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Abstract. The widespread use of cloud computing has enabled several
database providers to store their data on servers in the cloud and answer
queries from those servers. In order to protect the confidentiality of the
data stored in the cloud, a database can be stored in an encrypted form
and all queries can be executed on top of the encrypted database. Recent
research results suggest that a curious cloud provider may be able to
decrypt some of the items in the database after seeing a large number of
queries and their (encrypted) results.
In this paper, we focus on one-dimensional databases that support range
queries and develop an attack that can achieve full database reconstruc-
tion, inferring the exact value of every element in the database. Previous
work on full database reconstruction depends on a client issuing queries
uniformly at random.
Let N be the number of elements in the database. Our attack succeeds
after the attacker has seen each of the possible query results at least
once, independent of their distribution. For the sake of query complexity
analysis and comparison with relevant work, if we assume that the client
issues queries uniformly at random, we can decrypt the entire database
after observing O(N2 logN) queries with high probability, an improve-
ment upon Kellaris et al.’s O(N4 logN).

1 Introduction

During the past decade, an increasing amount of organizations have started to
outsource their IT infrastructure to cloud providers. This usually means that
they run their web servers in the cloud, they store their data in the cloud, and
they run most of their applications, including databases, in the cloud as well.
Outsourcing the IT infrastructure to the cloud has several advantages: it provides
reliability, availability, 27/4 support, and even low cost due to the economies of
scale.

Unfortunately, outsourcing the IT infrastructure to the cloud has its draw-
backs as well. For example, an organization’s data may contain confidential
information that should not be leaked to third parties. Storing this informa-
tion outside the organization’s premises is frequently discouraged, if not totally
forbidden. Recent large-scale data breaches (such as that of Equifax [1]) scare
organizations even further away from the cloud.
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One way to deal with these restrictions and risks is to store data in the
cloud in an encrypted form. Indeed, data leaks are no threat to encrypted data
as data decryption is usually extremely difficult without the encryption key(s).
Data encryption also protects the data from “curious” eyes, including the cloud
provider itself. Indeed, no matter how long one “looks” at encrypted data, she
will probably never be able to decrypt them without the appropriate key(s).
Unfortunately, even encrypted data are not safe from curious eyes.

Indeed, previous work has demonstrated that if one monitors query results,
she might be able to gain information about the data—even when stored and
transmitted in an encrypted form. In particular, range queries (queries that
return a range of scalar data) are particularly susceptible, as they have the po-
tential to leak information about the data they access. Such information may
include the order of the (encrypted) elements (i.e., which is larger and which
is smaller) as well as the actual values of the (encrypted) elements. This latter
information, essentially implies that the database can be practically decrypted.

In this paper, we focus on secure (encrypted) one-dimensional databases that
support range queries on encrypted data. We assume an honest but curious at-
tacker who is able to monitor all (encrypted) queries and their (encrypted) re-
sults. We develop an attack that can fully reconstruct the database after seeing
enough queries. The attack first reconstructs the order of all the (encrypted)
database elements and then decrypts their values.

Our attack utilizes two common types of leakage, access pattern leakage and
search pattern leakage. Previous algorithms on the full database reconstruction
problem depend on access pattern leakage and on a client issuing uniformly at
random queries [8], [11], or only work on dense databases [13]. Also, some of
the previous work considers additional assumptions on the database, such as the
existence of points in particular intervals and/or a minimum distance between
such points [8]. However, it is unlikely that a client issues queries uniformly
at random. Also, not all databases are dense. Finally, special assumptions on
nonempty intervals and minimum distance between points may not hold.

We have developed a general attack on encrypted databases that achieves
full database reconstruction, recovering the exact values of all elements, after
seeing all possible query results.

For the sake of timing analysis and comparison with related work, if we
assume that the client issues queries uniformly at random, the algorithm suc-
cessfully completes after about O(N2 logN) queries with high probability, where
N is the database size. However, our attack works no matter how the client issues
queries, as long as each possible query is issued at least once.
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1.1 Our focus

This paper presents an attack on encrypted databases that support range queries.
We develop a general attack that achieves full database reconstruction (FDR),
that is, we are able to reconstruct the exact value of all elements in the database.
Our attack consists of two parts:

1. An algorithm that reconstructs the order of the elements in a database using
access pattern leakage (Section 4).

2. An algorithm that achieves full database reconstruction after observing all
possible queries at least once using access pattern leakage and search pattern
leakage, given the order of the elements (Section 5).

Previous attacks that achieve FDR require access pattern leakage and a client
that issues queries uniformly at random. We do not assume such a restrictive
assumption about the client’s behavior, just that she issues queries returning at
least once each of the possible query results. In all cases, our algorithm improves
or matches the query complexity reported in previous work, as illustrated in
Table 1.

Assuming that the client issues queries uniformly at random, the algorithm
successfully completes after O(N2 logN) queries with high probability, where
N is the size of the database. Our results hold with high probability, that is,
probability greater than 1− 1

N2 .

Table 1. Comparison of approaches to the Full Database Reconstruction (FDR) and
the Full Ordering Reconstruction (FOR) problems. We compare our work with three
relevant papers in the area. We report the query complexity and we highlight the best
algorithm(s). In the first column, “Dense” refers to a dense database, “Any” refers
to an arbitrary database, and “Any∗” refers to the assumption introduced in [8] that
requires the existence of points in particular intervals and/or force a minimum distance
between such points. In all cases, we improve or we match the performance of previous
algorithms.

Previous Work
Database /
Problem

Kellaris et al.
[11]

Lacharité
et al. [13]

Grubbs et al.
[8]

This Paper

Dense /
FDR

O(N2 logN) N logN +
O(N)

O(N logN)

Any / FOR O(N2 logN) O(N2 logN)
Any∗ / FOR O(N2 logN) O(N logN) O(N logN)
Any / FDR O(N4 logN) O(N4 logN) O(N2 logN)
Any∗ / FDR O(N4 logN) O(N2 logN) O(N2 logN)
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1.2 Contributions

This paper has the following contributions:

1. We show that we can achieve FOR after O(N2 logN) uniformly-at-random
queries with high probability (1− 1/N2) (Theorem 1).

2. We show that we can achieve FOR in dense datasets after O(N logN)
uniformly-at-random queries with high probability (1 − 3/N3) (Theorem
2).

3. For datasets that have two data points in [N/4, 3N/4] we show that we can
achieve FOR in O(N logN) uniformly-at-random queries with high proba-
bility (1− 3/N3) (Theorem 3).

4. We show that we can achieve FDR after O(N2 logN) distinct queries with
high probability (1− 1/N2) (Theorem 4).

2 Model and Problem Statement

We consider a client that stores information on a database hosted by a server. A
client can issue queries to the server using tokens, and the server issues responses.

Consider, for example, a collection of n records in a database. Each record
(r, x) contains a unique identifier r in some set R, and some value x = val(r)
from some ordered set of integers X, on which range queries are performed,
X = [1, ..., N ].

A range query [a, b], where a, b are integers, returns the set of identifiers
M = {r ∈ R : val(r) ∈ [a, b]}.

The adversarial model we consider is a persistent passive adversary, able to
observe all communication between the client and the server.1 The adversary
aims to recover information about val(r) for each r ∈ R.

A database is called dense if for all x ∈ X, there exists some r, such that
val(r) = x.

The information learnt by the adversary depends on some scheme-dependent
leakage. We examine two types of common leakage:

1. Access Pattern Leakage: If whenever the server responds to a query, the
adversary observes the set of all matching identifiers,2 M , we say that the
scheme allows for access pattern leakage similarly to [11].

2. Search Pattern Leakage: If the adversary can tell whether two search tokens
t1 and t2 that return the same set of identifiers correspond to the same range
query or not, we say that the scheme allows for search pattern leakage.3

1 Note that the adversary is not able to decrypt any encrypted information she can
see.

2 Note that any identifier r reveals no information on val(r).
3 Note that we do not assume that a token reveals the query the client issues. That

is, the token does not reveal the interval [a, b]. We just assume that different tokens
imply that the queries are different.
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We assume that the adversary knows N , and the set of all identifiers.

Problem 1 (Full Database Reconstruction). Given a one-dimensional encrypted
database that allows range queries, reconstruct the exact value of all elements.

Problem 2 (Full Ordering Reconstruction). Given a one-dimensional encrypted
database that allows range queries, reconstruct the order of all elements.

3 Related Work

3.1 The Context

In this line of research we assume an honest but curious adversary. For example,
this can be the cloud server. The server can easily observe all incoming and out-
going traffic and may possibly be able to draw conclusions about the values that
exist in the database. We assume that the adversary is honest: it will not try to
change the protocol, alter data, inject faulty information, collude with malicious
users, etc. The adversary just monitors (encrypted) data.

Despite the availability of this approximate proximity information, the reader
will notice that all these records (whether nearby to or far-away from each other)
are still encrypted. Thus, the adversary might be able to know that encrypted(2)
is close to encrypted(3), but she can not know that the values observed are actu-
ally 2 and 3: the adversary only sees encrypted(2) and encrypted(3). To be able
to “break” the encryption, most of the literature makes some extra assumptions,
which usually relate to the query distribution. One frequent such assumption
made by several papers is that all range queries are issued uniformly at random
by the client. That is, there are N(N + 1)/2 possible queries ( [1, 1], ..., [1, N ],
[2, 2], ..., [2, N ], ..., [N − 1, N ], [N,N ]), and each one of them is issued with prob-
ability 2

N(N+1) .

Our approach does not depend on the query distribution. Instead, we exploit
search pattern leakage, a common leakage of such encryption schemes. This
leakage allows us determine whether two search tokens correspond to the same
query. For example, suppose there are 100 distinct queries that all return {a},
and 4 distinct queries that all return {b}. We can tell that the unoccupied space
surrounding a is larger than the unoccupied space surrounding b.

3.2 Previous Results

In one of the seminal papers in this area, Kellaris et al. systematically studied
the problem of database ordering and database reconstruction [11]. They proved
that full database ordering can be done in O(N2 logN). To do that they assume
that they have all results of all possible queries. Based on the coupons collector
problem, we need to observe about O(N2 logN) queries to make sure (with high
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probability) that we have seen all distinct queries. They also proved that full
database reconstruction can be done after having seen O(N4 logN) queries.

Our work is slightly different than [11] in the sense that we use a different data
structure which is suitable for keeping partially ordered datasets: PQ trees. As
we observe more queries, the partially ordered dataset becomes almost ordered
and after we observe all queries we have a fully ordered dataset (up to reflection).
With respect to complexity, this paper matches the O(N2 logN) bound of [11]
to do full database ordering. However, we achieve full reconstruction after seeing
only O(N2 logN) queries, while [11] needs O(N4 logN) queries.

This is because we are based on a different approach. In our work we are
able to count the distinct queries that have been issued, while [11] is based on
the statistical properties of the query distribution. Thus, in this paper we match
the bound of [11] for ordering and we significantly improve the bound for full
reconstruction.

More recently, Lacharité et al. focused on dense database reconstruction.
Their main assumption is that there exists at least one record for each possible
value in the range [1, N ] [13]. Using this density assumption they were able to
have some very impressive results. Indeed, they achieve full database reconstruc-
tion in O(N logN) time. We are able to match this bound.

The latest work in the area from Grubbs, Lacharité, Minaud and Paterson
[8] presents a global approach on how to deal with the problem. It defines a
new approximate way of reconstruction: the sacrificial ε-Approximate Database
Reconstruction (ε-ADR). ε is the error they are allowed to have in the recon-
struction. That is, each element x is mapped in some position in the interval
[x− εN, x+ εN ].

Comparing our work with [8] is a bit tricky as [8] presents a full-fledged the-
ory for approximate database reconstruction, while our work focuses on exact
database reconstruction. To make a meaningful comparison we need to study
Full Database Reconstruction (FDR) as a corner case of approximate database
reconstruction when setting ε = 1/N . In this case, it seems that Grubbs et al.
achieves FDR on any database in O(ε−4 log ε−1) = O(N4 logN) uniformly at
random queries. In this paper we manage to achieve full database reconstruction
in O(N2 logN).

It is true that Grubbs et al. can match our bound and achieve FDR in
O(N2 logN). However, they can do so, only at the expense of the assumption
that there exists an element in the interval [0.2N, 0.3N ] and that the client issues
queries uniformly at random. We make no such assumption, as indeed, there may
exist databases that do not have a value there - see for example the database we
use for the proof of Lemma 1, and it is hard to predict the client’s behavior.

Grubbs et al. are able to achieve even better bounds for full database order-
ing in O(ε−1 log ε−1) = O(N logN). However, they make several assumptions
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about the existence of elements in particular ranges as well as the distances be-
tween the elements. That is, they assume that there exist two records in range
[N/4, 3N/4] and that their distance is larger than N/3. They also require that
the strict majority of all records are in the interval [εN,N + 1− εN ]. Although
some databases might satisfy these assumptions some other databases might not.
Both ours and [8]’s approach on ordering depend on PQ-trees.

Grubbs et al. [8] as well as [13] are able to achieve approximate database
reconstruction assuming access to an auxiliary dataset distribution for the target
dataset. Our work focuses on exact database reconstruction, not approximate,
and thus this result is less relevant.

There have been plenty of attacks on different types of leakage as well. Ko-
rnaropoulos, Papamanthou and Tamassia [12] developed an approximate recon-
struction attack utilizing leakage from k-nearest neighborhood queries. Grubbs,
Lacharité, Minaud, and Paterson [7] utilize volume leakage from responses to
range queries to achieve full database reconstruction. Grubbs, Ristenpart, and
Shmatikov [10] present a snapshot attack that can break the claimed security
guarantees of encrypted databases.

There are more attacks in the area, but those attack property-revealing-
encryption schemes, which reveal more information than we assume or a more
active adversary ([3], [5], [9], [6], [14], [15]).

4 Ordering Reconstruction

Before we attempt a full reconstruction, we shall order the records by their value.

4.1 Main Observation

The main observation of the algorithm is the following: suppose that we have two
query responses which are essentially two sets of (encrypted) database elements:
M1 and M2. Let us assume that the first set consists of two disjoint subsets (A
and B): M1 = A ∪ B. Let us also assume that the set M2 also consists of two
disjoint subsets (B and C): M2 = B ∪ C. Let us also assume that A and C are
also disjoint.

A C

B

Then, there can be two correct (partial) orderings: (i) A, followed by B,
followed by C or (ii) C, followed by B, followed by A.
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CBA

or

ABC

The above observation can serve as a building block for ordering the elements
of the database. That is, every time we see two query results that have a non-
empty intersection, we know that there are two ordering possibilities: the one
reflection of the other. Suppose how that we see a query result M3 = B∪A1 and
that A1 ∪ A2 = A. Then, we refine the ordering as follows: A1 followed by A2,
followed by B, followed by C, or C followed by B, followed by A1, followed by A2.
It seems that most query results we see have the potential to refine this partial
ordering, possibly until the point where all elements will have been ordered.
Although keeping and maintaining this partial ordering may seem complicated,
fortunately, Booth and Lueker [2] designed a data structure that does just that:
maintains a partial ordering of a set of elements. The data structure is called a
PQ tree.

PQ Trees A PQ tree is a data structure that can efficiently store all permissible
permutations of a set of elements.

A PQ tree contains two types of nodes, P nodes and Q nodes. It also contains
leaves, which contain elements. A P node allows all possible permutations of its
children4, and a Q node allows only the order its children are in, and the reverse5.
To use a PQ tree, one first creates a root P node that contains all elements. Then,
the PQ tree can consume sets of elements that need to be contiguous and modify
itself to represent these requirements. The order is fully reconstructed if the PQ
tree contains one Q node, whose children are all leaves.

4.2 Algorithm

Similarly to [4] and [8], we will use PQ trees as defined in [2] to store the partial
ordering of the set of database elements. The adversary initializes a PQ tree.
Then, it feeds it sets of identifiers as they are observed. PQ trees can easily
update (in linear time to the number of the records) to include newly seen
sets of contiguous elements. The details of this update operation are beyond
the scope of this paper. We are just going to use PQ trees as a module that

4 A P node is essentially a set of elements.
5 A Q node is like an ordered list, that represents both the list and its reverse.
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operates in linear (to the number of records) time for each update operation.
Note that in this work, much like all previous papers, we are not concerned
with the computational complexity of the algorithms we use (as long as it is
within reasonable polynomial bounds), but with the number of queries needed
to achieve the database order/value reconstruction necessary. At every point the

Algorithm 1 Reconstruct Ordering of Identifiers

1: Initialize empty PQ-tree with the universe of possible identifiers.
2: while A new set M comes do
3: update PQ-tree with M .

adversary has access to all allowable permutations of the identifiers using the
PQ-tree.

4.3 Timing Analysis

Theorem 1. Algorithm 1 can reconstruct the order of the identifiers with respect
to their values after observing 2.1N2 logN uniformly at random issued queries,
with probability greater than 1− 1/N2.

Proof. There are N(N+1)/2 possible queries. Given that queries come uniformly
at random, the probability that a given query is not issued after 2.1N2 logN
queries is (

1− 2

N(N + 1)

)2.1N2 logN

≤ 1

e4 logN
≤ 1

N4
.

By Union Bound, the probability that at least one query is not issued after
2.1N2 logN queries is at most

N(N+1)/2∑
i=1

1

N4
≤ N(N + 1)

2N4
≤ 1

N2
.

Thus, after 2.1N2 logN queries, all queries will have been issued with prob-
ability greater than 1− 1

N2 .

ut

Note that Algorithm 1 works with any query distribution - not just with
uniform ones. In the Theorem above we made the assumption that the client
issues queries uniformly at random so as to be able to compare our results with
the results previously reported in the literature which make this assumption.
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4.4 Lower Bound of Ω(N2) in Expectation

Lemma 1. Let A be an adversary that can reconstruct the order of the records
with only access to access pattern leakage. If the client queries ranges uniformly
at random, then adversary A needs to observe at least Ω(N2) queries before she
can successfully complete the reconstruction in expectation.

Proof. We are going to base our proof on a database that is difficult to recon-
struct. Suppose we have the following database:

1 2 N − 1 N

K L M N

The only elements in it are 1,2, N − 1 and N . That is we have one small cluster
at 1,2 and one small cluster at N − 1, and N .

Given that adversary A only has access to access pattern leakage, the possible
sets A can observe are:

{K}, {L},{M}, {N}
{K,L}, {L,M}, {M,N}
{K,L,M},{L,M,N}

{K,L,M,N}

Given that the queries come uniformly at random, A will be able to tell that K
and L are clustered together and that M and N are also clustered together rel-
atively quickly. What drives this lower bound is that one of {L,M}, {K,L,M},
and {L,M,N} is necessary in order to glue the two clusters together.

Note that there are O(N2) possible queries. The only query that returns
{L,M} is [2, N −1], the only query that returns {K,L,M} is [1, N −1], and the
query that returns {L,M,N} is [2, N ].

The probability that a random query is either one of those is 3
O(N2) = 1

O(N2) .

Thus, Adversary A has to observe at least Ω(N2) queries to access one of the
necessary results in expectation.

ut

4.5 Dense Datasets

For dense databases, finding the order of the records’ values corresponds to a
full reconstruction of the database (up to reflection). In this setting, Algorithm
1 matches the best previously known complexity for dense full database recon-
struction [13].

Theorem 2. Suppose an attacker uses Algorithm 1 to reconstruct a dense database.
Then, the attacker can reconstruct the database after the client issues 9.2N logN
uniformly at random queries with probability greater than 1− 3

N3 .

Proof. First, let’s split the database in two equal parts, A and B.
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0 NN/2

A B

By Lemma 2, after 4.1N logN uniformly at random queries, for each value
a ∈ A, the client issues a query [a, b], for some b ∈ B with high probability.

Let’s look at the first 2 records in A, rA1
and rA2

. By Lemma 2, the attacker
will see some response that contains {rA1

, rA2
, ....}, and a response that con-

tains {rA2
, ....}. Note that {rA1

, rA2
, ....} contains all records in A, and {rA2

, ....}
contains all elements in A besides rA1 .

0 rA1rA2 NN/2

Given the two responses the PQ tree will be able to at least tell that rA1
is

to the left (or to the right) of rA2 and all the other elements in A.
Similarly, given some rAk

, and rAk+1
, the attacker sees responses {rAk

, rAk+1, ....},
and a response that contains {rAk+1

, ....}. When she updates the PQ tree with
the responses, the PQ tree will again be able to tell that rAk

is to the left (or to
the right) of rAk+1

and all the other elements in A higher than rAk+1
.

In this way, the attacker can order all elements in A, and get

rA1 − rA2 − ....− rAmax .

The attacker knows this order, but doesn’t know if rA1 or rAmax is the smallest
element. Using a similar argument, accompanied by Lemma 3, the attacker can
order all elements in B.

rB1
− rB2

− ....− rBmax
.

With only the above information, the PQ tree will be equivalent to one whose
root will have two children P nodes. The first P node will contain the elements
in A and the second P node will contain the elements in B.

It remains to show that the PQ tree can connect the two together. According
to Lemma 4, the client will issue some query [a, b], such that a and b are not 1
or N . As the database is dense, this query will result to a set S that contains
some records from A and some records from B. Thus, the PQ tree will see that
rAmax

and rB1
are contained in S, and thus must be next to each other. Thus,

the PQ tree will return the following order:

rA1
− rA2

− ....− rAmax
− rB1

− rB2
− ....− rBmax

.

Thus, we conclude by Union Bound, that after 9.2N logN queries the at-
tacker can reconstruct the dense database with probability greater than 1− 3

N3 .
ut

Below, we prove the Lemmas used above.
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Lemma 2. After 4.1N logN uniformly at random queries, for each value a ∈ A,
the client issues a query [a, b], for some b ∈ B with probability greater than 1− 1

N3 .

Proof. Let’s look at one value a ∈ A. There are N/2 values b ∈ B. The proba-
bility that a single query issued is of the form [a, b] is

N/2

N(N + 1)/2
=

1

N + 1
.

After 4N logN queries, the probability that no query is of the desired form
is (

1− 1

N + 1

)4.1N logN

≤ 1

e4 logN
≤ 1

N4
.

Now, let’s look at every a ∈ A. After 4.1N logN queries, by Union Bound
the probability that for at least one a the client doesn’t issue a query of the form
[a, b] is less than

N · 1

N4
≤ 1

N3
.

ut

Lemma 3. After 4.1N logN uniformly at random queries, for each value b ∈ B,
the client issues a query [a, b], for some a ∈ A with probability greater than 1− 1

N3 .

The proof follows similarly to Lemma 2.

Lemma 4. After N logN uniformly at random queries, the client issues a query
[a, b], for some a ∈ A, and b ∈ B, such that a, b are not 1 or N respectively with
probability greater than 1− 1

N3 .

Proof. There are N possible queries that start at 1 and N possible queries that
end at N . There is one common query in these two sets ([1, N ]). Thus, the
probability that a query issued starts or ends at an extreme point is

2N − 1

N(N + 1)/2
.

Thus, the probability that after N logN issued queries the client only issued
queries that start or end at an extreme point is( 2N − 1

N(N + 1)/2

)N logN

≤ 1

N3
.

ut
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4.6 Datasets Similar to [8]

Grubbs et al. [8] assume that the database contains two records a, b ∈ [N/4, 3N/4],
such that b − a ≥ N/3, and there are at least three records in the database, at
least 1 apart.

Theorem 3 shows that Algorithm 1 matches Grubbs et al. [8] query complex-
ity.

Theorem 3. Suppose an attacker uses Algorithm 1 to reconstruct a database
similar to the one in [8]. Then, the attacker can reconstruct the database after
the client issues 14.2N logN uniformly at random queries with probability greater
than 1− 3

N3 .

Proof. Similarly to the proof of Theorem 2, the attacker will be able to recon-
struct the order of the two halves in the database after 8.2N logN queries. It
remains to show that she can combine them together successfully.

Like [8], we assume that the database contains two records a, b ∈ [N/4, 3N/4],
such that b− a ≥ N/3. Thus, a ∈ A and b ∈ B.

a ba0 N

Like [8], we also assume that there is at least one more point in the database.
This point c can be in one of three intervals, in [0, val(a)], [val(a), val(b)], or in
[val(b), N ].

1. c ∈ [0, val(a)]

a bc a0 N

In this case, the attacker knows that a and c are in A, and b is in B. To
resolve the ordering, the attacker needs to observe set {a, b}, in order to
determine that c is not between a and b.
Note that even if a and c were right next to each other there are at least
N/4 possible queries that return {a, b}.

2. c ∈ [val(a), val(b)]

a bca0 N

Without loss of generality, let’s assume that the attacker knows that c is in
B. In order to resolve this, the attacker has to observe some query that re-
turns {a, c}. No matter how close a and c are, there are at least N/4 queries
that return {a, c}. They are of the form [x, val(c)], where x ∈ [0, val(a)].
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3. c ∈ [val(b), N ]

a b ca0 N

This is similar to the first item. There are at least N/4 queries that return
a query whose result is {a, b}.

In all cases above, there are at least N/4 queries that can resolve the ordering.
The probability that none of the queries issued after 6N logN queries is of the
desired form is(

1− N/4

N(N + 1)/2

)6N logN

=
(

1− 1

2(N + 1)

)6N logN

≤ 1

e3 logN

≤ 1

N3

Thus, after 14.2N logN queries the adversary will successfully reconstruct the
order of the database with probability greater than 1− 3

N3 .
ut

5 Full Reconstruction

The full reconstruction will begin when the attacker has seen all possible queries.
Since she knows N and we assume search pattern leakage, she will have seen all
possible queries when the number of the received distinct queries is N(N +1)/2.

5.1 Observation

1 N

r1 r2 r3 r4

l0 l1 l2 l3 l4

Suppose the server is hosting the above database which has records r1, r2,
r3, and r4.

At this stage we assume that the attacker has already found the order of the
records (up to reflection) and now is trying to determine distances l0 (i.e. the
distance between 1 and r1), l1 (i.e. the distance between r1 and r2), l2, l3 and l4.

To estimate l0 and l1 we focus on all the possible range queries that may
return r1 and only r1 as a response. These queries can be:

[1, l0], [1, l0 + 1],..., [1, l0 + l1 − 1]

[2, l0], [2, l0 + 1],..., [2, l0 + l1 − 1]

...

[l0, l0], [l0, l0 + 1],..., [l0, l0 + l1 − 1]
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The number of the above queries is l0 · l1. In other words, there exist exactly
l0 · l1 queries (different from each other) that all return the same result: r1.
Similarly we can show that there exist exactly l1 · l2 possible queries (different
from each other) that return a result containing only r2, etc.

The above result can be generalized for query results returning two values.
For example, there exist exactly l0 · l2 different (from each other) queries that
return a result containing both r1 and r2.

Once all queries have been seen, the attacker can count how many queries
return each possible response. For example, let us assume that the attacker has
seen exactly q1 different queries which have returned as a result only r1. Let us
also assume that the attacker has seen exactly q2 different queries which have
returned as a result only r2. Finally, let us also assume that the attacker has
seen exactly q12 different queries which have returned as a result a set containing
both r1 and r2.

This implies that the following equations hold:

l0 · l1 = q1 log l0 + log l1 = log q1

l1 · l2 = q2 or log l1 + log l2 = log q2

l0 · l2 = q12 log l0 + log l2 = log q12

By solving the above set of equations the attacker can find the values of l0,
l1 and l2. Once these three have been determined, the attacker can easily find
the remaining lengths l3 and l4 in the same spirit.

Note that search pattern leakage is instrumental for this algorithm. The
attacker has to calculate qis precisely, and she couldn’t do that if she didn’t
know whether two tokens correspond to the same query.

5.2 Algorithm

The above example can generalize for any sets of records as follows. Let us assume
that the attacker has determined the (full) ordering of the records. Let us assume
that this is r1, r2, ..., rn. Let us also assume that the number of different queries
which return as a result only the record ri is qi. The, the attacker knows that
the following set of equations hold:

l0 · l1 = q1

l1 · l2 = q2

... (1)

ln−1 · ln = qn

and

l0 · l2 = q12
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The above set of equations can be easily transformed into a linear system of
equations.

log l0 + log l1 = log q1

log l1 + log l2 = log q2

... (2)

log ln−1 + log ln = log qn

and

log l0 + log l2 = log q12

The adversary easily solve the system to find l0, l1, ..., ln.

5.3 Pseudocode

Algorithm 2 Full Reconstruction

1: Run Algorithm 1
2:

3: Once all distinct queries have been received:
4: Let order be the ordered list of records given by Algorithm 1
5:

6: for i in range [1, n] do
7: r = order[i]
8: Let qi be the number of distinct queries that returned {r}
9: Create equation li−1 · li = qi

10:

11: Let q12 be the number of distinct queries that return {order[1], order[2]}.
12: Create equation l0 · l2 = q12
13:

14: Solve the system of equations
15: Return li, i ∈ [0, n]

5.4 Analysis

Theorem 4. After receiving 2.1N2 logN queries issued uniformly at random,
Algorithm 2 will succeed in a full reconstruction of the database with probability
greater than 1− 1/N2.

Proof. Similarly to the proof of Theorem 1 we can show that after 2.1N2 logN
uniformly at random issued queries with probability greater than 1− 1/N2, the
attacker will observe all queries at least once.

Then, the attacker can solve the (1) system of equations in page 15 to de-
termine the distances between all record values and thus fully reconstruct the
database.
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6 Conclusions

During the past few years an increasing number of organizations have chosen
to store their databases on the cloud. To protect the confidentiality of the data
and the privacy of their users, these organizations choose to store (and process)
the data in encrypted from. Unfortunately, repeated queries on the (encrypted)
data may reveal information about the database records including their order
and possibly their decrypted values. In this paper we show that this is possible
with no more than O(N2 logN) range queries or even as few as O(N logN) in
some cases. Our work improves or matches previous bounds, while in the process
making less restrictive assumptions.
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8. Grubbs, P., Lacharité, M.S., Minaud, B., Paterson, K.G.: Learning to reconstruct:
Statistical learning theory and encrypted database attacks. Cryptology ePrint
Archive, Report 2019/011 (2019), https://eprint.iacr.org/2019/011

9. Grubbs, P., McPherson, R., Naveed, M., Ristenpart, T., Shmatikov, V.: Breaking
web applications built on top of encrypted data. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’16, ACM,
New York, NY, USA (2016)

10. Grubbs, P., Ristenpart, T., Shmatikov, V.: Why your encrypted database is not
secure. In: Proceedings of the 16th Workshop on Hot Topics in Operating Systems.
HotOS ’17, ACM, New York, NY, USA (2017)



18 Evangelia Anna Markatou and Roberto Tamassia

11. Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure out-
sourced databases. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM (2016)

12. Kornaropoulos, E.M., Papamanthou, C., Tamassia, R.: Data recovery on encrypted
databases with k-nearest neighbor query leakage. In: Proc. IEEE Symposium on
Security and Privacy. pp. 245–262 (2019)
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