Tarim Basin and adjacent areas in Early-Middle Ordovician (a) and Late Ordovician (b) 据张光亚等(2015)修改

等,同时局部地区发育云质灰岩(高华华等,2018);良 里塔格组为台地边缘浅滩亚相(图 2,图 3),主要发育 鲕粒灰岩和粒屑灰岩,可见大型腹足类和双壳类化石 碎片(侯明才等,2006;赵宗举,2015).但是笔者在对盐 下地区鹰山组和良里塔格组的钻井岩心进行岩石矿 物鉴定时,在多口井岩心中首次发现大量火山碎屑物 质,这些火山碎屑物质表明在鹰山组和良里塔格组沉 积时期研究区附近存在着较为活跃的火山活动.

2 火山碎屑物质赋存状态

研究区火山碎屑物质赋存状态主要表现为两

种:(1)碳酸盐化玻屑沉凝灰岩,主要发育在鹰山组中;(2)火山碎屑灰岩,主要发育在良里塔格组中.

2.1 碳酸盐化玻屑沉凝灰岩

样品采集于 T914 井,该类型岩石主要出现在 下奧陶统鹰山组,呈灰白色,块状构造,沉凝灰结构. 在显微镜下观察,其物质成分主要为火山碎屑物质, 含量约为 85%~90%,成分主要为玻屑(图 4a、4b). 其次为深灰色泥微晶灰岩岩屑,约为 10%~15%.大 部分玻屑已经蚀变,被微晶方解石交代,在玻屑边缘 和内部可见毛发状、丝状的水云母粘土矿物集合体 (图 4b).这种围绕玻屑呈梳状产出的结构特征表明 水云母粘土矿物由玻屑蚀变而来,而非沉积形成的.

图 4 盐下地区奥陶系火山碎屑物质岩石学特征

Fig.4 Petrological characteristics of Ordovician volcaniclastic materials in the Yanxia area

a.碳酸盐化玻屑沉凝灰岩,单偏光,鹰山组,T914 井,6 230.98 m;b.碳酸盐化玻屑沉凝灰岩,玻屑边缘和内部可见毛发状、丝状的水云母粘土矿物集 合体,正交光,鹰山组,T914 井,6 230.98 m;c.碳酸盐化玻屑沉凝灰岩经盐酸处理后,残余的水云母粘土矿物,正交光,鹰山组,T914 井,6 230.98 m; d.含玄武岩屑亮晶粒屑灰岩,玄武岩屑呈纹层状富集,单偏光,良里塔格组,S108 井,5 868.03 m;e.火山岩屑显示玻基斑状结构,正交光,良里塔格 组,S108 井,5 869 m;f.亮晶鲕粒灰岩,鲕粒同心纹层绿泥石化,单偏光,良里塔格组,S110 井,6 084.31 m 虽然大部分玻屑被粘土化或碳酸盐化,但残余玻屑 幻影结构仍清晰可见,形态呈骨针状,不规则尖角 状.具有弱的塑性定向排列.将岩石样品经稀盐酸浸 泡,碳酸盐岩化后形成的方解石被除掉后,玻屑蚀变 形成的粘土矿物保持原始结构特征.残余玻屑与蚀 变形成的水云母粘土矿物呈现典型的凝灰结构(图 4c),玻屑含量约为 50%,未见晶屑.

2.2 火山碎屑灰岩

该类型岩石主要出现在上奥陶统良里塔格组, 样品采集于 S108 和 S110 井,火山岩屑主要赋存在 高能环境下形成的亮晶鲕粒灰岩、砂屑灰岩中.火山 岩屑含量为5%~12%,粒径为0.1~0.3 mm,次圆 状,以分散状产出为主,偶见呈纹层状富集(图 4d). 可见间隐结构,斜长石呈长条状微晶,杂乱分布于火 山玻璃中(图 4d).也可见典型的玻基斑状结构,斑 晶主要为长板状的斜长石,呈不规则的格架状杂乱 分布于玻璃质中(图 4e).基质火山玻璃具有脱玻化 现象,形成微晶长英质物质.岩石学特征表明其岩屑 主要为中基性火山岩岩屑.与火山岩屑同层的鲕粒 灰岩中,同心纹层可见绿泥石矿物(图 4f),且具有 疏松多微孔特征,这些绿泥石可能为同时期降落的 中基性火山灰与方解石在形成同心纹层后经绿泥石 化形成的.同时,在赋存有火山岩屑的灰岩中未见到 其他陆源碎屑沉积物,表明火山岩屑不是来自中基 性火山岩陆源区,而是来自同沉积期的火山喷发物.

3 样品选取及测试条件

本文样品主要来自于研究区的 T914 井、S108 和 S110 井的钻井岩心,共获得岩石样品 25 件.所有 样品均进行岩石薄片鉴定,然后挑选出 12 件样品进 行地球化学测试.在玛瑙磨样机中将样品磨成 200 目以下的岩石粉末,送至中国地质大学(武汉)地质 过程与矿产资源国家重点实验室进行主量、微量和 稀土元素分析测试.主量元素采用 X 射线荧光光谱 仪(XRF)分析,微量元素和稀土元素采用电感耦合 等离子体质谱仪(ICP-MS) 和等离子体发射光谱仪 (ICP-AES)分析.对国际标样 BCR-2(玄武岩)、BH-VO-1(玄武岩)和 AGV-1(安山岩)的分析结果表 明,主量元素分析精度和准确度优于 5%,微量和稀 土元素的分析精度和准确度一般优于 10%(Ramsey et al.,1995).

4 地球化学

如表1所示,来自T914井的碳酸盐化玻屑沉 凝灰岩 SiO₂ 含量低,为4.75%~10.44%;CaO 含量 高,为 51.70%~45.30%; TiO2 含量为 0.06%~ 0.14%; Al₂O₃ 含量为 1.80%~4.72%; Na₂O 含量 低,为0.05%~0.15%,K2O含量较高,为0.16%~ 1.50%,表现出明显钠含量低、钾含量高的特征.烧 失量 LOI 高 (35.18%~40.11%),稀土元素总量 ΣREE 为 55.80×10⁻⁶~102.00×10⁻⁶,经球粒陨石 化后显示轻稀土较富集、重稀土平坦的特征,Eu显 示负异常.来自 S110 井样品 SiO2 含量为 11.32%~ 34.80%, CaO 含量为 34.30%~47.40%, TiO 2含量 为 0.07%~0.42%, Al₂O₃ 含量为 0.91%~3.52%, Na2O含量为0.03%~0.14%,K2O含量为0.27%~ 1.34%, 烧失量 LOI 为 24.35%~35.77%, 稀土元素 总量 ΣREE 为 61.23×10⁻⁶~10.95×10⁻⁶, 经球粒 陨石化后也显示轻稀土较富集、重稀土平坦的特征, Eu显示负异常(表 1).来自 S108 井样品 SiO2 含量 为 2.08% ~ 18.16%, CaO 含量为 34.10% ~ 53.20%, TiO₂ 含量为 0.06%~1.45%, Al₂O₃ 含量 为0.57%~6.62%, Na₂O含量为 0.04%~1.22%, K₂O 含 量 为 0.14% ~ 0.95%, 烧 失 量 LOI 为 25.07%~42.64%,稀土元素总量 ΣREE 为 23.60× 10⁻⁶~125.27×10⁻⁶,经球粒陨石化后也显示轻稀土 较富集、重稀土平坦的特征,Eu显示负异常(表 1).

5 讨 论

5.1 地球化学元素特征

从表1可以看出,样品的SiO₂含量均较低而CaO含量高,CaO含量与SiO₂含量具有很好的线性负相关性(图5),这可能与岩石样品在沉积时混入火山碎屑物质量有关,当同期混入火山物质越多时,岩石中SiO₂含量越高、钙质含量越少.由于样品烧失量均较大(24.35%~35.77%),岩石蚀变程度较高,因此一些活动性较强的元素如Ba、K、Na、Rb、Sr、U等不宜用来进行岩石类型判别,而一些高场强的元素(Nb、Ta、Zr、Hf等)、不活泼的元素受此影响较小,可以代表原岩特征,因此可用来判断蚀变岩石的类型和成因(Winchester and Floyd,1977; Hastie *et al.*,2007).本文选用不活泼元素(Ti、Zr、Y、Nb)进行岩石分类(Winchester and Floyd,1977; Hallberg,1984),在Zr/TiO₂×10⁻⁴ – Nb/Y判别图中

表 1 塔里木盆地奥陶系鹰山组和良里塔格组主量(%)、微量(10⁻⁶)、稀土元素(10⁻⁶)含量及特征比值

Table 1 Major element (%), trace element (10^{-6}) and rare earth element (10^{-6}) concentrations and typical values of Yingshan Formation and Lianglitage Formation in the Tarim Basin

取样井号	T914	T914	S110	S110	S110	S110	S110	S108	S108	S108	S108	S108
岩性	А	А	В	В	В	В	В	В	В	В	В	В
样品号	T1	T2	S1	S 3	S4	S 5	S6	S 9	S10	S7	S 8	S11
SiO_2	4.75	10.44	11.32	16.74	18.39	31.15	34.80	15.78	18.16	2.35	2.80	2.08
Al_2O_3	1.80	4.72	1.20	2.07	1.75	3.52	0.91	5.91	6.62	0.57	0.73	0.57
${\rm TiO}_2$	0.06	0.14	0.16	0.33	0.26	0.42	0.07	1.26	1.45	0.05	0.07	0.06
Fe_2O_3	0.39	0.73	1.33	2.46	1.94	2.47	0.81	7.54	4.84	0.52	0.91	0.40
MgO	0.28	0.75	0.30	0.37	0.32	0.45	0.17	3.29	4.02	0.72	0.66	0.91
$K_2 O$	0.63	1.50	0.50	0.79	0.69	1.34	0.27	0.91	0.95	0.14	0.20	0.14
Na_2O	0.05	0.15	0.04	0.11	0.08	0.14	0.03	0.78	1.22	0.04	0.05	0.04
CaO	51.70	45.30	47.40	44.10	43.20	34.30	35.30	37.10	34.10	52.70	52.60	53.20
MnO	0.01	0.01	0.11	0.08	0.07	0.04	0.03	0.09	0.08	0.05	0.05	0.04
P_2O_5	<0.01	0.01	0.05	0.09	0.07	0.10	0.02	0.18	0.25	0.03	0.03	0.02
BaO	0.01	0.01	<0.01	0.01	0.01	0.09	0.01	0.02	0.02	0.01	<0.01	0.01
$\mathrm{Cr}_2\mathrm{O}_3$	<0.01	<0.01	0.01	0.01	0.01	0.02	0.01	0.09	0.08	0.01	0.01	0.01
SO_3	0.64	1.35	2.09	4.39	3.46	4.10	1.10	7.01	0.49	0.44	1.20	0.21
SrO	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.04
LOI	40.11	35.18	35.77	30.76	31.15	24.35	26.91	25.07	28.39	42.28	41.03	42.64
Li	2.09	4.43	4.69	6.83	7.54	13.54	19.18	41.97	48.28	2.11	2.58	2.59
Be	0.20	0.46	0.21	0.27	0.26	0.59	0.19	0.74	0.68	0.12	0.21	0.14
Sc	2.54	4.01	2.99	6.69	5.10	6.01	3.53	19.81	13.51	1.33	2.53	1.42
V	4.36	7.32	15.97	32.83	25.16	41.72	13.94	155.99	159.54	8.19	11.52	10.22
Cr	1.47	2.09	25.19	61.15	44.78	85.79	14.22	533.57	421.37	7.47	14.25	11.05
Со	1.66	1.72	4.87	7.36	5.49	7.17	5.87	23.34	19.96	2.45	2.93	2.67
Ni	8.09	7.40	18.66	30.92	24.10	25.76	14.71	172.42	152.61	15.03	16.33	17.79
Cu	2.92	1.40	7.72	12.21	7.96	13.27	7.22	12.04	12.69	2.34	3.31	1.33
Zn	6.45	14.19	22.98	39.53	31.20	40.71	29.61	30.64	47.08	12.25	19.73	13.01
Ga	2.07	5.54	2.07	3.49	3.13	5.86	1.72	7.87	9.49	0.95	1.14	0.89
Rb	10.48	25.16	11.19	16.66	14.81	35.72	10.20	19.30	15.35	6.08	8.17	6.31
Sr	197.47	292.44	276.46	307.07	314.19	236.72	263.74	300.65	304.81	399.56	435.23	319.07
Ŷ	8.26	19.38	17.72	27.64	28.17	24.13	20.00	21.99	22.62	6.96	18.44	9.49
Zr	30.01	74.27	22.70	33.44	28.73	65.02	14.10	102.15	130.12	15.79	13.95	9.67
Nb	1.36	3.20	4.80	7.65	6.34	10.37	1.37	25.63	40.71	0.98	1.32	1.28
Us D	0.82	2.23	0.33	0.43	0.38	1.20	0.42	0.84	0.60	0.26	0.39	0.29
Ва	16.87	24.35	20.55	82.03	23.25	097.52	14.86	21.69	95.03	15.24	25.49	30.32
La C-	9.93	18.70	12.78	19.28	19.31	21.53	12.79	41.08	40.20	4.33	8.40 91.41	0.87
Ce Pr	23.09	42.02	25.54	30.42	37.09	39.34 4.25	20.90	41.90	49.30 5.76	0.49	21.41	1 4 2
	2.75	4.00	10.76	4.52	4.50	4.50	2.94	4.99	0.70	1.11	2.30	1.45
ING Sm	2.21	2 97	2 24	10.04	2 07	2 69	266	4.67	4.05	4.50	9.39	0.97 1.27
Sin Eu	2.21	0.91	0.55	4.12	0.84	0.71	2.00	4.07	4.95	0.22	0.52	0.22
Eu C J	0.49	2.10	0.00	1.00	0.84	2.06	0.40	1.23	1.30	0.23	0.00	0.32
Ga Th	0.26	3.10	2.00	4.32	4.22	3.90	2.70	4.37	4.72	0.10	2.04	0.22
Dw.	1.43	2.00	2 16	1 1 2	1.09	262	2.40	2 75	2 7 2	1.05	2 47	1.22
Ц	0.91	0.66	0.46	4.10	1.00	0.79	0.50	0.71	0.70	0.91	0.40	0.97
Fr	0.01	9.00 9.16	1 21	0.04 9.22	2 20	2.05	1 74	1.97	1 01	0.21	1 29	0.27
Tm	0.34	0.34	0.10	0.36	0.33	0.33	0.28	0.28	0.20	0.07	0.21	0.19
111 1	V.14	0.04	0.13	0.00	0.00	0.00	0.40	0.40	0.49	0.00	0.41	V.14

续表1

取样井号	T914	T914	S110	S110	S110	S110	S110	S108	S108	S108	S108	S108
岩性	А	А	В	В	В	В	В	В	В	В	В	В
样品号	T1	Τ2	S1	S3	S4	S 5	S6	S9	S10	S7	S8	S11
Yb	1.05	2.43	1.12	2.10	2.02	2.00	1.79	1.63	1.62	0.51	1.25	0.63
Lu	0.18	0.38	0.16	0.30	0.27	0.30	0.27	0.24	0.23	0.07	0.17	0.09
Hf	0.70	1.82	0.57	0.86	0.71	1.66	0.37	2.98	3.35	0.39	0.36	0.25
Ta	0.10	0.22	0.33	0.52	0.43	0.74	0.12	1.56	2.23	0.07	0.10	0.09
Pb	2.06	4.35	4.79	8.67	6.82	8.57	4.82	13.01	7.44	5.36	8.60	2.01
Th	1.65	3.43	1.45	2.35	2.09	4.83	2.88	4.77	5.75	1.56	2.20	1.15
U	0.83	1.40	0.30	0.48	0.45	0.94	0.58	1.08	0.93	1.13	0.86	1.04
Σ ree	55.80	102.00	61.23	100.95	99.35	100.91	67.37	108.71	125.27	23.60	53.49	31.56
$(La/Yb)_N$	6.76	5.52	8.22	6.57	6.85	7.73	5.14	9.55	11.86	6.09	4.86	6.64
Eu *	0.74	0.69	0.68	0.62	0.62	0.57	0.52	0.82	0.85	0.61	0.64	0.74
Nb/Y	0.16	0.17	0.27	0.28	0.23	0.43	0.07	1.17	1.80	0.14	0.07	0.14
$\mathrm{Zr}/\mathrm{TiO}_2$	0.05	0.05	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.03	0.02	0.02
Th/Yb	1.57	1.41	1.30	1.12	1.03	2.42	1.61	2.93	3.56	3.06	1.76	1.82
Ta/Yb	0.10	0.09	0.30	0.25	0.21	0.37	0.07	0.96	1.38	0.14	0.08	0.14
U/Th	0.50	0.41	0.20	0.21	0.21	0.19	0.20	0.23	0.16	0.73	0.39	0.91
Ba/Th	10.20	7.10	14.14	34.84	11.14	144.37	5.16	23.65	16.52	9.79	11.60	26.33
$(La/Sm)_n$	2.83	3.04	3.44	2.94	3.06	3.68	3.03	2.92	3.40	2.46	2.23	2.90

注:A代表碳酸盐化玻屑沉凝灰岩;B代表火山碎屑灰岩.

(图 6a),来自 T914 井的样品落在亚碱性玄武岩范 围;S110 井和 S108 井样品基本落在亚碱性玄武岩 和碱性玄武岩范围内,表明研究区火山碎屑物质主 要来源于基性火山岩.在 Zr-TiO₂图解中(图 6b), 样品也均落在玄武岩区域内,也表明其主要来源于 基性火山岩.

从表1还可以看出,研究区样品TiO₂含量较低(0.06%~1.45%),并且明显富集Rb、Th、K等大离子亲石元素和轻稀土富集,而亏损Nb、Ta、Ti、P等高场强元素,Eu负异常(图7a、7b),显示弧火山岩地球化学特征(Bailey,1981;孙赛军等,2015).从图6可以看出研究区火山碎屑物质来源于玄武岩;

图 5 盐下地区火山碎屑物质 CaO 与 SiO₂ 含量相关性

Fig.5 The correlation between CaO and ${\rm SiO}_2$ concentrations of volcaniclastic materials in the Yanxia area

研究表明基性火山岩 Ta/Yb-Th/Yb 图解可以有效 地判别玄武岩形成的构造环境,图 8 显示样品大多 数落在活动大陆边缘弧环境中(Pearce, 1983).在 U/Th-Th 图解中(图 9a),大部分样品落在典型弧 火山岩区域内,且多数位于混有沉积物来源的弧火 山岩与典型弧火山岩重叠区域,表明研究区火山物 质源区曾受到与俯冲相关流体或熔体的改造(Basta et al.,2011).Ba/Th-(La/Sm)_n图解(图 9b)进一步 表明火山碎屑物质源区具有上地壳沉积物质起源的 熔体混染,且良里塔格组沉积时期,火山碎屑物质源 区受沉积物起源熔体混染的程度更深,改造得更加 明显和强烈(Tatsumi,2006).

5.2 火山碎屑物质对南天山洋俯冲响应

元古代晚期由塔里木运动形成古塔里木板块, 在南华纪时期(约800 Ma)(汤良杰,1997a;于炳松 等,2011)开始发生裂解,在其边缘和内部发育大陆 裂谷盆地,在寒武纪一埃迪卡拉纪时期(510~ 570 Ma)(汤良杰,1997b;于炳松等,2011),大陆裂 谷带进一步扩张,在塔里木南、北两侧分别形成北昆 仑洋和南天山洋,塔里木主体则为大型克拉通内拉 张盆地,其边界为被动大陆边缘,在盆地内主要发育 稳定台地相碳酸盐岩建造(Li et al.,1996; Lin et al.,2014;石开波等,2017).寒武纪到早奥陶世,

图 6 盐下地区火山碎屑物质 Zr/TiO₂×10⁻⁴-Nb/Y 图解 (a)和 Zr-TiO₂ 图解(b)

Fig.6 Plots of Zr $/{\rm TiO_2}\times 10^{-4}$ vs. Nb/Y (a) and Zr vs. ${\rm TiO_2}\,(b) \mbox{ of volcaniclastic materials in the Yanxia area}$

塔里木盆地古地理格局呈现西台东盆的特征,即中 西部地区主要为稳定碳酸盐岩台地沉积(以晚寒武 世下丘里塔格群巨厚碳酸盐岩沉积为代表),东部的 满加尔和库鲁克塔格地区则持续表现为欠补偿的深 水盆地沉积(以晚寒武世突尔沙克组和早奥陶世黑 土凹组黑色碳、硅质灰泥岩沉积组合为代表)(楼雄 英和许效松,2004;张光亚等,2015).但是从早奥陶 世晚期开始,以近东西向展布的塔中隆起、塔北隆 起、阿瓦提隆间坳陷、满加尔隆间坳陷的形成为标 志,塔里木盆地沉积格局发生了重要转变,由前期西 浅东深的台一盆体系转化为南北向隆坳相间的格局 (图 3a)(楼雄英和许效松,2004;张丽娟等,2007;林 畅松等,2013).这种盆地古地理格局的改变明显与 盆地构造应力场转变有关(表明塔里木盆地从早奥 陶世晚期开始明显受到南北向挤压构造应力场作 用),而盆地构造应力场转变又与盆地周边洋一陆之 间发生重大地质构造事件密切相关(楼雄英和许效 松,2004).而本文的数据表明,在早奥陶世鹰山组沉 积时期,塔里木板块周边开始出现由于板块俯冲作 用而导致的火山活动,且处于俯冲削减初期.区域地 质背景表明,本次火山活动可能与南天山洋开始向 北俯冲有关,而研究区鹰山组发育的基性玻屑沉凝 灰岩正是俯冲作用导致的塔里木盆地早奥陶世晚期 应力场转变过程中大陆弧火山活动的良好记录;也 证明了在早奥陶世晚期,塔里木北侧就已经存在活 动大陆边缘弧,也即南天山洋已经开始俯冲、削减, 从而形成盆地南北向挤压构造应力场,控制早一中 奥陶世塔里木盆地沉积古地理格局.到了晚奥陶世 良里塔格组沉积时期,本文的数据表明南天山洋可 能已经进入强烈俯冲期,从而造成了良里塔格组火 山碎屑物质受到上地壳沉积物强烈混染改造作用,

图 7 盐下地区火山碎屑物质稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

Fig.7 Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spidergram (b) of volcaniclastic materials in the Yanxia area

图 8 盐下地区火山碎屑物质样品 Th/Yb-Ta/Yb 图解 Fig.8 Th/Yb vs. Ta/Yb plot of volcaniclastic materials in the Yanxia area

- 图 9 塔河南盐下地区玄武质火山碎屑物质样品 U/Th-Th 图解(a)和 Ba/Th-(La/Sm)_n 图解(b)
- Fig.9 Plots of U/Th vs.Th (a) and Ba/Th vs. $(La/Sm)_n$ (b) of basaltic volcaniclastic materials in the Yanxia area

也表明该时期塔里木板块北缘的大陆边缘弧环境发 展越来越成熟,而研究区良里塔格组中出现基性火 山碎屑岩屑就是该时期大陆边缘弧火山活动良好的 记录.而塔里木良里塔格组沉积时期岩相古地理分 布特征也印证了这一点.该时期塔里木盆地内部地 形进一步分化,盆地拗陷作用进一步加剧,如西部阿 瓦提坳陷与东部满加尔隆间坳陷连为一体(图 3b) (王恕一等,2006;张丽娟等,2007),表明该时期塔里 木盆地周缘受到的挤压应力增强,南天山洋俯冲更 加强烈,即印证了本文所得出的结论.因此,结合塔 里木盆地奥陶系古地理沉积格局的演化和研究区火 山碎屑物质的岩石学、地球化学特征,表明南天山洋 俯冲削减最早应该发生在早奥陶世晚期的鹰山组沉 积时期,而到了晚奥陶世良里塔格组沉积时期,南天 山洋已经进入强烈俯冲阶段,而塔里木盆地北缘南 天山洋盆的最终关闭应该在晚奥陶世凯迪阶之后.

6 结论

通过对塔里木北部盐下地区奥陶系鹰山组和良 里塔格组碳酸盐岩地层中火山碎屑物质进行岩石学 和地球化学特征分析,揭示了奥陶纪时期塔里木板 块北部的南天山洋俯冲活动特征.鹰山组碳酸盐岩 中火山碎屑物质主要为碳酸盐化玻屑沉凝灰岩,良 里塔格组中火山碎屑物质主要为中基性火山岩岩 屑;地球化学特征表明研究区火山碎屑物质主要来 源于基性火山岩,形成于活动大陆边缘弧环境,且受 到与俯冲相关流体或熔体的改造,良里塔格组沉积 时混染的程度更深,改造得更加明显.结合塔里木盆 地奥陶系古地理沉积格局的演化,本文认为南天山 洋在早奥陶世晚期已经开始俯冲,而到了晚奥陶世, 南天山洋已经进入强烈俯冲阶段.

References

- Bailey, J.C., 1981.Geochemical Criteria for a Refined Tectonic Discrimination of Orogenic Andesites. Chemical Geology, 32 (1 - 4): 139 - 154. https://doi.org/10.1016/ 0009-2541(81)90135-2
- Basta, F.F., Maurice, A.E., Bakhit, B.R., et al., 2011. Neoproterozoic Contaminated MORB of Wadi Ghadir Ophiolite, NE Africa: Geochemical and Nd and Sr Isotopic Constraints. *Journal of African Earth Sciences*, 59 (2 – 3): 227 – 242. https://doi. org/10.1016/j.jafrearsci.2010.10.008
- Dobretsov, N. L., Berzin, N. A., Buslov, M. M., 1995. Opening and Tectonic Evolution of the Paleo-Asian Ocean. International Geology Review, 37 (4): 335 - 360. https:// doi.org/10.1080/00206819509465407

- Gao, H. H., He, D. F., Tong, X.G., et al., 2018. Tectonic-Depositional Environment and Petroleum Exploration of Yingshan Formation in the Tarim Basin. *Earth Science*, 43(2):551-565 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.509
- Hallberg, J. A., 1984. A Geochemical Aid to Igneous Rock Type Identification in Deeply Weathered Terrain. Journal of Geochemical Exploration, 20(1):1-8.https:// doi.org/10.1016/0375-6742(84)90085-2
- Hastie, A.R., Kerr, A.C., Pearce, J.A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48 (12): 2341 – 2357. https://doi.org/10.1093/petrology/egm062
- He, D.F., Zhou, X.Y., Zhang C.J., et al., 2007. Tectonic Types and Evolution of Ordovician Proto-Type Basins in the Tarim Region. *Chinese Science Bulletin*, 52(S1):126-135 (in Chinese).
- Hopsona, C., Wen, J., Tilton, G., et al., 1989. Paleozoic Plutonism in East Junggar, Bogdashan, and Eastern Tianshan, NW China. EOS. Transactions of the American Geophysical Union, 70:1403-1404.
- Hou, M.C., Wan, L., Fu, H., et al., 2006. Study on the Sedimentary Environment of the Upper Ordovician Lianglitage Formation in the South of Tarim River, China. Journal of Chengdu University of Technology (Science & Technology Edition), 33(5):509-516 (in Chinese with English abstract).
- Li, D.S., Liang, D.G., Jia, C.Z. 1996. Hydrocarbon Accumulations in the Tarim Basin, China. AAPG Bulletin, 80 (10):1587-1603.https://doi.org/10.1306/64eda0be-1724-11d7-8645000102c1865d
- Lin, C. S., Liu, J. Y., Eriksson, K., et al., 2014. Late Ordovician, Deep-Water Gravity-Flow Deposits, Palaeogeography and Tectonic Setting, Tarim Basin, Northwest China. Basin Research, 26 (2): 297 – 319. https://doi.org/ 10.1111/bre.12028
- Lin, C. S., Yang, H. J., Cai, Z. Z., et al., 2013. Evolution of Depositional Architecture of the Ordovician Carbonate Platform in the Tarim Basin and Its Response to Basin Processes. Acta Sedimentologica Sinica, 31(5):907-919 (in Chinese with English abstract).
- Lou, X. Y., Xu, X. S., 2004. Tectonic-Sedimentary Responses of the Tarim Basin, Xinjiang during the Late Early Palaeozoic. Sedimentary Geology and Tethyan Geology, 24(3):72-79 (in Chinese with English abstract).
- Pearce, J. A., 1983. The Role of Sub-Continental Lithosphere in Magma Genesis at Destructive Plate Margins. In:

Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenoliths.Shiva, Nantwich.

- Ramsey, M. H., Potts, P. J., Webb, P. C., et al., 1995. An Objective Assessment of Analytical Method Precision: Comparison of ICP-AES and XRF for the Analysis of Silicate Rocks. *Chemical Geology*, 124(1-2):1-19. https://doi.org/10.1016/0009-2541(95)00020-m
- Shi, K.B., Jiang, Q.C., Liu, B., et al., 2017. Sedimentary Characteristics and Evolution of Cambrian-Ordovician in Quruqtagh Area, NE Tarim Basin, Xinjiang. Acta Petrologica Sinica, 33 (4), 1204–1220 (in Chinese with English abstract).
- Sun, S.J., Zhang, L.P., Ding, X., 2015. Zircon U-Pb Ages, Hf Isotopes and Geochemical Characteristics of Volcanic Rocks in Nagqu Area, Tibet and Their Petrogenesis. Acta Petrologica Sinica, 31(7), 2063 – 2077 (in Chinese with English abstract).
- Tang, L. J., 1994. Evolution and Tectonic Patterns of Tarim Basin. *Earth Science*, 19(6):742-754 (in Chinese with English abstract).
- Tang, L.J., 1997a. A Discussion on Paleozoic Tectonic Evolution of Tarim Basin, Northwest China. Geoscience, 11 (1):15-21 (in Chinese with English abstract).
- Tang, L.J., 1997b. Major Evolutionary Stages of Tarim Basin in Phanerozoic Time. Earth Science Frontiers, 4(3-4): 318-324 (in Chinese with English abstract).
- Tatsumi, Y., 2006. High-Mg Andesites in the Setouchi Volcanic Belt, Southwestern Japan: Analogy to Archean Magmatism and Continental Crust Formation? Annual Review of Earth and Planetary Sciences, 34(1): 467-499. https:// doi.org/10.1146/annurey.earth.34.031405.125014
- Wang, S. Y., Huang, J. W., Jiang, X. Q., 2006. The Sedimentary and Palaeogeographic Characteristics of the Upper Ordovician in the Tarim Basin. *Petroleum Geology & Experiment*, 28(3): 236-242,248 (in Chinese with English abstract).
- Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. *Chemical Geology*, 20: 325 - 343. https://doi.org/10.1016/0009-2541(77)90057-2
- Xiao, X. C., Tang, Y. Q., Li, J. Y., et al., 1991. Tectonic Evolution of the Southern Margin of the Paleo-Central Asian Composite Giant Suture Belt.Beijing Science and Technology Press, Beijing (in Chinese).
- Xu,Z.Q., He,B.Z., Zhang, C.L., et al., 2013. Tectonic Framework and Crustal Evolution of the Precambrian Basement of the Tarim Block in NW China: New Geochronological Evidence from Deep Drilling Samples. *Precambrian Research*, 235: 150 - 162. https://doi.org/10.

1016/j.precamres.2013.06.001

- Yang, T.N., Li, J.Y., Sun, G.H., et al., 2006. Earlier Devonian Active Continental Arc in Central Tianshan: Evidence of Geochemical Analyses and Zircon SHRIMP Dating on Mylonitized Granitic Rock. Acta Petrologica Sinica, 22 (1):41-48 (in Chinese with English abstract).
- Yu, B. S., Lin, C. S., Fan, T. L., et al., 2011. Sedimentary Response to Geodynamic Reversion in Tarim Basin during Cambrian and Ordovician and Its Significance to Reservoir Development. *Earth Science Frontiers*, 18 (3): 221-232 (in Chinese with English abstract).
- Yue, Y., Tian, J. C., Zhao, Y. Q., et al., 2018. Control of Hetian Paleo-Uplift on Hydrocarbon Accumulation of Ordovician, Tarim Basin. *Earth Science*, 43 (11): 4215 – 4225 (in Chinese with English abstract). https://doi. org/10.3799/dqkx.2018.253
- Zhang, C. L., Zou, H. B., Li, H. K., et al., 2013. Tectonic Framework and Evolution of the Tarim Block in NW China. Gondwana Research, 23 (4): 1306 - 1315. https://doi.org/10.1016/j.gr.2012.05.009
- Zhang, G.Y., Liu, W., Zhang, L., et al., 2015. Cambrian-Ordovician Prototypic Basin, Paleogeography and Petroleum of Tarim Craton. Earth Science Frontiers, 22(3), 269-276(in Chinese with English abstract).
- Zhang, L.J., Li, Y., Zhou, C.G., et al., 2007. Lithofacies Paleogeographical Characteristics and Reef-Shoal Distribution during the Ordovician in the Tarim Basin. *Oil & Gas Geology*, 28 (6):731-737 (in Chinese with English abstract).
- Zhao,Z.J., 2015. Indicators of Global Sea-Level Change and Research Methods of Marine Tectonic Sequences: Take Ordovician of Tarim Basin as an Example. Acta Petrolei Sinica, 36 (3):262-273 (in Chinese with English abstract).
- Zhao, Z.J., Wu, X.N., Pan, W.Q., et al., 2009. Sequence Lithofacies Paleogeography of Ordovician in Tarim Basin. Acta Sedimentologica Sinica, 27(5):939-955 (in Chinese with English abstract).
- Zhu, Z. X., Wang, K. Z., Zheng, Y. J., et al., 2006. Zircon SHRIMP Dating of Silurian and Devonian Granitic Intrusions in the Southern Yili Block, Xinjiang and Preliminary Discussion on Their Tectonic Setting. Acta Petrologica Sinica, 22(5):1193-1200(in Chinese with English abstract).

附中文参考文献

- 高华华,何登发,童晓光,等,2018.塔里木盆地鹰山组沉积期 构造一沉积环境与原型盆地特征.地球科学,43(2): 551-565.https://doi.org/10.3799/dqkx.2017.509
- 何登发,周新源,张朝军,等,2007.塔里木地区奥陶纪原型盆

地类型及其演化.科学通报,52(S1):126-135.

- 侯明才,万梨,傅恒,等,2006.塔河南盐下地区上奥陶统良里 塔格组沉积环境分析.成都理工大学学报(自然科学 版),33(5):509-516.
- 林畅松,杨海军,蔡振中,等,2013.塔里木盆地奥陶纪碳酸盐 岩台地的层序结构演化及其对盆地过程的响应.沉积 学报,31(5):907-919.
- 楼雄英,许效松,2004.塔里木盆地早古生代晚期构造一沉积 响应.沉积与特提斯地质,24(3):72-79.
- 石开波,蒋启财,刘波,等,2017.塔里木盆地东北缘库鲁克塔 格地区寒武纪一奥陶纪沉积特征及演化.岩石学报,33 (4):1204-1220.
- 孙赛军,张丽鹏,丁兴,等,2015.西藏那曲中酸性火山岩的锆 石 U-Pb 年龄、Hf 同位素和地球化学特征及岩石成因. 岩石学报,31(7):2063-2077.
- 汤良杰,1994.塔里木盆地构造演化与构造样式.地球科学,19 (6):742-754.
- 汤良杰,1997a.略论塔里木古生代盆地演化.现代地质,11 (1):15-21.
- 汤良杰,1997b.塔里木显生宙盆地演化主要阶段.地学前缘,4 (3-4):318-324.
- 王恕一,黄继文,蒋小琼.2006.塔里木盆地上奥陶统沉积及古 地理特征.石油实验地质,28(3):236-242,248.
- 肖序常,汤耀庆,李锦轶,等,1991.古中亚复合巨型缝合带南 缘构造演化.北京:北京科学技术出版社.
- 杨天南,李锦轶,孙桂华,等,2006 中天山早泥盆纪陆弧:来 自花岗质糜棱岩的地球化学及 SHRIMP-U/Pb 定年 的证据.岩石学报,22(1):41-48.
- 于炳松,林畅松,樊太亮,等,2011.塔里木盆地寒武纪一奥陶 纪区域地球动力学转换的沉积作用响应及其储层地质 意义.地学前缘,18(3):221-232.
- 岳勇,田景春,赵应权,等,2018.塔里木盆地和田古隆起对奥 陶系油气成藏的控制作用.地球科学,43(11):4215-4225.https://doi.org/10.3799/dqkx.2018.253
- 张光亚,刘伟,张磊,等,2015.塔里木克拉通寒武纪一奥陶纪 原型盆地、岩相古地理与油气.地学前缘,22(3): 269-276.
- 张丽娟,李勇,周成刚,等,2007.塔里木盆地奥陶纪岩相古地 理特征及礁滩分布.石油与天然气地质,28(6): 731-737.
- 赵宗举,2015.全球海平面变化指标及海相构造层序研究方 法——以塔里木盆地奥陶系为例.石油学报,36(3): 262-273.
- 赵宗举,吴兴宁,潘文庆,等,2009.塔里木盆地奥陶纪层序岩 相古地理.沉积学报,27(5):939-955.
- 朱志新,王克卓,郑玉洁,等,2006.新疆伊犁地块南缘志留纪 和泥盆纪花岗质侵入体锆石 SHRIMP 定年及其形成 时构造背景的初步探讨.岩石学报,22(5):1193-1200.