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Abstract. Lattice-based public-key encryption has a large number of
design choices that can be combined in diverse ways to obtain different
tradeoffs. One of these choices is the distribution from which secret keys
are sampled. Numerous secret-key distributions exist in the state of the
art, including (discrete) Gaussian, binomial, ternary, and fixed-weight
ternary. Although the choice of the distribution impacts both the con-
crete security and performance of the schemes, it has not been compared
explicitly how the choice of secret-key distribution affects this tradeoff.

In this paper, we compare different aspects of secret-key distributions
that appear in submissions to the NIST post-quantum standardization
effort. We first consider their impact on concrete security (influenced
by the entropy and variance of the distribution), on decryption failures
and IND-CCA2 security (influenced by the probability of sampling keys
with “non average, large” norm), and on the key sizes. Next, we select
concrete parameters of an encryption scheme instantiated with the above
distributions, optimized for key sizes, to identify which distribution(s)
offer the best tradeoffs between security and performance.

We draw two main conclusions from the results of the above optimization.
Firstly, fixed-weight ternary secret keys result in the smallest key sizes
of the encryption scheme. Such secret keys reduce the decryption failure
rate and hence allow for a higher noise-to-modulus ratio, alleviating the
slight increase in lattice dimension required for countering specialized
attacks that apply in this case. Secondly, fixed-weight ternary secret keys
result in the scheme becoming more secure against decryption failure-
based IND-CCAZ2 attacks, as compared to secret keys with independently
sampled components.

Keywords: Lattice cryptography - Public-key encryption - Noisy ElGamal -
Secret keys - Decryption failure - Hybrid attack

1 Introduction

Recent advances in the development of quantum computers [40I58/39/52)38/28]
have made a long-standing threat [61] against classical cryptography concrete.
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Fig.1: The impact of a lattice-based encryption/key-encapsulation scheme’s
secret-key distribution on various aspects of the scheme.

At present, is not clear when a general-purpose quantum computer will become
available and this threat will manifest [24J59]. Nevertheless, given the widely
recognized difficulties of migrating to new cryptographic infrastructures [30] as
well as the long-term confidentiality requirements on data currently exchanged,
efforts towards the standardization [5325] of post-quantum cryptography [14]
have already begun. Lattice-based cryptography [54] has received significant at-
tention [I7/45] as a candidate for quantum-safe cryptography due to its well-
understood mathematical foundations, efficiency, and flexibility. However, the
design of lattice-based cryptosystems can be challenging as various tradeoffs
and interactions between design aspects must be accounted for. In the design
of lattice-based public-key encryption (PKE) schemes, aspects which must be
considered include the choice of structure in the underlying lattice [57I49J46],
the choice of independent or implicit noise [I], the choice of the noise distribu-
tion [I55006], and the choice of the secret-key distribution. All these affect the
resulting security, operation and performance of the final scheme. Figure [1| sum-
marizes the influence on these aspects of the choice of secret-key distribution,
which is our focus in this paper.

Secret-key distributions can be characterised by their variance and entropy,
which both impact on security. A secret key with low variance makes concrete
attacks on the scheme easier [64I2I10]. For example, in attacks utilizing lattice
reduction (such as the primal [6] and dual [2] attacks), the secret key is part
of a short lattice vector that is recovered as the solution to a lattice problem
formulated using the scheme’s public key (and ciphertext). These attacks are
improved by taking into account the imbalance between the norms of the secret
key and error vector [I0]. The entropy of the secret-key distribution is relevant
for combinatorial attacks (such as the hybrid attack [36], and the sparse variant
of the dual attack [2]) in which part of the secret key is recovered by guessing.
Secret keys with lower entropy are easier to guess.

The secret-key distribution influences chosen-ciphertext or active attacks [26)
that exploit decryption failures, because the secret key is directly involved in



Table 1: Performance comparison of a Ring Learning with Rounding [I1]-based public-key encryp-
tion scheme, considering different secret-key distributions (details in Sec. [4.3]). For concrete attacks
considered, @) assumes a quantum speedup, while C does not.

Parameters Fixed-weight Symmetric Discrete Fixed-weight Binomial
ternary secrets | ternary secrets |Gaussian secrets| Binomial secrets secrets

n,0,h,c’ 1, -, [326], 0.41 1,041, -, 041 - - - 03 3, -, [388, 154, 24], 1.5 3,1,-, 15

n,q,p,t 796, 213,22 2% | 796, 213 2% 25 | 820, 23, 29 2 828, 214, 210 ot 828, 214, 210 ot
Bandwidth 1937 B 1961 B 1991 B 2215 B 2215 B
Public key 921 B 921 B 948 B 1060 B 1060 B
Encryption overhead 1016 B 1040 B 1043 B 1155 B 1155 B
Failure rate o-178 2187 o172 o187 2172

Primal attack [6] (Q/C) 9175 /5192 9175 /5192 9176 /5194 2176 /194 9176 /5194

Dual attack [2] (Q/C) 9176 /9194 9176 /9104 9178 19196 9174 /5192 9174 /9192
Hybrid attack [36] (Q/C) 9183 /9193 91837/9195 9314 /9328 9258 /9271 9253 /9271
Sparse-secrets attack [2] (Q/C) 2175 /9192 2175 /9192 2176 /9194 2176 /o194 2176 /9194

decryption and thus affects the probability of such failure events occurring. An
attacker who witnesses these failure events can build up statistical information on
the secret-key, making recovery of the secret easier [2131]. Finally, the secret-key
distribution also affects the computational performance of the scheme, through
sampling of keys and (polynomial or matrix) multiplications.

The design of fully homomorphic encryption schemes [27] implicitly accounts
for the security and performance tradeoffs resulting from the use of secrets having
low variance and/or low entropy, which are essential for controlling the noise
growth in such schemes. Indeed, a ternary [60], or fixed-weight ternary [32],
secret-key distribution is typically chosen in implementations. Accordingly, the
Homomorphic Encryption Security Standard [I] recommends secure parameters
for several choices of secret-key distribution, including ternary. However, to the
best of our knowledge, there exist no works explicitly analyzing the role played
by the secret-key distribution in the tradeoffs between security and performance
in lattice-based encryption schemes.

1.1 Owur contributions

In this work, we focus on the choice of the secret-key distribution when designing
a lattice-based public-key encryption scheme, analyzing how this choice affects
the scheme’s security, operation and performance. Our contributions are:

1. We compare a number of secret-key distributions used in NIST post-quantum
candidates [53] with respect to different criteria such as variance, entropy and
resulting probability of decryption failure.

2. We analyze the performance of a lattice-based public-key encryption scheme
for the above secret-key distributions. We show in Table [I| (details in Sec-
tion that fized-weight ternary secret keys lead to minimum bandwidth
requirements, while remaining secure. Despite allowing specialized attacks,
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Fig.2: Total work for a chosen-ciphertext attack on lattice-based encryption
schemes by boosting decryption failures as in [21], considering fixed and non
fixed-weight secrets. The scheme in this work is similar to a version of the

Round5 [9] scheme without error correction (details in Sec. and [5.2). The
vertical red, dashed line indicates a failure rate of 2754,

such secrets also allow stronger noise tolerance, increasing the noise-to-
modulus ratio and security. This combination leads to smaller key-sizes.

3. We extend the analysis in [21] on the impact of decryption failures on the
chosen-ciphertext (IND-CCA2) security of lattice-based encryption schemes.
We show in Figure [2| (details in Section [5]) that using fixed-weight ternary
secrets, rather than ternary secrets with independently drawn components,
makes the scheme less prone to attacks of the above form, since sampling
larger-than-expected secrets is impossible. Moreover, we show the same is
true for fixed-weight secrets with a larger support, and that this is indepen-
dent of the scheme’s chosen error distribution.

1.2 Related work

The possibility of an attacker searching for ciphertexts that lead to a higher than
expected probability of decryption failure in lattice-based public-key encryption
was proposed by Jacob Alperin-Sheriff [7] and Mike Hamburg [33], as part of an



analysis of the NIST PQC candidate LAC [47]. This was further analyzed by
D’Anvers et al in [2]]. Fixing the Hamming weight in the LAC cryptosystem was
suggested by Hamburg [33] as a possible countermeasure to the above attack,
although a full analysis or rationale was not provided. Concurrent to this work,
a subset of the techniques we propose — namely, fixing the (Hamming) weight of
the secret-keys (and error vectors) — was independently used to stop the above
attack [733] in an updated version of LAC [48 Section 1] submitted to the
second round of the NIST PQC standardization process. However, the authors
do not analyze how this technique stops the attack, nor do they generalize it to
other schemes and distributions.

1.3 Organization

Section [2] introduces preliminaries and notation. Section [3| describes the secret-
key distributions considered in this work. Section [4] first analyzes and compares
the entropies, variances and probabilities of decryption failure for the differ-
ent secret-key distributions in Sections and Next, Section analyzes
the (bandwidth) performance of a lattice (specifically, rounding)-based encryp-
tion scheme instantiated with the various secret-key distributions we consider,
showing that fixed-weight ternary keys lead to the smallest bandwidth require-
ments. Section [§] analyzes the influence of the secret-key distribution on chosen-
ciphertext (IND-CCA2) attacks that use decryption failures, showing that fixing
the weight or number of secret key components makes such attacks harder. Sec-
tion [6] concludes the paper.

2 Preliminaries

2.1 Notation

For each positive integer a, we denote the set of congruences modulo a by Z,.
We identify Z, with the set {0,1,...,a — 1}. For a set A, we denote by a & a
that a is drawn uniformly at random from A. For any polynomial f(x), let Ry
denote the polynomial ring Z[z]/f(x). For each positive integer a, we write Ry 4
for the polynomials of degree less than that of f(z), with all coefficients in Z,.
We call a polynomial ternary if all its coefficients are 0, 1 or —1. Throughout
this document, regular font letters denote elements from a R ¢ defined for a poly-
nomial f(z). For any polynomial, its Hamming weight h is defined as its number
of non-zero coefficients. For z € Q, |«] denotes rounding to the closest integer
(with rounding up in case of a tie) respectively, and is extended coefficient-wise
for elements (polynomials) of a defined R ;.

2.2 Cryptographic, problem and scheme definitions

We follow the notation used in [2I]. A public-key encryption (PKE) scheme is
defined as a triple of functions PKE = (Keygen, Enc,Dec) with message space



M, where given a security parameter A\ Keygen returns a secret key sk and
public key pk, Enc encrypts a message m € M using pk to produce a ciphertext
ct, and Dec returns an estimate m’ of m given ct and sk.

The decisional Learning with Errors (LWE) [566] problem involves distin-
guishing the uniform sample (A, U) < U(Z}**2 x Zk+*™) from the LWE sam-
ple (A,B = (AS + E),) where A + U(ZE**2) and where the secret key S
and error E are generated from the secret and error distributions XS(Z’;”’”)
and XC(Z’;X’”) respectively. The search problem is to recover S from the LWE
sample.

As mentioned in [21], the above problem definitions can be generalized to
Ring [49] or Module [46] (R/M)LWE by using vectors of polynomials. To further
generalize the definition, independent reduction polynomials f; (z) and fs(x) can
be considered, the first used to reduce the product of polynomial multiplications
during key-generation and the second used similarly during encryption and de-
cryption. The NIST PQC candidate Round5 [9] uses such a construction with
independent reduction polynomials. Then, the generalized problem is to distin-
guish the uniform sample (A, U) + U (R’}iflb X R’;izm) from a generalized
LWE sample (A, B = (AS + E) ;) where A « U(R} "), 8§ « x (RE2xm)
and F + Xe(Rf;lxm). The search problem is analogous to the LWE case.

The decisional generalized Learning with Rounding (LWR) [II] problem in-

volves distinguishing the uniform sample (A, |p/q-U]) where A < U (R’;izkz)

and U + U(R?;7f1m) from the generalized LWR sample (A, B = Lp/q . (A,S')fl—‘ )

where A + L{(R;ﬁié’”), and S + xs (Rgzxm). Analogous to the LWE case, the
search problem is to recover S from the generalized LWR sample.

Using the above generalized problem definitions, we define a generalized
public-key encryption scheme in Algorithms and |3 similar to [21] Sec. 2.4].

Note the use of an additional ciphertext compression modulus t in addition to
the primary modulus ¢ and the rounding modulus p. The function encode trans-
forms a message m € M into a polynomial representation, and decode is the
inverse decoding function. Similar to as [2I), Sec. 2.4] proposes, this generalized
PKE framework can be instantiated to describe multiple NIST PQC schemes
that are based on LWE/LWR [15l9], RLWE/RLWR [6[9] or MLWE/MLW-
R [16123].

3 State of the art: Secret-key distributions

This section presents definitions of the secret distributions analyzed in this pa-
per. A number of, but not all, of these distributions feature in second-round
NIST post-quantum cryptographic (PQC) candidates [53], this is summarized
in Table[2] We start with distributions of secrets of length n obtained by drawing
each of the n components independently from one single distribution. Then we
describe distributions in which secrets are generated as a whole.



Algorithm 1: Keygen()

1A CURE)
2 Sa+ Xs(RE™), Ba + xe(RY™)
3 B=|p/q- (AS4+ Ea),]

4 return (pk = (A, B),sk = Sa)

Algorithm 2: Encrypt(pk = (A, B), m)
B Xs(Rg™), Elp = Xe(Rg“™)
E} «+ Xe(R;nxm)
B, = lq/p- B]
B = |p/q-(A"S)s + Bl) |
V! = {t/q. (BTS's + E', + %encode(m))b—‘
6 return ct = (B', V')

N I R
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Algorithm 3: Decrypt(sk = S, ct = (B', V"))
1 m' = | 2(lg/t- V'] = (la/p- B Sa)s)|

/

2 return decode(m)

3.1 Discrete Gaussian distribution

For schemes based on the (Ring [49]) Learning with Errors [56] ((R)LWE) prob-
lem, security reductions from worst-case lattice problems are feasible if the
noise follows a sufficiently wide Gaussian distribution [56/18], such as the Frodo
scheme [I5]. Variants in which the secret follows the same distribution as the
error can be proven equivalent to the original problem by putting the system
in systematic form, as done in [8]. Therefore, for schemes based on (R)-LWE,
components of the secrets commonly (approximately) follow a discrete Gaussian
distribution. For implementation reasons, the approximations have a finite sup-
port [I5]. The discrete Gaussian probability distribution function Dy, over Z
with mean p = 0 and parameter o is defined as

1 20,2
Dyo(X =k) = geik b (1)

Here X is 2the2 random variable over Z, and S is the normalization constant
S e ® /277 For ¢ > 0.5, it holds that var(Dz,) ~ 2.

3.2 Centered binomial distribution

The centered binomial distribution was introduced in [6] as an easy-to-implement
distribution that is a good approximation to a rounded continuous Gaussian
distribution with the same variance. For each positive integer n, the centered
binomial distribution bin,, of width 1 has support {—n, —n+1,...,-1,0,1,...,n}



Table 2: NIST PQC candidates featuring secret-key distributions analyzed in
this work.

Secret-key distribution ‘ NIST PQC candidate

Frodo [15]

Kyber [16], Saber [23], NewHope [5], LAC [47]
NTRU [37]

3.4) |Round5 [9], NTRUPrime [I3]

Discrete Gaussian (Sec.
Centered binomial (Sec.
Symmetric ternary (Sec.
Fixed-weight ternary (Sec.

and is defined as

. 2n -2
bin, (k) = 27" for k € [-n,n] NZ. 2
in,, (k) (k+77> or k € [=n, 7] (2)
Clearly, bin,, is symmetric around zero and so has mean zero. By direct compu-

tation, it can be shown that the variance of this distribution is var(bin, ) = 3.

Sampling from bin, can be done [6] by computing Y ! 01 (b; — b}) where the
b;, b, € {0,1} are uniform independent bits. The NewHope submission to the
NIST standardization [55] uses bing for generating noise and secrets. The Ky-
ber [16] and Saber [22] submissions employ bin, with n € {6,8, 10}E| for gener-
ating secrets in their three proposed parameter sets. The LAC [47] submission
employs two unique bin; distributions for generating secrets and noise in its
proposed parameter sets.

Scaled wversion. It is possible to define a generalized version of the centered
binomial distribution bin, g of width 7 and with scaling factor 0 as

bin, ¢(k) = 6 -bin, (k) for k € Z,1 < |k| <, and bin, ¢(0) = 1 —60(1 —bin,(0)).

3)
In order that bin, ¢ is a probability distribution, it is required that 0 < 0 <
1/(1 — bin,(0)). As bin, ¢ is symmetric around zero, its mean equals zero. Its
variance satisfies

1
var(bin, g) = E k%0 - bin, (k) = 6 - var(bin, ) = 59 -1. (4)
k#0

By varying over both 1 and 68, the above, so-called scaled centered binomial dis-
tribution allows a wide range of trade-offs to be investigated. It has the centered
binomial distribution (as bin,; = bin,) as a special case. We note that this
generic distribution is not actually used in any NIST PQC candidate.

3.3 Symmetric ternary distribution

For 0 < a < 1, the symmetric ternary distribution 7, with parameter « is

defined as 1
Ta(0) =1-a, Ta(l) =Ta(~1) = S (5)

3 The two submissions use different notations for the parameter 7.



Clearly, 7T, has mean zero and variance «. The Lizard submission to the NIST
standardization [20] employs 71 and 71 for secret key generation in Lizard. CCA
and Lizard. KEM. This distribution is another special case of the scaled centered
binomial distribution defined in Section (as biny g = T14).

3.4 Fixed-weight ternary distribution

This distribution is not defined via a component-wise distribution, rather, the
entire secret is generated as a whole, as in the NIST PQC candidates Round5 [9]
and NTRUPrime [12]. For positive integers n, h with h even and 1 < h < n/2,
the fixed-weight ternary distribution 7y, 5 is the uniform distribution on the set
of all ternary vectors with h/2 ones, h/2 minus ones, and n — h zeroes. There is
a close relationship between fixed-weight ternary secrets and secrets generated
according to a symmetric ternary distribution. The per-component distribution
of vectors drawn according to 7, n equals T} /,. Specifically, the per-component
variance of vectors drawn according to 7,5 equals %

Conversely, by the law of large numbers, for large n, a vector of length n
with each component drawn independently according to 7, with high probabil-
ity has approximately %cm ones, %om minus ones, and n(1 — «) zeroes. However,
as will be shown in Section [5| a certain active attack that utilizes decryption
failures [21] is more powerful against secrets with independently generated com-
ponents according to 7y, than against secrets generated according to 7, . The
reason is that such an attacker can benefit from the (rare) occurrence of secrets
of a weight considerably larger than h.

4 Analysis

We begin with a comparison of two fundamental properties of the distribu-
tions considered in Section [£.I] namely their entropies and variances. Next, we
look more deeply into the interaction between a secret-key distribution and the
underlying cryptographic scheme, and compare in Section the probability
of decryption failures when different secret-key distributions are considered. In
Section [£:3] we compare the key sizes of a lattice-based public-key encryption
scheme when instantiated with the different secret-key distributions considered
in this work.

4.1 Comparing entropy against variance

In this section, we consider the per-symbol entropy achieved by the secret-key
distributions considered in this work, for a fixed variance. We note that the sym-
metric ternary (Section [3.3)) and fixed-weight ternary (Section[3.4) distributions
cannot have a variance that is greater than one. On the other hand, the centered
binomial distribution (Section cannot have a variance that is less than one.
Finally, the discrete Gaussian distribution (Section can be parametrized to
have variances in both of these regimes.
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Fig.3: Comparison of the entropies and variances of the distributions consid-
ered in this work; solid green: fixed-weight ternary (with dimension 800 and
weight of secret keys ranging from 8 till 792), dotted red: symmetric ternary
with independently sampled components), blue (discrete Gaussian), black (cen-
tered binomial).

The comparison of these distributions with respect to entropy achieved for a
fixed variance is shown in Figure [3] The per-symbol entropy of the fixed-weight
ternary distribution with parameters n (dimension/length) and h (weight) is

log, ((Z) (h%)) /n, since there are exactly (}}) (h};2) n-long ternary vectors con-

taining exactly h/2 4+1’s and exactly h/2 —1’s. It can be shown by Stirling’s
approximation that for large n, this entropy is the same as that of the symmet-
ric ternary distribution. In Figure [3] we fix n = 800, and compute the variance
as h/n, and entropy as above for Hamming weights h ranging from 8 till 792. It
can be seen that in the so-called “low-variance” regime (i.e., for variances less
than approximately 0.4), the ternary distributions achieve entropies almost as
high as that of the discrete Gaussian distribution, which is known to maximize
the entropy for a given variance [4I]. Such regimes can be imagined to be de-
sirable for low probabilities of decryption failure, since a low variance implies a
lower probability of (a) large component(s) being sampled in the secret key that
can increase the failure probability. The ternary distributions may have other
benefits, namely more efficient cryptographic computations and easier sampling,
that we do not discuss here.

For such low variances however, the centered binomial distribution cannot
be defined and thus cannot be compared with either the discrete Gaussian or

10



the ternary distributions. We must thus consider variances that are greater than
one, and there it can be seen in Figure [3] that the entropy of the centered bino-
mial distribution for such variances is lower than that of the discrete Gaussian
distribution.

4.2 Comparing failure probability against variance

We discuss the impact of the secret distribution choice on the decryption fail-
ure rate of the generalized lattice-based public-key encryption scheme described
in Section [2] algorithms [T} ] and [3] For concreteness and simplicity, we con-
sider a Ring Learning with Rounding based instantiation of it, i.e., we choose
l=1, Eqx = E)3 = E';, = 0. To prevent the polynomial degree from being re-
stricted to only powers of 2, we choose the key-generation reduction polynomial
fi(@) = Ppii(x) = 2" + 2" 1+ ...+ 1, the (n + 1)-th cyclotomic polynomial
for n + 1 a prime. To avoid correlated errors due to the use of this specific
f1(z) and also to reduce decryption failure rates to the level achieved by power-
of-2 cyclotomic polynomials, we choose the encryption reduction polynomial
fa(x) = 2"t — 1. We refer to [9] for details on this technique, noting that it
requires the polynomials in S 4 and S5 to have a factor (z — 1).

Section mentioned that the (fixed-weight and symmetric) ternary distri-
butions can only have variance at most one, while the centered binomial distri-
bution can only have variance at least one. This complicates a direct (i.e., with
variances equalized) comparison of the failure rates resulting from these distri-
butions. Instead, in this section we analyze the effect of fixing the composition of
the secrets on the decryption failure rate, i.e., the effect of fixing the exact num-
ber or weight of secret key components for each possible component value. In
other words, we will compare the failure rate of the above-mentioned public-key
encryption scheme when instantiated with the symmetric ternary distribution as
opposed to the fixed-weight ternary distribution. Next, we will do the same and
compare the centered binomial distribution bin_n(k), with a fized-weight variant

of it, i.e., with the uniform distribution on the set of all vectors in {—n,...,n}"
with ezactly L(lf_:n)Q’Q"nj components equal to k (for k € {—n,...,n}\ {0}),

and the remaining components are zero.

For fixed scheme parameters n = 800, ¢ = 2!, p =27, t = 27, Figure com-
pares the failure rates achieved by the above scheme for the symmetric ternary
and fixed-weight ternary distributions. In the former case, the failure probability
can be computed by iteratively convolving the symmetric ternary secret distri-
bution and that of the “rounding” error, similar to [23]. In case of fixed-weight
ternary secrets, assuming independence, the failure probability can be computed
similarly as in [9, Sec. 4.3] where one term in the decryption error polynomial
is distributed as the sum of ezactly h independent uniform random variables on
(—q/2p, q/2p]|NZ, minus the sum of h independent uniform random variables on
(—a/2p,q/2p] N Z.

Figure [4 shows that the use of fixed-weight ternary secrets in the encryp-
tion scheme reduces its decryption failure rates. Secret keys sampled from the
symmetric ternary distribution may have a Hamming weight that is higher than

11



Failure rates due to different secret-key distributions
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Fig.4: Comparison of the failure rates of the lattice-based encryption scheme
described in Section when using fixed-weight ternary (green) and symmetric
ternary (red) secret keys.

expected. On the other hand, fixed-weight ternary secret keys can never have
weight higher than h. Generalizing this, it is possible to strictly bound the Eu-
clidean norm of secret keys sampled from distributions that assign fixed-weights
to non-zero components of the secret key.

Conversely, there also exists a non-negligible probability that secrets sam-
pled from the symmetric ternary distribution have a weight that is lower than
expected, which leads to the possibility of a multi-target attack along the lines
of [33] that reduces the cost of key recovery attacks such as [36/2]. In this attack,
the attacker can perform a one-time precomputation in order to find an encryp-
tion randomness that results in higher than expected probability of decryption
failure, use this to compute ciphertexts for multiple targets, out of which targets
with secret keys that have smaller than expected weight can be identified if de-
cryption unexpectedly succeeds. Fixing the weight of the secret keys, in addition
to improving the decryption failure rate, also stops this attack.

The same result as for the ternary distributions can be seen again in Figure
that compares the decryption failure rate of the encryption scheme for the cen-
tered binomial distribution and its fixed-weight variant introduced above. The
comparison is done for the fixed parameters n = 828, ¢ = 214, p = 210 ¢ = 24,
It is again seen that fixing the weight of the non-zero components reduces the
failure rate, since it strictly limits the number of non-zero components that are
sampled in the secret key, as well as removing the possibility of sampling very
large components.

12
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3 3.5

1 15 2 4 45 5

501 Variance
— (Centered) Binomially distributed secrets
—(Centered) Binomial with fixed weights

-100

-150

Failure rate (iog,)

Fig.5: Comparison of the failure rates of the lattice-based encryption scheme
described in Section when using secrets drawn from a (centered) binomial
distribution (red) and one where the weights of the non-zero secret coefficients
are fixed (green).

4.3 Comparing security and performance trade-offs

The variance, entropy, failure probability and computational performance can
be computed given a type of secret distribution. However, it is not possible to
derive a conclusion about the overall system looking at them only individually,
since their effect is interlinked, as shown in Figure[I[] While a secret distribution
aspect (e.g., low variance) can have a positive impact on the encryption scheme,
e.g., low decryption failure, it can also have a negative impact, e.g., lower con-
crete security. Therefore, we choose to analyze the eventual effect of this inter-
action on the final scheme, by performing a parameter search with the aim of
minimizing the bandwidth requirements, chosen as the metric since it improves
performance of security protocols. Our chosen scheme is the same Ring Learning
with Rounding based instantiation of the generalized PKE scheme of Section
that we instantiated in Section i.e., by choosingl =1, E4y = El3 = E, =0
fi(x) = Ppia(x) fo(x) = Nyyi(x). Parameters are chosen to encrypt a 192-bit
message, while offering a minimum targeted security level (NIST security cate-
gory 3 [53]) and ensuring a negligibly low decryption failure rate so that standard
transformations [35] can be applied on the scheme to obtain an IND-CCA2 se-
cure scheme.

While choosing parameters, concrete security is analyzed considering the best
known current attacks, which are ones that utilize lattice basis reduction, under
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the conservative core-sieving model [6] assuming sieving [43] as the underlying
SVP oracle in basis reduction. Although the exact cost of lattice reduction is con-
sidered unclear in the literature [T934I5113], it is dominated by that of running
the SVP oracle on b-dimensional lattices. Ignoring asymptotic factors, this cost
is estimated as 20-2920 and 20-265b [42044)43] respectively, depending on whether
a quantum speedup by Grover’s algorithm [29] is assumed or not. Attacks con-
sidered include the primal or decoding attack [6], and the dual or distinguishing
attack [2], extended to utilize lattice rescaling [OIT10J2], to exploit the fact that a
number of secret-key distributions in this work are relatively narrower than the
error, and result in unbalanced short lattice vectors. To further account for such
narrow secret-key distributions, specialized or combinatorial attacks such as the
hybrid lattice reduction and meet-in-the-middle attack [36], and a sparse-secret
attack [2] are also considered.

Table [1| summarizes the computed parameters and compares the achieved
performance. The first row shows parameters related to the secret distribution,
namely 7, §, and h where applicable, as defined in Section [3| and variance o2 of
the distribution. For schemes with fixed-weight secret-key distributions, the pa-
rameter h represents a list of weights of non-zero components that appear in the
secret key, ignoring the sign of the component. For example, h = [h1, ha, ..., hy]
implies that the secret key contains h; components that are +1, ho that are +2,
and so on till h, that are £7. The second row includes the size n of the reduction
polynomial and the moduli — ¢, p, and ¢ — involved in the Ring Learning with
Rounding (RLWR) problem [I1]. We observe that all configurations achieve a
classical level of at least 192 bits of security, and a failure rate of at most 27170,

The conclusion from the comparison in Table[l]is that for similar security and
decryption failure rate targets, a rounding-based public-key encryption scheme
with smallest bandwidth requirements is obtained when the secret keys are sam-
pled from a fixed-weight ternary distribution. While such secret keys open up the
possibility of specialized attacks [36l2], they also enable stronger noise tolerance
and a higher noise-to-modulus ratio, improving security. The observation from
Table [I}is that the combination of these two competing effects while optimizing
parameters of the encryption scheme, leads to smaller key sizes.

5 Resistance against decryption failure-based
chosen-ciphertext attacks

An important aspect to consider while designing public-key encryption and en-
capsulation schemes is their security against active or chosen-ciphertext attacks,
formalized in the notion of IND-CCA2 security. Lattice-based encryption and
encapsulation schemes typically have a probability of decryption failure, which
depends on the instantiation of the secret key and noise of both parties. In case
of schemes based on (Ring) Learning with Rounding [I1], it depends only on
the secret keys since the noise is determined based on the secret keys and the
public parameter. One possible attack against such schemes in the IND-CCA2
model involves an attacker who chooses ciphertexts with the goal of causing a
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decryption failure, and hopes to gain information on the decryptor’s secret key
by observing such failure events.

D’Anvers et al. [21] present an attack framework of this form on a number
of NIST post-quantum standardization candidates, and compare how the dif-
ferent schemes fare against it. However, the roles played by different aspects of
the schemes’ designs in withstanding active attacks of the above form are not
completely studied. In this section we analyze the role played by the secret-key
distribution of a scheme in this attack. We analyze and quantify the cost of the
above-mentioned decryption failure-based attack [21] against each of the secret-
key distributions considered in this paper, in the context of the rounding-based
encryption scheme we introduced in Section We show that fixing the weight
of the (non-zero) secret key components makes the attack harder, independent
of any other scheme parameters such as the error distribution.

We first recall the basic intuition behind the attack: Typically, most lattice-
based public-key encryption schemes consist of a core building block that is an
IND-CPA secure public-key encryption scheme. Applying a KEM variant [35]
of the Fujisaki-Okamoto transform on this scheme yields an IND-CCA2 secure
scheme, whose security can be proven in the random oracle model. A core com-
ponent of the above transform is a reencryption step that intuitively requires
the encryptor to prove knowledge of the message that is being encrypted/en-
capsulated. Thus, an active or chosen ciphertext attacker can do no better than
exhaustively search for messages that result in so-called “weak” ciphertexts [21]
which cause a decryption failure with probability higher than a threshold f; —
this is a parameter chosen by the attacker. The probability of finding such weak
ciphertexts is denoted in [2I] by the parameter «, and the (increased) decryption
failure rate resulting from them is denoted by the parameter 8. Assuming that
the attacker has no quantum access to the decryption oracle, the overall attack
cost of this so-called failure boosting attack, is thus (af)~! (using a classical
computer) or (y/af)™! (with a quantum speedup [29]). Once weak ciphertexts
are found, the attacker uses information gained by observing decryption failure
events to speed up standard secret key recovery attacks [GJ36].

We recall some notation from [2I] before proceeding to the analysis of the
attack and our extension of it. In the context of the generalized public-key en-
cryption scheme described in Section [2] algorithms [T} [2] and [3] we define the
errors introduced by the rounding operation (if applicable) as:

Up=AS,+E,—B,, Uy=A"S3; +E - B,

U = Bl Sy + B+ | 2m| - V.

(6)

Further, let

!
S = (EA_f?]J C = (EB;BUB>, G = E}+ U (7)

The above-mentioned attack cost of failure boosting can be minimized by the
attacker over the choice of the failure probability threshold f;. This minimization
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requires obtaining the (distribution of the) variance of the coefficients of the
polynomial STC;; [21, Eq. 8] (where i, j are used to vary over the coefficients
of the polynomials in §7C):

var(STCyjr) = (Bl + Up,j)ll3var(xs) + [ (S.) [3var(xesu) (®)

Computing (the distribution of) this variance is an essential step towards model-
ing the failure probability in each component of the polynomials involved in the
decryption error term that is represented by STC + G. (C, Q) can be chosen by
the attacker with the eventual goal of finding a “weak” ciphertext that causes a
higher than expected probability of decryption failure.

Computing the distribution of the failure probability in each component of
the decryption error eventually allows determining whether the attacker succeeds
in causing the probability of the decryption failure rate in each component of
the above polynomials to be greater than the chosen f;, for a chosen (C, Q)
pair — this qualifies as an attack success. This involves computing the resulting
« and f parameters, and thus the overall attack cost. A key assumption made
by [21] in the above computations is that the coefficients of STC are normally
distributed. This assumption also allows applying this analysis to a number of
different schemes with varying secret-key and noise distributions. However, as
mentioned by the authors themselves in [21, Section 3.1], this assumption is also
the source of potential inaccuracies in the analysis. In the following section we
show that this inaccuracy exists for specific distributions, and can be removed
by refining the analysis of [21] for said distributions.

5.1 Adapting failure boosting to fixed-weight secrets

It is possible to refine the existing analysis of failure boosting [2I] when consid-
ering schemes which have secret keys with fixed-weight components, i.e., where
the number of components that are equal to i € [1,...,n] (positive and negative
components taken together) is exactly h;. Specifically, the Gaussian approxi-
mation step involved in computing the distribution of the decryption failure
probabilities per component of ST C + G can be made more precise for such
schemes. This allows for a more accurate computation of the distribution of the
coefficients in the polynomials comprising 87 C, improving the analysis of [21].

The decryption failure probability f;; in the ijk-th component of sTc+a,
given a chosen pair (C, G) is computed in [2I, Eq. 11] as:

fijk =Pr (|(STC + G)”k| > qt|G,C>

9)
~ Pr (|x +Gijk| > |G,z +— N (O,var(STCijk))) .

q: = q/2P is a decryption threshold, where ¢ is the system modulus and B

bits of information are extracted from each component of the shared secret.

The previously mentioned assumption made by [2I] that the coefficients of ST C

are normally distributed results in the approximation in the second step of the
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above equation. We refine this approximation by first noting that (recalling the
definitions of S, C and G in Eq. E[):

E U
s7C - (-8 (8% + uh) (P4, U7

S
=-ST(Ep+Uy) + (ELY+U,)S;
=S Ep + E4Sp

(10)

Rewriting S7 C in the above manner makes it clear that the computation of fijk
in Eq. [0 can be refined as follows:

fijk =~ Pr(|m1 + 22 + Gijk| > qt|G7x1 — /\/(O,var((SAEB)ijk)) , Lo XEASB)
(11)

where firstly, var((SAEp)i;x) is adapted from var(STC;;x) in Eq. [8 as:
var((SaEg)iji) = (B + Ul,)|lsvar(xs) (12)

and secondly, xg,s, is the distribution of each component in the polynomial
product (E4Sg);j, where polynomials in S have components chosen from {—7,-

..,m}, with exactly h; components that are equal to i € [1,...,n] (positive
and negative components taken together). The variable x5 is thus distributed
as Z?:N'Z?Q X, ;, where the random variables X; ; for 1 < ¢ <nand 1 <
J < h; are independently drawn from ye4,. This distribution can be computed
by convolving, over all i € [1,...,n], the h;-fold iterative convolution of x4
scaled with a factor i. Equations [11] and [I2] thus summarize our adaptation to
the analysis of the failure boosting phase of the decryption failure-based active
attack in [21].

5.2 Results of our adaptation

Applying our above adapted analysis, Figure [2| depicts the cost (a8)~! of ap-
plying failure boosting to find a weak ciphertext on a classical computer, for a
number of NIST post-quantum standardization candidates, and the rounding-
based public-key encryption scheme we defined in Section [4.2] - instantiated with
both fixed-weight and non fixed-weight ternary secrets. The parameters used for
these are the same as computed in Section [£:3] Note that the construction of the
encryption scheme using these distributions is similar to some instantiations of
the NIST PQC candidate Round5 [9], albeit a version that does not use error
correction and uses non fixed-weight ternary secrets for the latter. The results
clearly indicate that fixing the weight makes the attack harder.

To further demonstrate this, and to show that the results of our adaptation
also carry over to schemes using independent errors (instead of only rounding-
based errors), we include results for fized-weight variants of the NIST PQC
candidates Saber [22] — that uses rounding errors, and Kyber [I6] — that uses
independently sampled errors. These fixed-weight variants sample their secret
keys from centered binomial distributions [6] analogous to the original schemes,
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however the weights of the non-zero components are fixed in a manner similar to
that mentioned in Section[1.2] Figure[2]shows that the cost of the failure boosting
attack increases visibly faster for these fized-weight variants of Saber and Kyber
than the original schemes. Since these schemes were originally designed to use
secret key components that are larger than 1, fixing the weight of non-zero secret
key components provides them with an even greater security benefit against the
failure boosting attack of [21] than schemes using secret keys with components
that are only ternary.

6 Conclusions and future work

Of all the different design aspects involved in the construction of lattice-based
public-key encryption schemes, an important one that has so far not been ana-
lyzed in depth in the literature is the role played by the secret-key distribution in
the tradeoff between performance and security of the scheme. We initiate study in
this area by comparing a number of secret-key distributions currently being con-
sidered as part of candidates to the NIST post-quantum standardization process,
with respect to different criteria such as variance, entropy, resulting probability
of decryption failure, and resistance against chosen-ciphertext attacks based on
decryption failures.

Our results indicate that out of the secret-key distributions considered in this
work: firstly, fixed-weight ternary secrets reduce the decryption failure rate of the
encryption scheme and allow for a higher noise-to-modulus ratio while ensuring
a large enough dimension secure against concrete attacks, thus leading to the
smallest key sizes when parameters are optimized for bandwidth. Secondly, fixing
the weight of non-zero components in the secret key increases security against
decryption failure-based chosen-ciphertext attacks, as compared to secrets with
independently sampled components. An interesting area of further research is
to analyze the effect of similarly fixing the weight of components in the error
vector, on the security and performance of the encryption scheme.
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