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ABSTRACT
Oblivious RAM (ORAM) and private information retrieval

(PIR) are classic cryptographic primitives used to hide the

access pattern to data whose storage has been outsourced

to an untrusted server. Unfortunately, both primitives re-

quire considerable overhead compared to plaintext access.

For large-scale storage infrastructure with highly frequent

access requests, the degradation in response time and the ex-

orbitant increase in resource costs incurred by either ORAM

or PIR prevent their usage. In an ideal scenario, a privacy-

preserving storage protocols with small overhead would be

implemented for these heavily trafficked storage systems

to avoid negatively impacting either performance and/or

costs. In this work, we study the problem of the best storage
access privacy that is achievable with only small overhead
over plaintext access.

To answer this question, we consider differential privacy
access which is a generalization of the oblivious access se-
curity notion that are considered by ORAM and PIR. Quite

surprisingly, we present strong evidence that constant over-

head storage schemes may only be achieved with privacy

budgets of ϵ = Ω(logn). We present asymptotically opti-

mal constructions for differentially private variants of both

ORAM and PIR with privacy budgets ϵ = Θ(logn) with only

O(1) overhead. In addition, we consider a more complex

storage primitive called key-value storage in which data is

indexed by keys from a large universe (as opposed to consec-

utive integers in ORAM and PIR). We present a differentially

private key-value storage scheme with ϵ = Θ(logn) and
O(log logn) overhead. This construction uses a new oblivi-

ous, two-choice hashing scheme that may be of independent

interest.
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1 INTRODUCTION
Privacy-preserving storage primitives consider the outsourc-

ing of the storage of a database to an untrusted server with

the ability for clients to retrieve database records while main-

taining the privacy of the retrievals. Even though encryption

can be used to hide the content of the database, patterns of

how the encrypted data is accessed are revealed. The leak-

age of access patterns has been shown to compromise pri-

vacy in many important practical settings [14, 32]. Privacy-

preserving storage primitives that guarantee retrieval pri-

vacy have been used as a critical component in many systems

such as advertisement [30], discovery of identities [8] and

publish-subscribe [18]. Therefore, a very important ques-

tion involves the construction of privacy-preserving storage

schemes guaranteeing retrieval privacy while ensuring that

record retrieval can be performed efficiently.

A common way to formulate the privacy of retrievals

is obliviousness. Obliviousness guarantees that for any two

fixed sequences of record retrievals of the same length, any

adversary that views all accesses to stored data cannot de-

termine which of the two sequences induced the resulting

access pattern to stored data. Obliviousness has been con-

sidered with both statistical security, providing protection

from adversaries with unbounded computational resources,

and computational security, where the adversary is assumed

to be probabilistic polynomial time (PPT). Oblivious RAM

(ORAM) and private information retrieval (PIR) are two obliv-

ious storage primitives that have been the objective of ex-

tensive research [12, 19, 25–28, 35, 36, 44, 48]. For ORAM,

it has been shown that Ω(logn) overhead is necessary [37].

On the other hand, the best constructions for PIR require

at least Ω(n) server computation over the entire outsourced

database.

https://doi.org/10.1145/3294052.3319695
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For integral storage infrastructure that handle many ac-

cess requests per second, the increased response time and

server costs caused by the usage of ORAM and PIR prevent

their implementation in these important systems. In a per-

fect world, there would exist a storage scheme with strong

privacy with only small overhead that could be implemented

for these frequently accessed storage infrastructures with-

out negatively affecting the performance and/or expenses.

In our work, we address the natural question of the best

privacy that may be achieved by any storage scheme with

only small overhead compared to plaintext access. To our

knowledge, our work is the first that considers the question

of maximizing privacy for a specific efficiency goal. Previous

works consider minimizing the efficiency for primitives with

a specific privacy notion.

To consider this problem, we use another formulation

for storage access privacy through differential privacy [22–
24]. Typically, differential privacy is used in the context of

privacy-preserving data analysis where global properties of
the entire database are disclosed while maintaining the pri-

vacy of individual database records. In particular, differen-

tial privacy guarantees that any fixed disclosure is just as

likely, usually within a multiplicative factor, regardless of

whether an individual belonged to the sample population or

not. Our work focuses on the notion of differentially private
access which attempts to maintain privacy for individual

record retrievals, but may reveal information about the en-

tire sequence of retrievals. Roughly speaking, differential pri-

vacy guarantees that any sequence of accesses to stored data

caused by the execution of a sequence of record retrievals

will be just as likely, except for a multiplicative factor, caused

by another sequence attained by replacing a single retrieval

for a database record with a single retrieval for any other

database record. Differentially private access is a generaliza-

tion of oblivious access as oblivious access is achieved by

fixing the differential privacy parameters to be ϵ = 0 and

δ = negl(n).
With this definition, readers might now ask the following

two questions. When does differentially private access make

sense as a security notion? Or, might there exist a stronger

security notion that is achievable with small overhead?

To answer the first question, we revisit the scenario of

privacy-preserving data analysis on outsourced databases. In

these scenarios, there is no sense in using storage schemes

providing obliviousness to hide entire record retrieval se-

quences when differentially private disclosures only main-

tain privacy for single records. For example, suppose we

wish to disclose a differentially private model trained over a

sample from the database. Obliviousness would unnecessar-

ily hide the identity of the entire retrieved sample at a high

cost yet the differential privacy would guarantee the privacy

about individuals in the sample. Therefore, differentially pri-

vate access is the privacy notion that is complementary to

differential privacy disclosures on outsourced databases. In

general, differentially private access guarantees privacy for

individual retrievals. For the second question, recent work

by Persiano and Yeo [47] show that Ω(logn) overhead is

necessary for differentially private RAMs with parameters

of ϵ = O(1) and δ ≤ 1/3. Therefore, the task of finding good

parameters for differential privacy that provide both mean-

ingful privacy as well as while permitting small overhead

seems non-trivial.

We study differentially private variants of both PIR and

ORAM. PIR enables clients to obliviously retrieve database

records outsourced to a server. In PIR, both the client and the

server are stateless which means that no information may

be maintained between multiple record retrievals beyond

the server storing the database. Since both the client and the

server are stateless, PIR requires the server to perform an

operation on each database record: if a record is not involved

in computing the server’s reply, then it cannot be the record

retrieved by the client. The majority of PIR constructions

use homomorphic encryption [2, 4] or other expensive en-

cryptions with useful properties [12, 25, 36]. Some recent

works consider PIR with stateful clients [46] or super-linear

server storage [10, 13, 31]. All single-server PIR schemes

consider computational security. PIR has also been studied

in the multiple, non-colluding server setting where construc-

tions only require servers to perform computation sublinear

in the number of database records and provide statistical

security [7, 19].

On the other hand, ORAM allows both the client and

server to be stateful and maintain information between mul-

tiple queries and allows the client to perform both record

retrievals and overwrites. Additionally, ORAM allows a setup

phase where the untrusted server receives an encrypted ver-

sion of the database to store and the client is given a secret

key. As a result of state, the server is no longer required to

perform computation on every database record. With this

efficiency, the majority of ORAM schemes consider only

simple upload and download operations and forego the use

of expensive encryption schemes of PIR that require the

server to perform untrusted computation, although some

previous works consider ORAM with homomorphic encryp-

tion [20]. For a database with n records, it has been shown

that ORAM requires overhead of Ω(logn) records [27, 37]
and thatO(logn · log logn) communication suffices [44]. We

also examine an extension to ORAM, which we denote as

oblivious key-value storage (previously also denoted as oblivi-
ous storage), where database records are uniquely identified

by keys from a large universe and clients might also attempt

to retrieve a non-existent key [29].



In our work, we study the differentially private variants

of these three primitives, which we denote as differentially
private information retrieval (DP-IR), differentially private
RAM (DP-RAM) and differentially private key value storage
(DP-KVS). We focus on the question the best privacy that

can be achieved by each of these primitives that only require

small overhead over plaintext access.

Our Contributions.We present both negative and positive

results for both DP-IR and DP-RAM as well as other natural

variants of these primitives.

Our lower bounds for DP-IR and DP-RAM apply for a

wide range of privacy budgets when the database is stored in

a natural encoding. In particular, we consider the balls and

bins model of storage (previously considered in [11, 15, 27])

where each database record is considered as an opaque ball

along with a key containing important metadata. While not

covering all database encodings, in our opinion, the balls

and bins models encompasses all natural database repre-

sentations that maximize practical utility and efficiency. In

particular, the contents of each record are assumed to be

placed together, which is typically done to maximize data

locality.

For positive results, we show that a class of simple con-

structions are optimal for large sets of privacy budgets. These

schemes may be viewed as inserting noise into the sequence

of record retrievals and/or overwrites. In particular, the real

record retrievals and/or overwrites are disguised within

a set that also contain fake record retrievals and/or over-

writes. These schemes suffice to construct the best privacy-

preserving storage protocols with very small overhead for

DP-IR, DP-RAM and DP-KVS. While our constructions are

simple, we draw attention to the fact that designing differ-

entially private storage systems is delicate even with weak

security notions. Some simple constructions are very appeal-

ing and, at first, seem to match our lower bounds. However,

many variants of simple constructions (including our con-

structions) end up being completely insecure. As an exam-

ple, in Section 4, we consider a simple and tempting DP-IR
construction and show that it only guarantees differential

privacy with δ → 1, i.e., no privacy at all. Additionally, while

our constructions are simple, the security proofs end up be-

ing quite involved (especially for DP-RAM). Furthermore,

to handle the additional functionalities of DP-KVS, a more

complex algorithm using a novel, oblivious adaptation of the

two-choice hashing scheme [41] is required.

DP-IR Results. To our knowledge, previousworks onDP-IR
consider only the multiple, non-colluding server scenar-

ios [49]. Our work is the first to consider DP-IR in the single

server scenario.

We show that for any ϵ-DP-IR that must always output

the right answer and any value of ϵ ≥ 0, then the server must

operate on all stored n records. This result is very strong and

somewhat surprising as there does not exist any weakening

of privacy that will improve the server computational costs.

Theorem 1.1 (informal). For any ϵ, δ ≥ 0, any (ϵ, δ )-DP-IR
scheme in the balls and bins model must operate on (1 − δ )n
records.

On the other hand, we show that this strong negative

result may be circumvented by considering DP-IR schemes

with non-zero error probabilities 0 < α ≤ 1. Here, the error

probability is over the internal randomness of the DP-IR
scheme and does not depend on the queries and/or stored

data. For this case, we present the following weaker lower

bound.

Theorem 1.2 (informal). For any ϵ, δ ≥ 0, any (ϵ, δ )-DP-IR
scheme in the balls and bins model with error probability α > 0

must operate on

Ω

(
(1 − α − δ ) · n

eϵ

)
records.

As we are focusing on schemes with very small overhead,

the above theorem leads credulence that there might exist a

ϵ-DP-IR scheme with some small, constant error probability

α > 0 that only performsO(1) operations when ϵ = Θ(logn).
We show that there exists a simple construction with these

properties.

Theorem 1.3 (informal). There exists an ϵ-DP-IR with
ϵ = Θ(logn) and constant error probability α > 0 that only
operates on O(1) records.

Due to our lower bounds, the above construction seems

to be the best privacy that can be achieved by any DP-IR
with only constant overhead compared to plaintext storage

access.

We also consider natural extensions of our DP-IR with

multiple, non-colluding servers. There exist several multiple-

server PIR schemes [7, 19] in literature. In our full paper, we

present asymptotically tight lower bounds for the construc-

tions in [49].

DP-RAM Results. For DP-RAM, we once again start with

describing our lower bound results. Unlike DP-IR, there is
no separation between the best lower bound for perfectly

correct DP-RAM and DP-RAM with error probability α > 0.

We now present our DP-RAM lower bound which applies

for all values 0 ≤ α ≤ 1.

Theorem 1.4 (informal). For any ϵ ≥ 0, any ϵ-DP-RAM
with error probability α ≥ 0 in the balls and bins model and a
client that stores at most c blocks must operate on

Ω

(
logc

(
(1 − α) · n

eϵ

))



records.

The above theorem essentially states that there are two

ways that one can achieve very efficient ϵ-DP-RAM con-

structions: either increase the amount of client storage (c)
or increase the privacy budget (ϵ). In most scenarios, it is

impractical to suppose that the client can store large portions

of data. As our desire is to construct schemes that should be

easily usable in complex systems, we minimize the require-

ments of our clients by assuming clients have very small

amounts of storage. In [47], an Ω(log(n/c)) lower bound is

given for constant ϵ and δ ≤ 1/3. However, their lower

bound can be generalized to Ω(log(n/c)/eϵ ) for any ϵ ≥ 0.

Their lower bound has an exponentially worse dependence

on ϵ compared to our lower bound. For example, the lower

bound in [47] does not preclude the existence of a ϵ-DP-RAM
with ϵ = Θ(log logn) and constant overhead. On the other

hand, our lower bound improves the privacy budget lower

bound showing that an ϵ-DP-RAM that operates on O(1)
records must have ϵ = Ω(logn). We show the existence of a

constant overhead ϵ-DP-RAM with asymptotically optimal

ϵ = Θ(logn) privacy.

Theorem 1.5 (informal). There exists an ϵ-DP-RAM with
ϵ = Θ(logn) that only operates on O(1) records.

Once again, this construction seems to be the best privacy

that can be achieved by any DP-RAM scheme with only

O(1) overhead over the baseline, unprotected storage access

due to our lower bounds. Our scheme improves on prevous

DP-RAM schemes in [50] which starts from Path ORAM [48]

and degrades security to improve efficiency. For their scheme

to achieve even client storage of O(
√
n), their construction

recursively stores position maps which costs both logarith-

mic overhead and client-to-server roundtrips. On the other

hand, our DP-RAM construction uses both O(1) overhead
and roundtrips while achieving small client storage.

DP-KVS Results. Finally, we consider DP-KVS which is an

extension ofDP-RAM. As a result, allDP-RAM lower bounds

also apply to DP-KVS. Therefore, the best construction that

is achievable by DP-KVS with O(1) overhead could be ϵ =
Θ(logn). Due to the difficulties of handling a larger universe

of queries and possibility that clients request on-existent

keys, we present a construction with slightly worse than

constant overhead. In addition, we can only achieve privacy

in the approximate differential privacy framework.

Theorem 1.6 (informal). There exists a ϵ-DP-KVS with
ϵ = Θ(logn) that operates on O(log logn) records.

While the scheme has non-constant overhead, theO(log logn)
overhead is exponentially smaller than the best oblivious

key-value storage schemes based on ORAMs.

To construct ourDP-KVS scheme, we present an improved,

oblivious variant of the power of two choices hashing scheme [41]

that may be of separate, independent interest. Traditional

power of two choices hashing guarantees that bins do not

exceed O(log logn) items except with probability negligible

in n. Our desired oblivious variant must hide the sizes of

bins. One way to hide bin sizes is to pad all bins with dummy

items up to a maximum. This technique requires padding all

n bins to O(log logn) items meaning O(n log logn) storage.
By using a tree-like structure to allow bins to share storage,

we present a new scheme using O(n) storage.
Related Work. DP-RAM was considered previously in [50]

which present a construction based on Path ORAM [48].

However, their scheme requires recursively stored position

maps which requires Θ(logn) client-to-server roundtrips
to get client storage of even O(

√
n). We present DP-RAM

schemes that only require O(1) overhead with small client

storage. A construction ofDP-IR in themultiple, non-colluding

server scenario was considered in [49], which we show is

optimal for certain parameters. Lower bounds for DP-RAM
have been considered in [47], which are stronger and weaker

in different dimensions. Their lower bound has an exponen-

tially worse dependence on the privacy budget, ϵ . On the

other hand, their lower bound applies to general storage

encodings whereas our work only apply to the balls and bins

model. A variant of DP-RAM that only maintains privacy

for database record insertions is considered in [15]. A pri-

vacy notion stronger than obliviousness is considered in [34]

where accesses are protected using obliviousness while the

number of accesses is protected using differential privacy.

Obliviousness has been considered for other problems such

as sorting [3, 6] and shuffling [43, 45, 51]. The problem of

relaxing the security notion of obliviousness to differential

privacy has also been studied in the context of multi-party

protocols. A simple multi-party protocol for single-bit in-

puts is shown in [33] that maximizes the accuracy for any

privacy budget. The multi-party computation problem for

larger input sizes is studied in [39]. Additionally, the problem

of differentially private disclosure of specific analysis such as

subspace clustering [52], deep learning [1] and many others

have also been studied where the database is assumed to be

stored on a trusted server.

2 DEFINITIONS
We suppose the databaseD containsn records denotedB1, . . . ,Bn .
We will interchangeably use the terms records and blocks.

We will refer to a query as a single operation involving either

a record retrieval or overwrite and a query sequence as a list

consisting of record retrievals and/or overwrites. We use [n]
to refer to the set {1, . . . ,n}. We refer to Q as the space of all

possible queries and letQ1,Q2 ∈ Q
l
be two query sequences



of length l . We define the Hamming distance betweenQ1 and

Q2, which we denote by d(Q1,Q2), as the number of queries

where Q1 and Q2 differ.

2.1 Storage Primitives
The information retrieval (IR) primitive stores a database D
of n equal sized records where only record retrievals are

allowed. The initialization of IR consists of the server receiv-

ing D = (B1, . . . ,Bn) and simply processing and storing D.
The server is only allowed to store the database and may

not keep any other information between multiple queries.

Similarly, the client is stateless and may not use any storage

between multiple queries. A query to IR is described using

an integer q ∈ [n], which is interpreted as retrieving record

Bq . We denote two query sequencesQ1,Q2 ∈ [n]
l
as adjacent

if their Hamming distance is exactly 1. That is, Q1 and Q2

retrieve a different record at exactly one query.

The random access memory (RAM) primitive will store

a database D of n equal sized records where both record

retrievals and overwrites are permitted. The initialization of

RAM consists of a setup phase consisting of a protocol run

between the client and the server. The client will receive a

private key, process D using the private key and send the

processed database to the server to store. Both the client and

server may be stateful and maintain information between

multiple queries. A query to RAM is a pair q = (i, op) where
i ∈ [n] refers to record Bi and op ∈ {read,write} describes
whether the query is a retrieval or overwrite. Two query

sequencesQ1,Q2 ∈ ([n]× {read,write})l are adjacent if their
Hamming distance is exactly 1. That is, at exactly one query,

Q1 and Q2 operate on a different record and/or perform a

different operation.

Finally, the key-value storage (KVS) primitive is an exten-

sion to RAM. Queries to KVS consist of a pair q = (k, op)
where k ∈ U is the key and U is universe of all keys and

op ∈ {read,write} refers to whether the query is a retrieval

or overwrite. Unlike RAM, the universe of keys is very large

and might be exponentially larger than the number of op-

erations that will be performed. Furthermore, a retrieval

operation q = (k, read) may request a key k that has never

been previoulsy inserted into the storage protocol. In this

case, the KVS protocol should output ⊥. Identical to RAM,

two query sequences Q1,Q2 ∈ (U × {read,write})l are ad-
jacent if there exists exactly one query that operates on a

different key and/or performs a different operation.

We note that IR, RAM and KVS are the most studied stor-

age primitives to provide oblivious access. There are many

other extensions to these primitives that have also been stud-

ied [9, 10, 13, 16, 17, 29, 31, 38].

2.2 Differentially Private Access to Data
Our privacy notion for a storage primitive S storing a data-

base D = (B1, . . . ,Bn) with a query space Q will consider

the random variable of the view of the adversarial server for

a query sequence Q ∈ Ql of length l . With a slight abuse

of notation, we refer to the transcript, S(Q), as the random
variable of the adversary’s view on query sequence Q . The
transcript contains all movement of records performed by

the server, as well as all, possibly encrypted, records that

have been uploaded and downloaded and the initial database.

Definition 2.1 (Differentially Private Access). Let S be a

storage primitive with query space Q. S provides (ϵ, δ )-
differentially private access if for all pairs of query sequences

Q1,Q2 ∈ Q
l
of length l that are adjacent, that isd(Q1,Q2) = 1,

and for any subset S of the set of possible views of the ad-

versary, then the following holds:

Pr[S(Q1) ∈ S] ≤ eϵ · Pr[S(Q2) ∈ S] + δ .

The ϵ parameter is referred to as the privacy budget. When

δ = 0, the above definition is referred to as pure differential
privacy and the δ is typically dropped from notation. We

denote IR, RAM and KVS primitives that provide pure dif-

ferentially private access with privacy budget ϵ as ϵ-DP-IR,
ϵ-DP-RAM and ϵ-DP-KVS. When δ > 0, the definition is

referred to as approximate differential privacy, which is a

weakening of pure differential privacy. We denote IR, RAM
and KVS primitives that provide differentially private access

with parameters ϵ and δ as (ϵ, δ )-DP-IR, (ϵ, δ )-DP-RAM and

(ϵ, δ )-DP-KVS.

3 LOWER BOUNDS
In this section, we present negative results about DP-IR and

DP-RAM in the single-server setting. As DP-KVS is an ex-

tension of DP-RAM with more functionality requirements,

all DP-RAM lower bounds apply directly to DP-KVS.

3.1 Balls and Bins Model
Our lower bounds are presented in the balls and bins model

of data manipulation. The n database records are treated as

immutable, opaque balls. Each ball is associated with a mu-

table key containing metadata about the record. The formal

definition involves a serverm with storage form balls and a

clientc with storage for c balls.

Definition 3.1 (Balls and BinsModel). A clientc and serverm
operate in the balls and bins model if all client memory is

initially empty and client-server interactions are restricted

to the following:

(1) Download ball from serverm to clientc . For some i ∈
[m] and j ∈ [c], store the block at address i at serverm
in address j at clientc .



(2) Upload ball from clientc to serverm . For some i ∈ [m]
and j ∈ [c], store the block at address j at clientc in
address i at serverm .

The above definition assumes a passive server acting only

as storage. As a result, only lower bounds on communication

can be proven directly. However, for algorithms with general

computation by the server, lower bounds on communica-

tion in the balls and bins model may be modified to provide

lower bounds on server computation. The modification sim-

ply views the transcript as the balls that must be operated

on by the server.

Discussion about storage model. The balls and bins model

does not include all possible encodings of databases that may

be stored. In particular, we assume that database records are

all stored together and the contents do not emit special prop-

erties. In general, related information should be stored in

nearby memory locations so that all required data can be

found with the minimal number of cache misses. Therefore,

assuming database records are stored together captures real

world scenarios. In addition, opaque balls rule out bother-

some corner cases where non-trivial lower bounds cannot

hold such as when records are dependent and record contents

may be generated using superficial methods.

3.2 DP-IR
We prove our lower bounds directly for approximately dif-

ferential privacy (in this case, δ ≥ 0). However, one can

interpret the results for pure differential privacy by setting

δ = 0.

To prove our lower bounds, we first define the notion of

transcripts. For a single-server information retrieval protocol

IR in the balls and bins model, the transcript IR(i) is the
random variable denoting the set of blocks requested when

retrieving Bi . The query algorithm of an IR algorithm in the

balls and bins model only issues download commands to the

server.

The main observation to prove the above theorem is that

the initialization phase of DP-IR is public which implies that

the adversary has knowledge of the identity of each record.

By the restriction on correctness, the queried record must

always be retrieved. Using the privacy requirement, it turns

out all other blocks must also be retrieved. We summarize

this in the following main lemma.

Lemma 3.2. Let IR be an (ϵ, δ )-DP-IR scheme in the balls
and bins model. For any a,b, c ∈ [n],

(1) Pr[Bc ∈ IR(a)] ≤ eϵ Pr[Bc ∈ IR(b)] + δ .
(2) Pr[Bc < IR(a)] ≤ eϵ Pr[Bc < IR(b)] + δ .

Proof. Define S ⊆ Range(IR) to be all transcripts where

the block Bc is downloaded. So, for any query q,

Pr[Bc ∈ IR(q)] = Pr[IR(q) ∈ S].

By (ϵ, δ )-DP, we know

Pr[IR(a) ∈ S] ≤ eϵ Pr[IR(b) ∈ S] + δ

completing the first point. The second point follows identi-

cally if we choose S ⊆ Range(IR) to be all transcripts where

block Bc is not downloaded. □

Using the above lemma, we present very strong negative

results for DP-IR that are errorless. That is, they always

return the correct record. We show the following result:

Theorem 3.3. If IR is an (ϵ, δ )-DP-IR scheme in the balls
and bins model then IR performs at least (1 − δ )n operations
in expectation.

Proof. By Lemma 3.2, we know that

Pr[Bj < IR(i)] ≤ eϵ Pr[Bj < IR(j)] + δ = δ

since IR is errorless and Pr[Bj < IR(j)] = 0. Therefore, we

know that Pr[Bj ∈ IR(i)] ≥ 1 − δ and

E[|IR(i)|] =
∑
j ∈[n]

Pr[Bj ∈ IR(i)] ≥ (1 − δ )n

completing the proof. □

For algorithms with general server computation, we can

the interpret the above results as a lower bound on server

computation. This result is extremely strong since n server

operations must be executed even when increasing the pri-

vacy budget. Therefore, the relaxation to ϵ-DP-IR does not

result in any gain compared to PIR. For (ϵ, δ )-DP-IR, one
could increase δ to decrease costs. However, typical privacy

requires δ = negl(n) resulting in almost no gain.

To circumvent this result, we move to the case where

DP-IR has a non-zero error rate 0 < α ≤ 1. That is, DP-IR
will only retrieve the desired record with probability 1−α de-

pending only on the internal randomness ofDP-IR. Our hope
is that a very small α may significantly improve efficiency

of DP-IR and bypass this negative result. We show:

Theorem 3.4. If IR is an (ϵ, δ )-DP-IR scheme in the balls
and bins model with error probability α > 0, then IR performs

Ω

(
(1 − α − δ ) · n

eϵ

)
operations in expectation.

Proof of Theorem 3.4. Since IR has error probability at

most α , Pr[Bj ∈ IR(j)] ≥ 1 − α , for all j ∈ [n]. By Lemma 3.2,

for all j , i ,

Pr[Bj ∈ IR(j)] ≤ eϵ Pr[Bj ∈ IR(i)] + δ .



Equivalently, this means that Pr[Bj ∈ IR(i)] ≥ 1−α−δ
eϵ . So,

E[|IR(i)|] ≥
∑
j,i

Pr[Bj ∈ IR(i)] ≥ (n − 1)
1 − α − δ

eϵ

that yields the theorem. □

For any constant error α > 0 and typical privacy budgets

of ϵ = Θ(1), errorless DP-IR schemes require Ω(n) server op-
erations. However, it seems possible to bypass the first nega-

tive result with very small error. The above lower bound does

not preclude the existence of a ϵ-DP-IR with ϵ = Ω(logn)
and small error probability α > 0 that only requires a con-

stant number of server operations. In Section 5, we present

an ϵ-DP-IR scheme that uses O(1) communication when

ϵ = O(logn). It turns out this ϵ-DP-IR scheme asymptoti-

cally matches the lower bound for all values of ϵ ≥ 0.

We also extend our negative results forDP-IR in Section C

where we present lower bounds when outsourcing storage

to multiple, non-colluding servers.

3.3 DP-RAM
We now move to our negative results for DP-RAM. Proving

lower bounds for DP-RAM is more challenging than DP-IR
due to the private setup phase and the client’s private mem-

ory. We can no longer directly bound the probability that

blocks need to be retrieved and, instead, examine the tran-

scripts seen by the adversary. Let us fix any transcript T that

has non-zero probability of being viewed by the adversary

on any query sequence Q of length l . We show that every

other query sequence of length l must also induce T with

non-zero probability. In fact, the probabilities that any two

fixed query sequences induce T as the view of the adver-

sary are strong related by their Hamming distance and the

privacy budget, ϵ , as described in the following:

Lemma 3.5. Let RAM be a ϵ-DP-RAM scheme for any ϵ ≥
0. For every distribution D on query sequences of length l ,
random variable D ∼ D and for any two fixed sequences
Q1,Q2 such that Pr[D = Q2] > 0, then

Pr[D = Q1 | RAM(D) = T]
Pr[D = Q2 | RAM(D) = T]

≥ e−ϵ ·d (Q1,Q2)
Pr[D = Q1]

Pr[D = Q2]
.

Proof. By Bayes’ law, we have

Pr[D = Q | RAM(D) = T]

=
Pr[RAM(D) = T | D = Q] Pr[D = Q]

Pr[RAM(D) = T]

≥ e−ϵ ·dH (Q ,Q ′) Pr[RAM(D) = T | D = Q
′] Pr[D = Q]

Pr[RAM(D) = T]

= e−ϵ ·dH (Q ,Q ′) Pr[D = Q
′ | RAM(D) = T] Pr[D = Q]

Pr[D = Q ′]

giving us our result. □

Next, we prove that if a query sequence has positive prob-

ability, then it stays so even after seeing a transcript. This

holds for all a priori query sequences distributions D.

Lemma 3.6. Let RAM be an ϵ-DP-RAM and let T be a
transcript for which there exists at least one query sequence Q
such that

Pr[RAM(Q) = T] > 0.

Then for all distributions D on the set of query sequences and
for all Q ′ such that Pr[D = Q ′] > 0 it holds that

Pr[D = Q ′ |RAM(D) = T] > 0.

Proof. Let Q be any query sequence such that Pr[D =
Q] > 0 and Pr[RAM(D) = T | D = Q] > 0. Assume by con-

tradiction that Pr[D = Q ′] > 0 but Pr[D = Q ′ | RAM(D) =
T] = 0 for some query sequence Q ′. By Bayes’ Law,

0 = Pr[D = Q ′ | RAM(D) = T]

=
Pr[RAM(D) = T | D = Q ′] · Pr[D = Q ′]

Pr[RAM(D) = T]

which implies that Pr[RAM(D) = T | D = Q ′] = 0. On the

other hand, by ϵ-differential privacy, we have that for all q
such that Pr[D = Q] > 0,

Pr[RAM(D) = T | D = Q]

≤ edH (Q ,Q ′)ϵ · Pr[RAM(D) = T | D = Q ′] = 0

providing our contradiction. □

We are now ready to prove ourDP-RAM lower bound. For

the sake of the completeness, we suppose that the DP-RAM
scheme only retrieves the desired block with probability at

least 1−α based only on internal randomness. We show that:

Theorem 3.7. If RAM is an ϵ-DP-RAM scheme in the balls
and bins model with error probability α ≥ 0 then RAM per-
forms

Ω

(
logc

(
(1 − α) · n

eϵ

))
expected amortized operations per query when the client has
storage for c balls.

Proof. FixQ = (q1, . . . ,ql ) to be any sequence of queries

of length l > c . Then, clientc can only perform upload/

download operations with serverM . Denote the expected

amortized bandwidth by k . The server locations of all opera-
tions are given by the transcript, RAM(q). However, which of
the c client locations used for each operation remains hidden.

For each download and upload, there are c possible execution
paths, one path for each of the c client memory locations.

Also, after each operation, clientc may use the data stored

in any of the c client memory locations to answer a query.

Altogether, at most kl blocks of bandwidth are used for all l
queries. Therefore, there are at most c2kl different sequences



of blocks that may be returned. Since RAM can only fail with

α probability for each query, it must satisfy at least (1−α)lnl

different access patterns. So, c2kl ≥ (1 − α)lnl .
Let T be any transcript with positive probability and con-

sider the uniform distribution U over the set [n]l of query
sequences of length l . By Lemma 3.6, there exists Q ∈ [n]l

such that

Pr[U = Q | RAM(U ) = T] ≥
1

nl
≥
(1 − α)l

c2kl
.

For every Q ′ , Q , by Lemma 3.5, we have

Pr[U = Q ′ | RAM(U ) = T] ≥ e−lϵ
(1 − α)l

c2kl
.

Finally, we know that

1 ≥
∑
Q ′,Q

Pr[U = Q ′ | RAM(U ) = T] ≥ e−lϵ (nl − 1)
(1 − α)l

c2kl

completing the proof. □

Unlike DP-IR, we do not need a non-zero error probability
to get a constant overhead scheme. From the above lower

bound, it seems like the best one can achieve is a perfectly

correct ϵ-DP-RAMwith ϵ = Θ(logn) that only requiresO(1)
overhead with small client storage. In Section 6, we show

that such a scheme does exist.

Discussion about lower bounds. It has been shown that pre-

vious ORAM lower bounds come with many cavaets. The

first lower bound [27] in the balls and bins model was for

statistical security as pointed out in [11]. The assumption

of statistical security is troublesome due to the fact that all

ORAM schemes require the use of encryption which only

provides computational security. To abstract away this issue,

it is assumed that records were opaque balls and were hid-

den even against computationally unbounded adversaries.

However, this abstraction was still not sufficient since the

majority of ORAM schemes still required the use of pseudo-

random functions. Furthermore, the DP-RAM constructions

of [50] and [15] require encryption and are burdened by the

same cavaets. We explain why these issues do not apply

to our results. In our work, we consider typical differential

privacy notions (not the computational variants described

in [40]) where adversaries are computationally unbounded.

Our DP-RAM scheme in Section 6 when only allowing re-

trievals does not require encryption and provides differen-

tially private access to public data against computationally

unbounded adversaries. All ORAM schemes still require en-

cryption even when only retrievals are permitted. In the case

that we wish to store encrypted data or protect overwrites

in our DP-RAM scheme, we must apply the abstraction of

opaque balls to go around encryption. With this abstrac-

tion, our DP-RAM scheme is differentially private. Recent

results in [37] present Ω(log(n/c)) lower bounds for ORAM
against computational adversaries with passive servers and

general storage schemes. Furthermore, work in [47] extends

the lower bound for (ϵ, δ )-DP-RAM where ϵ = O(1) and
δ ≤ 1/3. However, the lower bounds in [47] have an expo-

nentially worse dependency on ϵ compared to our results.

4 AN INSECURE CONSTRUCTION
Before presenting our constructions, we consider a sim-

ple and tempting, but insecure, construction. The lower

bounds presented in Section 3 show that the best privacy

any constant overhead storage primitive can achieve will

be ϵ = Θ(logn). With such weak privacy requirements, it

might seem very easy to construct these primitives at first.

We caution that schemes with these weak privacy require-

ments must be constructed carefully as slight variants of

our later schemes could also end up being insecure. To our

knowledge, our schemes are the simplest constructions that

achieve ϵ = Θ(logn) differential privacy and small overhead.

The main idea of the strawman solution derives from the

fact that ϵ = Θ(logn). As a result, the desired block should

be queried with probability a multiplicative factor of poly(n)
larger to compared to any other block. To achieve this, one

could query the desired block with probability 1 and all other

blocks with probability 1/n. This scheme would have O(1)
bandwidth in expectation, perfect correctness and no client

storage requirements. However, we show that this scheme

is really an (ϵ, δ )-DP-IR with ϵ = Θ(logn) and δ = (n − 1)/n.
Denote the above scheme by IR and IR(i) the set of blocks
returned when querying for i . Pick any two queries i , j.
Note, Pr[Bi < IR(i)] = 0 and Pr[Bi < IR(j)] = (n−1)/n. Then,
(n − 1)/n = Pr[Bi < IR(j)] ≤ eϵ Pr[Bi < IR(i)] + δ which

means that δ ≥ (n−1)/n. Therefore, the above scheme would

not provide as much privacy as possible as δ approaches 1

as n increases.

We use the above strawman to show that attentiveness and

rigor are required when constructing differentially private

storage schemes even with such weak privacy guarantees.

The schemes that we will present for DP-IR, DP-RAM and

DP-KVS are the simplest algorithms that, to our knowledge,

achieve our desired privacy of ϵ = Θ(logn) and small over-

head in efficiency.

5 DP-IR CONSTRUCTION
For errorless DP-IR, the asymptotically optimal balls and

bins algorithms is required to download the entire database

regardless of the privacy budget. With active servers that can

perform computation, servers must perform n operations

which is identical to PIR. Therefore, there is no reason to use

differentially private access when oblivious access has the

same efficiency.



We now move to the more interesting case of DP-IR with

errors. By introducing a small amount of error α > 0, we

hope to find algorithms more efficient than PIR for larger

privacy budgets where our lower bounds from Section 3 no

longer hold. We show that the simplest algorithm ends up

being optimal. In particular, the client will download the

desired block as well as several other blocks simultaneously.

The hope is that the adversary cannot determine the real

retrieval from all the fake retrievals. In addition, with prob-

ability α , we only perform fake retrievals and error. The

pseudocode of this scheme can be found in Appendix G. The

proof of the following theorem is found in Appendix B

Theorem 5.1. For any ϵ ≥ 0, there exists a ϵ-DP-IR that
returns O(n/eϵ ) blocks for any constant error probability α >
0.

The above upper bound asymptotically matches the lower

bound of Theorem 3.4 for all values of ϵ ≥ 0. Furthemore, by

fixing the privacy budget to be ϵ = Θ(logn), we can achieve

a constant overhead DP-IR scheme with the best privacy

according to Theorem 3.4.

6 DP-RAM CONSTRUCTION
In this section, we give an errorless construction DP-RAM
supporting both retrieval and overwrite operations. Before

describing our DP-RAM scheme, we note that one could

also use the DP-IR scheme from Section 5 as a DP-RAM
scheme without any client storage requirements. However,

this DP-IR scheme has non-zero error probabilities which is

inherently unavoidable for DP-IR due to our lower bounds

in Section 3. On the other hand, our DP-RAM lower bounds

do not preclude the existence of a perfectly correct DP-RAM
scheme with ϵ = Θ(logn). In this section, we work towards

constructing such a DP-RAM scheme.

Our scheme will require the client to store some records

in a local stash. Our DP-RAM scheme is parameterized by

a probability p describing the independent probability that

each record is stored in the stash. We assume that (Enc,Dec)
is an IND-CPA symmetric-key encryption scheme. The server’s

storage will consist of an array, A, of n records.

The setup phase of DP-RAM will consist of populating

the server-stored array A. For security parameter λ, key
K → {0, 1}λ is randomly selected. A is initialized by set-

ting A[i] = Enc(K,Bi ) for i ∈ [n]. The stash is initialized by

independently selecting each record to be in the stash with

probability p. In addition, the client keeps the key K in local

storage.

The querying (either retrieval or overwrite) for a record Bi
consists of two phases: the download phase followed by the

overwrite phase. In the download phase, the client looks for

Bi in the stash. If Bi is found, then Bi is removed and returned.

The client asks the server for A[j], with j chosen uniformly

at random from [n]. If, instead, Bi is not in the stash, the

client asks the server for A[i] that contains an encryption of

Bi . If the client is performing a write operation, then Bi is
updated with the new version. At this point, the client holds

the current version of Bi .
In the overwrite phase, the current version of Bi is added

to the stash with probability p. If Bi is stored in the stash,

then another record is randomly selected, downloaded from

the server, decrypted and then re-encrypted with fresh ran-

domness and uploaded to the server. If Bi is not stored in the

stash, then the client asks the server for A[i], discards the
record received and then uploads to A[i] a freshly computed

ciphertext carrying the current version of Bi .
The pseudocode of the algorithms are presented in Ap-

pendix H. We note that while the above algorithm is sim-

ple, the analysis of privacy is quite complicated. We show

the following about this scheme when p ≤ Φ(n)/n for any

Φ(n) = ω(logn):

Theorem 6.1. There exists an O(logn)-DP-RAM that re-
turnsO(1) blocks. For any function Φ(n) = ω(logn), the client
stores Φ(n) blocks of client storage except with probability
negl(n).

This scheme is, essentially, the best privacy that can be

achieved by an errorless DP-RAM scheme with constant

overhead according to Theorem 3.7. Since we use encryption,

our DP-RAM satisfies computational differentially privacy

using simulators (see SIM-CDP in [40]). Our proof uses a sim-

ulator that replaces all encryptions of records with randomly

generated contents.

Discussion about encryption. The above DP-RAM scheme

assumes that both record retrievals and overwrites are per-

mitted. To hide whether queries are overwrites or retrievals,

any DP-RAM scheme must use encryption. In the case that

we wish to only permit retrievals, we note that the above

DP-RAM scheme no longer requires encryption and can

provide differentially private access to public data without

computational assumptions. In particular, the entire over-

write phase may be skipped. Retrieval-only DP-RAM and

DP-IR only differ by their requirements on the client’s state.

Therefore, using client state is another way to bypass the

strong lower bound shown in Theorem 3.3 for errorless

DP-IR schemes.

6.1 Roadmap of the Proof
To start, we show that if we choose that p ≤ c/n where c =
ω(logn), then the client will store at most O(c) blocks. The
proof is an application of Chernoff Bounds and postponed

to Appendix D.

The technical crux of the privacy analysis lies in bound-

ing the following ratio, for every transcript T seen by the

adversary, and for every two neighboring query sequences



Q and Q ′,

Pr[RAM(Q ′) = T]
Pr[RAM(Q) = T]

(1)

where Pr[RAM(Q) = T] denotes the probability that RAM
executing on Q produces the transcript T . In the first step,

we show that the transcript of the adversary at a single query

on Bq is only dependent on the most recent query that also

queries for Bq . In other words, the ratio is upper bounded by

l∏
i=1

Pr[RAMi (Q
′) = Ti | RAMpr(Q ′,i)(Q

′) = Tpr(Q ′,i)]

Pr[RAMi (Q) = Ti | RAMpr(Q ,i)(Q) = Tpr(Q ,i)]

where pr(Q, i) is the most recent query for block Bqi before
the i-th query. The second step consists of giving an up-

per bound that holds for each factor of the product in the

above equation. The third step shows that the upper bound

computed in the second step is too pessimistic and that, all

factors, except for 3, in the product in the right hand side

of the above equation are 1 when Q and Q ′ differ in exactly

one position.

We now proceed to define notation and terminology used

throughout our proof. First, we observe that the transcript of

an execution only includes the ciphertexts of the blocks and

not the actual content of the blocks transferred. Assuming

IND-CPA of the underlying encryption scheme (Enc,Dec), it
is straightforward to prove that, for a sequenceQ = (q1, . . . ,ql )
of l queries, the transcript generated byQ for blocksB1, . . . ,Bn
is indistinguishable from the transcript generated by the

same sequence Q for n blocks that are 0. For this reason,
we shall not consider the ciphertexts of the blocks as part

of the transcript and consider a transcript T for query se-

quence Q as a sequence T = ((d1,o1), . . . , (dl ,ol )) of l pairs
Tj = (oj ,dj ) of indices of the blocks that are accessed during

the download phase and the overwrite phase. We set T[j] =

((d1,o1), . . . , (dj ,oj )).We define RAMD
j (Q) and RAM

O
j (Q) to

be the random variables of the indices of the download and

of the overwrite block of the j-th query for all j ∈ [l]. Also,
for S ⊆ [l] we define RAMS (Q) to be the set of random vari-

ables {RAMD
j (Q),RAM

O
j (Q)}j ∈S . Also, we set RAM(Q) :=

RAM[n](Q). It turns out to be convenient to extend the ran-

dom variable RAM for indices ±∞ by setting RAMD
±∞(Q) and

RAMO
±∞(Q) to be random variables that give probability 1 to

⊥.

We also let pr(Q, j) be the index of themost recent previous
query to block Bqj that happened before the j-th query of

Q ; that is, pr(Q, j) = max{i < j : qi = qj }. If query qj is
the first query of sequence Q that asks for block Bqj , then
pr(Q, j) = +∞. Similarly, we define nx(Q, j) to be the index

of the nearest next query for block Bqj ; that is, nx(Q, j) =
min{i > j : qi = qj }. If the j-th query of Q is the last query

of Q to ask for block Bqj , then nx(Q, j) = −∞.

6.2 Step I: Reducing dependencies
The next lemmas outline the dependencies of the random

variables of the download blocks and of the overwrite blocks.

We start by showing that the overwrite block of each query

is independent of all previous history and only depends on

the current query.

Lemma 6.2. For every query sequenceQ of length l , for every
transcript T = ((d1,o1), . . . , (dl ,ol )) and for every j ≤ l

Pr[RAMO
j (Q) = oj | RAM[j−1](Q) = T[j−1] ∧ RAM

D
j (Q) = dj ]

= Pr[RAMO
j (Q) = oj ].

Moreover, ifQ andQ ′ are two sequences with qj = q′j , then the
distributions RAMO

j (Q) and RAM
O
j (Q

′) coincide.

Proof. The lemma follows by observing that the distribu-

tion of the j-th overwrite block depends only on whether Bqj
is added to the block stash during the j-th overwrite phase

which, in turn, depends only on qj and the random value of

r in the overwrite phase of the j-th query. □

Lemma 6.3. For every query sequenceQ of length l , for every
transcript T = ((d1,o1), . . . , (dl ,ol )) and for every j ≤ l ,

Pr[RAMD
j (Q) = dj | RAM[j−1](Q) = T[j−1]] =

Pr[RAMD
j (Q) = dj | RAM

O
pr(Q , j) = opr(Q , j)].

Moreover, if Q and Q ′ are two sequences with qj = q′j and
pr(Q, j) = pr(Q ′, j) then for alld ∈ [n] and for all o ∈ [n]∪{⊥
} such that Pr[RAMO

pr(Q , j) = o] > 0,

Pr[RAMD
j (Q) = d | RAM

O
pr(Q , j) = o]

= Pr[RAMD
j (Q

′) = d | RAMO
pr(Q ′, j) = o].

Proof. The j-th download block of sequence Q depends

on whether Bqj is in the block stash at the start of the j-th
download phase. We distinguish two cases.

If pr(Q, j) = +∞, then block Bqj has not been queried in

the first j − 1 queries and its probability of being found in

the stash at the start of j-th download phase is equal to the

probability of being placed in the stash by RAM.Setupwhich,
obviously, is independent from the previous history.

Suppose instead that pr(Q, j) ∈ [j−1]. Then the probability
that Bqj is in the stash at the beginning of the j-th query

depends only on the random variable, RAMO
pr(Q , j)(Q), of the

overwrite block of query pr(Q, j). □



The first part of Lemma 6.2 and the first part of Lemma 6.3

imply

Pr[RAMj (Q) = (dj ,oj ) | RAM[j−1](Q) = T[j−1]] =

Pr[RAMD
j (Q) = dj | RAM[j−1](Q) = T[j−1]]·

Pr[RAMO
j (Q) = oj | RAM[j−1](Q) = T[j−1] ∧ RAM

D
j (Q) = dj ] =

Pr[RAMD
j (Q) = dj | RAMpr(Q , j)(Q) = opr(Q , j)] · Pr[RAM

O
j (Q) = oj ].

Thus, we can write

Pr[RAM(Q ′) = T]
Pr[RAM(Q) = T]

=

l∏
j=1

Pr[RAMO
j (Q) = oj ]

Pr[RAMO
j (Q

′) = oj ]

×

l∏
j=1

Pr[RAMD
j (Q

′) = dj |RAMpr(Q ′, j)(Q) = opr(Q ′, j)]

Pr[RAMD
j (Q) = dj |RAMpr(Q , j)(Q

′) = opr(Q , j)]

6.3 Step II: Upper bounding factors
In the next two lemmata, we give an upper bound on the

contribution of each j ∈ [l] to the product in the equation

above.

Lemma 6.4. Let Q and Q ′ be two query sequences of length
l . For every transcript T = ((d1,o1), . . . , (dl ,ol )) and every
j ∈ [l]

Pr[RAMD
j (Q

′) = dj | RAMO
pr(Q ′, j)(Q

′) = opr(Q ′, j)]

Pr[RAMD
j (Q) = dj | RAM

O
pr(Q , j)(Q) = opr(Q , j)]

≤
n2

p
.

Lemma 6.5. Let Q and Q ′ be two query sequences of length
l . For every transcript T = ((d1,o1), . . . , (dl ,ol )) and every
j ∈ [l]

Pr[RAMO
j (Q

′) = oj ]

Pr[RAMO
j (Q) = oj ]

≤
n

p
.

Both of these lemmata consider the various cases that

can occur. As the proofs are case analysis that do not pro-

vide better intuition to the problem, we postpone them to

Section D.

6.4 Step III: Identifying the many good
cases

The bounds given by Lemma 6.4 and Lemma 6.5 would give

annO (l ) upper bound on the ratio in Equation 1. This is a very
weak bound as it depends on the length l of the sequences.
In this section, we tighten the upper bound to nO (1) which is

instrumental to prove that RAM is private with ϵ = O(logn).
Specifically, the next lemma gives sufficient conditions under

which the ratio is actually 1 and then we show that, if the

two sequences only differ in one position, then there are only

three values of j for which the conditions are not satisfied and
for those position we use the upper bound of the previous

section.

The following lemma follows directly from the second

parts of Lemma 6.2 and 6.3.

Lemma 6.6. For any two sequences Q and Q ′ of the same
length, every transcript T = ((d1,o1), . . . , (dl ,ol )) and every
j ∈ [l] with pr(Q, j) = pr(Q ′, j) and qj = q′j ,

Pr[RAMO
j (Q) = oj ]

· Pr[RAMD
j (Q) = dj | RAM

O
pr(Q , j)(Q) = opr(Q , j)] =

Pr[RAMO
j (Q

′) = oj ]

Pr[RAMD
j (Q

′) = dj | RAMO
pr(Q ′, j)(Q

′) = opr(Q ′, j)].

The lemma above says that the distributions of the tran-

scripts associated with two query sequences Q and Q ′ may

differ only at indices j for which pr(Q, j) , pr(Q ′, j) or
qj , q′j . The next lemma identifies the indices j for which
this happens when Q and Q ′ differ in exactly one position.

Lemma 6.7. LetQ andQ ′ be two query sequences of length l
differing only at position k ∈ [l]. If j < {k, nx(Q,k), nx(Q ′,k)},
then pr(Q, j) = pr(Q, j ′).

Proof. For j < k , we have (q1, . . . ,qj ) = (q
′
1
, . . . ,q′j ) and

thus pr(Q, j) = pr(Q ′, j). For j > k such that qj , qk ,q
′
k

we have qj = q′j and pr(Q, j) = pr(Q ′, j). Next consider
the indices j1 < . . . < jl such that qk = qj1 = . . . = qjl .
Clearly, if l > 0 then j1 = nx(Q,k) and, for i = 2, . . . , l , we
have qji = q

′
ji and pr(Q, ji ) = pr(Q ′, ji ). A similar argument

applies for the indices j > k such q′j = q′k thus completing

the proof of the theorem. □

6.5 Wrapping up the proof
Proof of Theorem 6.1. Bounds on bandwidth and server

storage are obvious and the one on client storage follows

from Lemma D.1.

Consider sequencesQ andQ ′ of length l that differ only in
position k ∈ [l]. Let T = ((d1,o1), . . . , (dl ,ol )) be transcript.

By Lemma 6.6 and 6.7, we obtain that the ratio
Pr[RAM(Q ′)=T]
Pr[RAM(Q )=T]

is ∏
j ∈S

Pr[RAMj (Q
′) = Tj |RAM[j−1] (Q

′) = T
[j−1] ]

Pr[RAMj (Q) = Tj |RAM[j−1] (Q) = T[j−1] ]

where S = {k, nx(Q,k), nx(Q ′,k)}. By Lemma 6.4 and 6.5,

Pr[RAM(Q ′) = T]
Pr[RAM(Q) = T]

=

(
n

p

)O (1)
.

Since, the above holds for any single transcript, we get that

the ratio holds for any set of transcripts. This implies that

ϵ = O(logn). □

7 DP-KVS CONSTRUCTION
In this section, we present DP-KVS, our KVS construction

with privacy budget ϵ = O(logn) and small overhead. Recall

that aKVS is an extension of RAMwhere each of then blocks



is identified by a unique key taken from a possibly large

universe of keysU . In contrast, a block in RAM is uniquely

identified by an integer in [n]. One could use the DP-RAM
construction from Section 6, which results in server storage

on the order of |U | ≫ n. For efficiency, we would like a

DP-KVS scheme that stores O(n) blocks on the server.

Our approach to constructing a DP-KVS scheme consists

of two steps. First, we show that we can construct a DP-KVS
scheme using a DP-RAM scheme and a mapping scheme
which associates keys in the universe U to subsets of server

storage. Next, we present an efficient mapping scheme by

constructing a non-trivial oblivious variant of two-choice
hashing [41] that usesO(n) server storage and which may be

of independent interest. Our oblivious two-choice hashing

variant hides the number of real items that are stored in

each bin at any point in time. Finally, combined with our

DP-RAM scheme of Section 6, we present a (ϵ, δ )-DP-KVS
with ϵ = O(logn) and δ = negl(n) using only O(log logn)
overhead. While non-constant, this is exponentially better

than any previous oblivious KVS scheme built from ORAMs.

Furthermore, for all practical sizes of n, O(log logn) is very
small.

7.1 Composing Mapping Schemes and
DP-RAM

In this section, we present a generic reduction of DP-KVS to

a mapping scheme and our DP-RAM from Section 6. First,

we define mapping schemes. Afterwards, we present the

reduction.

A mapping scheme is defined as the tuple (Π,S) where
Π is the mapping function and S is the storing algorithm. To

store n items each uniquely identified by an key from the

universe U , a mapping scheme arranges the server storage

into b(n) buckets each consisting of at most s(n) blocks. Each
bucket is uniquely identified by an index from [b(n)]. We

note that buckets are not necessarily disjoint and the total

number of blocks may be much smaller than b(n) · s(n). In
addition, the mapping scheme assumes that the client will

hold a mapping stash which will contain at most c(n) blocks
except with probability negl(n). For each item u ∈ U , the

mapping function maps u to a subset of at most s(n) buckets
defined byΠ(u) ⊆ [b(n)]. For convenience, we denotek(n) :=
maxu ∈U |Π(u)|. When inserting a new item with identifier

u, the storing algorithm S determines whether u is placed

into a bucket of Π(u) or the mapping stash according to the

sizes of buckets in Π(u). We now show how to use mapping

schemes to construct a DP-KVS.
Our DP-KVS scheme works as follows. We construct the

server storage into b(n) buckets as described by the mapping

scheme. We build a DP-RAM to be able to query and update

the b(n) buckets. In Appendix E, we show that our DP-RAM

construction from Section 6 remains secure and efficient

when querying possibly overlapping buckets with minor

modifications. When querying our DP-KVS for a key u ∈ U ,

we perform k(n) DP-RAM queries to retrieve the s(n) blocks
from each bucket in Π(u). If |Π(u)| < k(n), we pick random

buckets to pad Π(u) to size k(n). Now, we are guaranteed
that if u exists in DP-KVS, it appears in a bucket of Π(u) or
in the mapping stash and can be thus returned. To update

an existing key, we can simply update either the bucket or

the mapping stash that contains the block associated to key

u. For insertion, we can execute the storing algorithm S as

all the contents of buckets Π(u) and the mapping stash are

available to the client. S determines the insertion location

for the block associated to key u. Finally, we execute k(n)
DP-RAM updates to all buckets in Π(u). Only the bucket

containing the block associated with key u is updated. The

other buckets will perform fake updates where the contents

remain unchanged. For read operations, none of the contents

of buckets in Π(u) will be changed. We prove the following

theorem about our DP-KVS construction.

Theorem 7.1. For n blocks, the above KVS scheme is an
ϵ-DP-KVSwith ϵ = O(k(n)·logn) that returns at mostO(k(n)·
s(n)) blocks. For any function Φ(n) = ω(logn), the client stores
O(s(n) · Φ(n) + c(n)) blocks of storage except with probability
negl(n).

Proof. The bounds on bandwidth and server storage fol-

low from the mapping scheme properties. The client storage

bound follows from Lemma D.1 and the mapping scheme

properties. Each query results in at most 2 · k(n) queries
over the repertoire Σ of the n buckets. By the composition

theorem and the discussion in Appendix E, we obtain that

ϵ = O(k(n) · logn). □

7.2 Oblivious Two-Choice Hashing
Before presenting our new mapping scheme, we revisit the

two-choice hashing scheme [41] (see Section A.1 for more

details). This scheme considers n buckets to store up to

n keys. The mapping function Π : U → [n] sets Π(u) as
k(n) := 2 independently and uniformly at random chosen

buckets. Typically, Π is succintly represented using two keys,

key
1
, key

2
, of a pseudorandom function F and by Π(u) :=

{F (key
1
,u), F (key

2
,u)}. The storing algorithm S for u ∈ U ,

checks which of the two buckets in Π(u) is less loaded and

places u into the less loaded bucket. There are several dif-

ferent proofs that show that the largest bucket will contain

at most s(n) := O(log logn) items except with probability

negl(n).
Unfortunately, we are unable to use two-choice hashing

directly into our DP-KVS scheme without incurring into a

server storage blockup. TheDP-KVS scheme from Section 7.1

requires that all buckets are the same size for privacy. The



naive approach is to simply increase all buckets to the worst

case size which results in O(n log logn) server storage. In-
stead, we now present a variant of two-choice hashing which

will only use O(n) server storage by arranging buckets to

share memory.

Our bucket arrangement is best described as Θ(n/logn)
identical binary trees, each with Θ(logn) leaf nodes and

Θ(log logn) depth. Leaf nodes are denoted as height 0 and
the height increases going towards the root. This results in a

total ofΘ(n) nodes over all binary trees. Each node in the tree
will be able to store up to t = Θ(1) blocks. Furthermore, we

pick the binary trees such that there are exactly n leaf nodes

overall. Finally, there is a single root node that hasΘ(n/logn)
children corresponding to the roots of the Θ(n/logn) binary
tree roots. We denote this node as the super root. Unlike all
other nodes, the super root is stored on the client. We shall

show that the probability that the super root holds more

then Φ(n) blocks for any Φ(n) = ω(logn) is negligible in n.
Each of the n buckets is uniquely associated with a leaf

node. The memory locations of a bucket consist of all the

blocks stored in the nodes on the unique path between the

leaf node and the super root. Therefore, a bucket consists

of Θ(log logn) server memory locations in addition to the

memory locations in the super root. We now describe our

new storing algorithm, S, given this bucket arrangement.

When inserting u, S places u into the node with minimal

height (that is, closest to the leaf nodes) in either of the

buckets in Π(u) with empty space. Note that u might end

up being stored in the super root. If all the nodes of both

buckets of Π(u) are filled then the mapping scheme fails to

store u. We show that when inserting any set of at most n
keys, if we limit the capacity of the super root to Φ(n), for
some Φ(n) = ω(logn), the above mapping scheme fails with

probability negl(n). The analysis adapts techniques from [5].

Theorem 7.2. Let Φ(n) = ω(logn). The probability that,
when inserting n keys, mapping scheme S places more than
Φ(n) keys into the super root is negl(n).

Proof. Our key observation is that a block is stored in a

level-(i+1) slot if and only if the two selected buckets are filled
up to level i . If we denote by Hi the number of filled node

at level i , the probability of selecting a bucket that is filled

up to level i is Hi · 2
i/n. For a block to be allocated to a slot

at level i + 1, it must be the case that both selected buckets

are filled up to level i which has probability

(
Hi ·2

i

n

)
2

. For

convenience, we define the sequence βi by setting β0 =
n

e ·34

and βi+1 =
e
n ·β

2

i ·2
2(i+1)

, which we will use later in the proof.

First, we present a useful property about the sequence and

then we show that the probability that Hi > βi is negl(n).
The proof of Lemma 7.3 can be found in Appendix F.

Lemma 7.3. For all i ≥ 0,

βi =
n

e
·

(
2

3

)
2
i+2 (

1

2

)
2(i+2)

.

Lemma 7.4. If βi = ω(logn) then, Pr[Hi > βi ] ≤ i/nω(1).

Proof. We proceed by induction on i . The base case i = 0

is established by setting c > 3
4 · e . We next upper bound the

probability that after inserting n blocks there are more than

βi+1 filled nodes at level i + 1, given that we start with Hi
nodes filled at level i . To do so, we define X j to be that 0/1

random variable that is 1 iff the j-th block ends up at level

i + 1. Clearly, Pr[X j = 1] =
(
Hi ·2

i+1

n

)
2

and, if Hi ≤ βi ,

µi+1 := E

[∑
j

X j

]
≤

β2i · 2
2(i+1)

n
=

βi+1
e
.

We thus have

Pr[Hi+1 > βi+1 | Hi ≤ βi ] ≤
Pr[Hi+1 > βi+1]

Pr[Hi ≤ βi ]

=
Pr[

∑
j X j > e · µi+1]

Pr[Hi ≤ βi ]
≤

e−e ·βi+1

Pr[Hi ≤ βi ]

where the last inequality follows by TheoremA.2. By Lemma 7.3,

the sequence βi decreases with i and thus βi ≥ βi+1 =
ω(logn). The proof is then completed by observing that

Pr[Hi+1 > βi+1]

≤ Pr[Hi+1 > βi+1 | Hi ≤ βi ] · Pr[Hi ≤ βi ] + Pr[Hi > βi ]

≤ 1/nω(1) + i/nω(1) ≤ (i + 1)/nω(1)

using our hypothesis that Pr[Hi > βi ] = i/n
ω(1)

. □

We now conclude the proof of Theorem 7.2. Fix a function

Φ(n) = ω(logn) and let i⋆ be the largest index such that

βi⋆ ≥ Φ(n). By Lemma 7.3, we obtain that i⋆ = Θ(log logn).
Following a reasoning similar to the one adopted in proof

of Lemma 7.4, we can prove that the expected number of

filled nodes at level i⋆ + 1 is at most βi⋆+1/e , given that no

more than βi⋆ nodes are filled at level i⋆. By Lemma 7.4, the

condition holds except with negligible probability. From the

definition of βi⋆+1, we obtain that, for some constant α such

that c ≥ α · βi⋆+1, the probability that more than c nodes are
filled at level i⋆ + 1 is inverse exponential in c by Chernoff

Bounds, and thus negl(n). □

7.3 Wrapping up the Proof
We complete our DP-KVS construction by observing that

the mapping scheme described above has k(n) = 2, s(n) =
Θ(log logn) and c(n) = Φ(n) for any Φ(n) = ω(logn).

Theorem 7.5. The above KVS scheme is a ϵ-DP-KVS with
ϵ = O(logn) that returns O(log logn) blocks. The server uses
O(n) blocks of storage and, for any function Φ(n) = ω(logn),



the probabilty that the client storesmore thanO(Φ(n)·log logn)
blocks is negl(n).

8 CONCLUSIONS
We consider privacy-preserving storage protocols with small

overhead that could be implemented with large-scale, fre-

quently accessed storage infrastructures without negatively

impacting response times or resource costs. Our main ques-

tion is to find the best privacy that can be achieved by small

overhead storage schemes.

We formulate our privacy notion using differentially pri-

vate access, which is a generalization of the oblivious access

provided by both ORAMand PIR.We present strong evidence

that the best privacy achievable by any constant overhead

differentially private storage schemes must have privacy

budgets ϵ = Ω(logn). For DP-RAM and DP-IR, we present
constructions with asymptotically optimal ϵ = Θ(logn) pri-
vacy budgets and O(1) overhead. For DP-KVS, we present
a scheme with asymptotically optimal ϵ = Θ(logn) privacy
budgets and only O(log logn) overhead which is exponen-

tially better than previous constructions. OurDP-KVS uses a
novel, oblivious variant of two-choice hashing that uses only

O(n) server storage that may be of independent interest.

Therefore, we answer that the best privacy achievable by

privacy-preserving storage systems with small overhead is

differentially private access with ϵ = Θ(logn). On the other

hand, any storage scheme achieving stronger privacy most

likely must incur non-trivial overhead compared to plaintext

access.
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A TOOLS
In this section we briefly review some tools that we use in

the design and in the analysis of our constructions.

A.1 Power of Two Choices
The power of two choices concept was motivated from the

classical balls and bins problem. The balls and bins concepts

considers n balls and n bins. Each of the n balls chooses a

single bin independently and uniformly at random. The load
of a bin is the number of balls that occupy the bin. It has

been shown that with high probability, the load of every bin

does not exceed O(logn/log logn) [21]. Consider the case

where each of the n balls now chooses two bins indepen-

dently and uniformly at random. The ball occupies the least

loaded of the two chosen bins. This slight alteration ensures

that with high probability, the load of each bin does not ex-

ceed O(log logn) [41]. This result demonstrates that having

two choices significantly improves bounds on the maximum

load. Furthermore, it turns out that increasing the number of

choices to d ≥ 3 only improves the maximum load bounds

by a constant. It is important to note that the allocation of

each is chosen independently from the allocation of all other

balls.

Theorem A.1. At any time, the load of any bin produced
by the power of two choices process exceeds O(log logn) with
probability at most 1/nΩ(log logn).

A.2 Chernoff Bound
The next theorem gives a bound on the tails of a binomial

distribution that we will use to analyze our constructions.

See [42] for a proof.

Theorem A.2. Let Xi , for i = 1, . . . ,n be independent bi-
nary random variables with Pr[Xi = 1] = p and let µ := np.
Then for every t ≥ µ, it holds that

Pr

[
n∑
i=1

Xi ≥ t

]
≤

µt

t t
· et−µ

and, in particular,

Pr

[
n∑
i=1

Xi ≥ e · µ

]
≤ e−µ .

B PROOF OF THEOREM 5.1
We remind the reader that, for i ∈ [N ], IR(i) is the ran-

dom variable of the set of blocks transferred by the server

when the client wishes to access block Bi . We next compute

Pr[IR(i) = T] for a subset T of K blocks.

Case 1: Bi ∈ T . With probability 1−α , we know that Bi ∈ T
and the remaining K − 1 blocks are chosen uniformly at

random. On the other hand, with probability α , for Bi ∈ T ,
we need to choose Bi as one of the K blocks that are chosen

randomly. Therefore,

Pr[IR(i) = T] =
1 − α(N−1
K−1

) + α(N
K

) .
Case 2: Bi < T . In this case, we knowwith probability (1−α),
T is not possible. With probability α , we need to ensure that
Bi is not one of the K blocks chosen. So,

Pr[IR(i) = T] =
α(N
K

) .
Let Q and Q ′ be any two query sequences of length L for

which dH (Q,Q
′) = 1. Since, the above algorithm is stateless,

https://eprint.iacr.org/2015/121


we know that its behavior depends solely on the query index.

Therefore, it suffices to consider two different sequences

queries of length one, q , q′ ∈ [N ]. If we choose a transcript
T such that Bq,Bq′ < T or Bq,Bq′ ∈ T , then we see that

Pr[IR(q) = T] = Pr[IR(q′) = T]. If, instead, Bq ∈ T and

Bq′ < T we have

Pr[IR(q) = T]
Pr[IR(q′) = T]

≤
(1 − α)

(N
K

)
α
(N−1
K−1

) + 1 ≤
(1 − α)N

αK
+ 1 = eϵ .

Since this holds for any single transcript T , the same ratio

holds for any set of transcripts completing the proof.

C LOWER BOUND FOR
MULTIPLE-SERVER DP-IR

We extend the single server lower bound to the multiple

server IR model withD servers andDA adversarial servers. If

DA = D, then the scenario collapses to the single adversarial

server case of Section 3.2. In this section, we assume that

DA < D and there is always at least one honest server. For

convenience, we define t = DA
D to be the fraction of servers

corrupted by A where 0 < t < 1.

The choice of adversarial servers is modeled as a chal-

lenger C with a IR protocol and an adversary A with the

power to corrupt t fraction of servers. Using the knowledge

of IR but not the internal randomness of IR, A picks t frac-
tion of the D servers to corrupt. C then runs IR and A gets

the transcript of downloads sent by IR to the t fraction of

corrupted servers. We denote the adversary’s transcript on

query sequence Q as IRA(Q). We now proceed to present

our lower bound in the multi-server model.

Theorem C.1. If IR is a (ϵ, δ )-DP D-server IR in the balls
and bins model for any ϵ, δ ≥ 0 and error probability α <
1 − (δ/t), then IR performs

Ω

(
((1 − α)t − δ ) · n

eϵ

)
expected operations.

Proof. We prove our lower bound for the adversary A

that corrupts DA ≤ tD randomly and uniformly chosen

servers. We know

Pr[Bi ∈ IR(i)] ≥ 1 − α .

If Bi appears in IRA(i), Pr[Bi ∈ IRA(i)] ≥ (1−α)t . The rest of
the proof follows identically to the proof of Theorem 3.4. □

As a result, we show that the DP-IR scheme in [49] is

optimal when t is considered constant.

D REMAINING DP-RAM PROOFS
In this section we give the proofs that were postponed from

Section 6. We start by showing that the client uses O(c)
memory except with negligible probability for c = ω(logn).

Lemma D.1. If p ≤ c
n and c = ω(logn), then RAM stores

at most O(c) blocks in the block stash on client storage at any
point in time except with negligible probability.

Proof. Pick any point in time. We note that each block Bi
has independent probability p of being stored in the client.

We let Xi = 1 if and only if Bi is stored on the client memory.

Let X be the number of blocks stored in client memory, so

X = X1+. . .+Xn . So, we know thatE[X ] = E[X1+. . .+Xn] =

pn ≤ c . By Chernoff Bounds, for any δ > 0,

Pr[X > (1 + δ )c] ≤ exp

(
−cδ 2

2 + δ

)
which is negl(n) when c = ω(logn). The lemma follows, by

a union bound over all points in time (that is, the length of

the queries which is polynomial in n). □

Proof of Lemma 6.4. The numerator is trivially upper

bounded by 1 and the denominator is lower bounded by

the conjunctive probability. We prove the lemma by showing

that the latter is at least p/n2. To this aim, we consider three

cases depending on the values of pr(Q, j) and opr(Q , j). Note

that, if pr(Q, j) , +∞, qpr(Q , j) = qj by definition.

Case 1: pr(Q, j) , +∞ and opr(Q , j) = qj .
Consider first the case dj = qj . If during the overwrite

phase of query pr(Q, j) block Bqj is stored in block stash

(and this has probability p), then RAMO
pr(Q , j)(Q) = qj with

probability 1/n. Then at the download phase of query j, Bqj
is found in block stash and therefore the probability that

RAMD
j (Q) = qj is 1/n. On the other hand if during the

overwrite phase of query pr(Q, j) block Bqj is not stored
in block stash (this has probability 1 − p), then certainly

RAMO
pr(Q , j)(Q) = qj and, since Bqj is not found in block stash

at the start of the download phase of query j , RAMD
j (Q) = qj

with probability 1. Altogether, we have Pr[RAMO
pr(Q , j)(Q) =

qj∧RAMD
j (Q) = qj ] = 1−p+1/n3 ≥ 1/n3. If, instead,dj , qj

then it means that Bqj must have been stored in the block

stash during the overwrite phase of query pr(Q, j) (this has
probability p) and then RAMO

pr(Q , j)(Q) = qj with probability

1/n. Then, since Bqj is in stash at the start of the download

phase of query j RAMD
j (Q) = dj with probability 1/n. Alto-

gether, we have Pr[RAMO
pr(Q , j)(Q) = qj ∧ RAM

D
j (Q) = qj ] =

p/n2.

Case 2. pr(Q, j) , +∞ and opr(Q , j) , qj .
If opr(Q , j) , qj then it must be the case that, during the

overwrite phase of query pr(Q, j), block Bqj is stored in block



stash (and this happens with probability p) and opr(Q , j) is

chosen as overwrite block (and this happens with probability

1/n). When the download phase of query j starts, block Bqj
is found in the stash and so the probability that dj is selected
as download blocks is 1/n. Whence Pr[RAMD

j (Q) = dj ∧

RAMO
pr(Q , j)(Q) = opr(Q , j)] = p/n

2.

Case 3. pr(Q, j) = +∞. In this case, opr(Q , j) =⊥ and Bqj has
not been queried before query j. Therefore, at the start of
the download phase of query j, Bqj is found in block stash

with probability p. By using arguments similar to the ones

of the previous cases, we have

Pr[RAMD
j (Q) = qj ∧ RAM

O
pr(Q , j)(Q) =⊥]

= Pr[RAMD
j (Q) = qj ] = (1 − p) + p/n

and, for dj , qj ,

Pr[RAMD
j (Q) = dj ∧ RAM

O
pr(Q , j)(Q) =⊥]

= Pr[RAMD
j (Q) = dj ] = p/n

which completes the proof. □

Proof of Lemma 6.5. As in the proof of the previous lemma,

we upper bound the numerator by 1 and show that the de-

nominator is at least n/p starting from the case oj = qj . If, in
the overwrite phase of the j-th query, block Bqj is added to

the block stash (and this happens with probability 1/n) then
the same block is chosen as overwrite block with probability

1/n. In the remaining 1 − p probability, qj is the overwrite
block with probability 1. Therefore Pr[RAMO

j (Q) = qj ] =
(1−p)+p/n. If, instead, oj , qi , then the only case in which

oj is the overwrite block of phase j is when Bqj is added to

the block stash and this gives Pr[RAMO
j (Q) = oj ] = p/n,

for every oj , qj . For any j , i , Q j = Q ′j showing the first

point. For any o, Pr[RAMO
i (Q

′) = o] ≥ p/n giving the second

result. □

E DP-RAM GENERALIZATION
Our proof of differential privacy ofDP-RAM of Section 6 can

be seen to give a more general form of differential privacy.

Suppose DP-RAM stores n blocks and there exists a reper-

toire Σ of size b = O(n). We interpret Σ as the specification of

b buckets where each bucket contains exactly s blocks. Note,
buckets may overlap and two different buckets may contain

the same block. Our privacy proof of DP-RAM carries over

to the case in which a query retrieves all blocks in a bucket.

In other words, we interpret query sequencesQ of length s · l
as l subsequences each of length s taken from the Σ of size n
(that is, each subsequence corresponds to a bucket). In this

framework, a query sequenceQ = (q1, . . . ,qs ·l ) is associated

with sequence Q = (σ1, . . . ,σl ) of length l over Σ; that is,

Q = (q1, . . . ,qs︸     ︷︷     ︸
σ1

,qs+1, . . . ,q2·s︸          ︷︷          ︸
σ2

, · · ·q(l−1)s+1, . . . ,ql ·s︸               ︷︷               ︸
σl

),

and σ1,σ2, . . . ,σl ∈ Σ and |Σ| = b = O(n).
The proof of Section 6 handles the case s = 1 in which an

access sequence is a sequence of n requests taken from the

repertoire Σ = [n].
To argue the general case let us consider first the case

in which the server explicitly stores the subsequences of

Σ; specifically, each element of Σ is a sequence of s of the
original n blocks and each is stored using storage equal to

s blocks. Then an access sequence Q of length s · l over [n]
is simply an access sequence (σ1, . . . ,σl ) of length l over Σ
and, as it is easily seen, our proof still works and guarantees

differential privacy with ϵ = Θ(logn).
This approach, unfortunately, has the drawback that the

server storage grows by a factor of s . However, we observe
that the blocks that constitute the subsequence of Σ need

not to be explicitly stored by the server that instead can

store just the n original blocks and, each time it receives a

request σ ∈ Σ, the server fetches the needed blocks. Note

that this transformation preserves differential privacy with

ϵ = Θ(logn) as this property is independent of the actual

layout of the parts of the individual atomic blocks (in this

case the subsequences σ ∈ Σ) on which the RAM is built.

The only modification required is that when retrieving or

updating a bucket i , the DP-RAM must also check if the any

block is stored on the client as part of another bucket j , i . If
so, the block on client storage must be returned as opposed

to the one from the server for retrievals. For updates, both

the server copy and client copy must be updated.

F REMAINING DP-KVS PROOFS
[Proof of Lemma 7.3] We proceed by induction and we verify

the base case by plugging in i = 0. For i ≥ 0, we have

βi+1 =
e

n
· β2i · 2

2(i+1)

=
e

n
·
n2

e2
·

(
2

3

)
2
i+3 (

1

2

)
4(i+2)

· 22(i+1)

=
n

e
·

(
2

3

)
2
i+3 (

1

2

)
4(i+2)−2(i+1)

=
n

e
·

(
2

3

)
2
i+3 (

1

2

)
2(i+3)

.

G DP-IR PSEUDOCODE
We present the pseudocode for our DP-IR scheme of Sec-

tion 5.



Algorithm 1 DP-IR.Query: read a block

Input: i, ϵ,α
Set T = ∅. {initializing the download set}

Pick random number r ∈ [0, 1].
if r > α then
T ← T ∪ {i}.

end if
Set K = ⌈(1 − α)N /(eϵ − 1)⌉.
while |T | < K do

Pick j uniformly at random from [N ] \ T .
T ← T ∪ {j}.

end while
Send T to server and receive {Bj }j ∈T from server.

if r > α then
return Bi .

else
return ⊥.

end if

H DP-RAM PSEUDOCODE
We present the pseudocode for the algorithm in Section 6.

Algorithm 2 DP-RAM.Setup: initialize client and server

storage

Input: 1
λ,B1, . . . ,BN

Randomly select K ← {0, 1}λ .
Initialize array A of size N on server.

Initialize hash table bStash on client.

for i ← 1, . . . ,N do
Set A[i] ← Enc(K,Bi ).
Pick r uniformly at random from [N ].
if r ≤ C then
Set bStash[i] ← Bi .

end if
end for

Algorithm 3 DP-RAM.Query: reading and writing a data

block

Input: i, op,Bnew

{Download Phase}

if i ∈ bStash then
Pick d uniformly at random from [N ].
Download A[d] and discard.

Set B ← bStash[i] and remove i from bStash.
else
Set d ← i .
Download A[d].
Set B ← Dec(K,A[d]).

end if

if op = write then
Set B ← Bnew.

end if

{Overwrite Phase}

Draw r uniformly at random from [N ].
if r ≤ C then
Set bStash[i] ← B.
Pick o uniformly at random from [N ].
Download A[o], decrypt it and re-encrypt it obtaing ct.

Upload ct as A[o].
else
Set o = i .
Download A[o] and discard it.

Set ct← Enc(K,B).
Upload ct as A[o].

end if
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