
Doubly half-injective PRGs for
incompressible white-box cryptography

Estuardo Alpirez Bock1, Alessandro Amadori2, Joppe W. Bos3, Chris
Brzuska1, and Wil Michiels2,3

1 Aalto University
{estuardo.alpirezbock,brzuska}@aalto.fi

2 Technische Universiteit Eindhoven
A.Amadori@tue.nl

3 NXP Semiconductors
{joppe.bos@nxp.com,wil.michiels}@nxp.com

Abstract. White-box cryptography was originally introduced in the set-
ting of digital rights management with the goal of preventing a user
from illegally re-distributing their software decryption program. In recent
years, mobile payment has become a popular new application for white-
box cryptography. Here, white-box cryptography is used to increase the
robustness against external adversaries (i.e., not the user) who aim to
misuse/attack the cryptographic functionalities of the payment applica-
tion. A necessary requirement for secure white-box cryptography is that
an adversary cannot extract the embedded secret key from the imple-
mentation. However, a white-box implementation needs to fulfill further
security properties in order to provide useful protection of an application.
In this paper we focus on the popular property incompressibility that is a
mitigation technique against code-lifting attacks. We provide an incom-
pressible white-box encryption scheme based on the standard-assumption
of one-way permutations whereas previous works used either public-key
type assumptions or non-standard symmetric-type assumptions.

Keywords: White-box cryptography, Incompressibility, One-way permutations

1 Introduction

White-box cryptography was introduced by Chow, Eisen, Johnson and van
Oorschot in 2002 in order to protect keys in symmetric ciphers when imple-
mented in insecure or adversarially controlled environments [10,9]. The original
proposal was motivated by Digital Rights Management (DRM), and white-box
cryptography has been used in this context for many years. In recent years,
mobile payment applications became popular and, originally, relied on secure
hardware that communicated via Near-Field Communication (NFC) (cf. NFC-
based payment products by Mastercard, Visa and Google Wallet [38]). Android

This paper has been published by Springer in the proceedings of the CT-RSA Con-
ference 2019 https://doi.org/10.1007/978-3-030-12612-4_10.

https://doi.org/10.1007/978-3-030-12612-4_10

2 E. Alpirez Bock, A. Amadori, J. W. Bos, C. Brzuska, W. Michiels

4.4 added host-card emulation (HCE) which allows to implement the NFC pro-
tocols in software-only. Hereby, white-box cryptography has become an integral
building block of mobile payment applications. Mastercard promotes the use of
white-box cryptography in the payment applications that Mastercard certifies.
I.e., the Mastercard security guidelines for payment applications make the use
of white-box cryptography mandatory [30].

The wide-spread deployment of white-box cryptography stands in contrast
with the state-of-the-art in white-box research. Currently, there are no long-term
secure white-box implementations of standard ciphers in the academic literature.
Proposed white-box constructions for both DES [10,29] and AES [9,8,40,26] have
been subsequently broken by [25,21,39] and [3,33,32,28], respectively. Moreover,
Bos, Hubain, Michiels, and Teuwen [7] and Sanfelix, de Haas and Mune [36] intro-
duced Differential Computational Analysis (DCA) which is a generic approach
to extract emebedded keys from a large class of white-box implementations au-
tomatically, i.e., without human reverse-engineering effort. As explained in [31],
popular frameworks for implementing white-box cryptography are particularly
vulnerable to such automated attacks.

In order to promote research on good candidates for white-box cryptography,
CHES 2017 organized the white-box competition CHES 2017 Capture the Flag
Challenge [13] to white-box AES-128. Unfortunately, all candidates were broken
eventually. Most candidates lasted only 2 days, whereas some candidates resisted
attacks for several weeks. Such a level of short-term security might already be
useful, as long as the secret key and the white-box design can be updated on
a regular basis. In light of these results, one might wonder whether there ex-
ists a long-term secure white-box implementation of AES. Short of being able
to provide a practically secure white-box implementation of AES itself, we ap-
proach feasibility from the reduction-based approach in cryptography and aim
to base secure white-box implementations on well-studied, symmetric assump-
tions. Whereas attacks usually focus on key extraction, positive feasibility results
should aim for stronger, more useful security notions.

Definitions. Systematic definitional studies of security properties for white-box
cryptography have been undertaken by Delerablée, Lepoint, Paillier, and Rivain
(DLPR [11]) and Saxena, Wyseur, Preneel (SWP [37]). Some of the early defi-
nitions have been revisited and refined subsequently [5,6,4]. Beyond the modest
goal of security against key extraction, those works cover desirable asymmetry
properties: A white-box encryption program should not allow to decrypt (con-
fidentiality), and a white-box decryption program should not allow to encrypt
(integrity).

While asymmetry is a desirable property (and, in particular, implies secu-
rity against key extraction), in practice, code-lifting attacks are more prevalent:
Given a software cryptographic implementation with an embedded secret key,
the adversary might simply copy the complete implementation and run it on its
own device without the need to recover the embedded secret key. As a means
to mitigate code-lifting attacks (and subsequently re-distribution attacks) most

Doubly half-injective PRGs for incompressible white-box cryptography 3

works discuss the notion of incompressibility. Additionally, DLPR also suggest
traceability.

Incompressibility. Incompressibility aims to mitigate re-distribution attacks
by building large-size white-box programs, which remain functional only in their
complete form. As soon as the white-box program is compressed or fragments
of the program are removed, the program loses its functionality. The intuitive
justification of the usefulness of incompressibility is that if a decryption algo-
rithm is several gigabytes large, then online re-distribution of that algorithm
might not be feasible, reducing thus the chances of an adversary sharing the
cryptographic code for unintended purposes. This approach is particularly use-
ful for the case where one distributes a combination of software and hardware
with large memory.

Constructions. DLPR and SWP show that public-key encryption schemes,
considered as white-boxed symmetric encryption schemes, satisfy confidentiality.
Interestingly, DLPR also show that the RSA function is incompressible when
interpreted as a white-boxed cipher. Feasibility results are important, because
they illustrate that the hardness of building a white-box version of AES does
not hinge on a general impossibility of white-box encryption. In particular, the
hardness of building a white-box version of AES is not subject to the general
impossibility result for virtual black-box obfuscation shown in the seminal paper
by Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan and Yang [1].

In a systematic analysis of the obstacles that white-box constructions for AES
face, one might investigate the cryptographic tools and assumptions that are
needed. At first sight, one might expect that white-boxing AES requires public-
key type assumptions from Cryptomania (See Impagliazzo’s survey on average-
case complexity [22]) such as trapdoor functions. Indeed, if the white-boxed
version of AES shall satisfy the same confidentiality guarantees as public-key
encryption, then the oracle separation by Impagliazzo and Rudich [24] applies.4

In turn, for less demanding notions such as incompressibility, it is conceivable
that white-boxing can be based on symmetric-key type MiniCrypt assumptions
alone. Indeed, an important step in that direction was made in a recent work
by Fouque, Karpman, Kirchner and Minaud (FKKM [14]). FKKM present a
symmetric-style cipher (i.e., a cipher that looks like a genuine cipher-design and
is not built on public-key type assumptions) and show that the cipher admits an
incompressible implementation, based on a novel symmetric-style assumption.

In this work, we place feasibility of incompressible white-box cryptography
fully in MiniCrypt. We provide a white-box encryption scheme and a white-box

4 It applies conceptually in the sense that AES is a pseudorandom permutation which
is a MiniCrypt primitive that is equivalent to the existence of one-way functions.
Strictly speaking, the security of AES is a much stronger assumption than merely the
assumption of a one-way function, but it is fair to conjecture that one cannot turn
AES into a secure public-key encryption scheme without gaining insights into the
question for how to build public-key encryption from one-way functions generally.

4 E. Alpirez Bock, A. Amadori, J. W. Bos, C. Brzuska, W. Michiels

decryption scheme, whose incompressibility is based on the assumption of a one-
way permutation (See Section 4 for a more detailed comparison between our
construction and the construction by FKKM).

Summary of contribution. We contribute to the foundations of white-box
cryptography by showing that incompressible white-box encryption and decryp-
tion schemes can be built based on the assumption of one-way permutations only
thereby placing incompressible white-box cryptography fully in MiniCrypt.

Taking a step back, solid definitions as well as feasibility results and impos-
sibility for white-box cryptography are needed to clarify whether it is realistic
to pursue the goal of building white-box cryptography with useful long-term se-
curity properties, with reasonable efficiency, based on standard assumptions. As
the CHES Capture the Flag Challenge 2017 demonstrates, providing a secure
white-box implementation of AES is tremendously difficult, and thus obtaining
a solid understanding of the feasibility and limits of white-box cryptography is
needed rather urgently. Our results take a step towards such an understanding
and we encourage further studies on the foundations of white-box cryptography.

2 Preliminaries and Notation

1n denotes the security parameter in unary notation. Given a bit string x, we
denote by x[j : i] the bits j to i of the bit string x. end denotes the index of
the last bit. By a||b we denote the concatenation of two bit strings a and b.
For a program P , we denote by |P | its bit-size. We leave the choice of encoding
of the program implicit in this work. We write oracles as superscript to the
adversary AO. All algorithms receive the security parameter 1n as input. For
ease of notation, we omit the security parameter for most of the article.

Un denotes the uniform distribution over strings of length n. By←, we denote
the execution of a deterministic algorithm while ←$ denotes the execution of
a randomized algorithm. We denote by := the process of initializing a set, e.g.
S := ∅, while ←$ denotes the process of randomly sampling an element from
a given set, e.g. x←$ {0, 1}n. When sampling x according to the probability
distribution X, we denote the probability that the event F (x) = 1 happens by
Prx←$X [F (x)].

We sometimes use ◦ for function composition, i.e. g ◦ f(x) is the same as
g(f(x)). For a natural number `, we write f `(x) for f ◦ ...◦f(x), where we apply
f to x sequentially ` times. The latter notations are helpful to make terms easier
to parse when a function is composed many times, as in the standard notation,
each function application introduces a layer of brackets.

Definition 1. A symmetric encryption scheme ξ consists of three polynomial-
time algorithms (Kgen, Enc, Dec) such that Kgen and Enc are probabilistic
polynomial-time algorithms (PPT), and Dec is deterministic. The algorithms
have the syntax k←$ Kgen(1n), c←$ Enc(1n, k,m) and m← Dec(1n, k, c). More-
over, the encryption scheme ξ satisfies correctness, i.e., for all messages m ∈

Doubly half-injective PRGs for incompressible white-box cryptography 5

{0, 1}∗,
Pr[Dec(k, Enc(k,m)) = m] = 1 (1)

where the probability is over the randomness of Enc and k←$ Kgen(1n).

Remark. To clarify wording (as scientific communities vary in their terminol-
ogy), we consider a cipher a deterministic algorithm that is a building block for
an encryption scheme, but is not an encryption scheme itself. That is, AES is
a cipher, not an encryption scheme, while, e.g., AES-CBC or AES-GCM are
symmetric encryption schemes.

We now include the definition of authenticated encryption. We use an in-
distinguishability definition of authenticated encryption that encodes both, the
ciphertext integrity and the indistinguishability under chosen plaintext attacks
(IND-CPA). Bellare and Namprempre [2] show that if a symmetric encryption
scheme provides ciphertext integrity and IND-CPA security, then it is also in-
distinguishable under chosen ciphertext attacks (IND-CCA). We refer to their
article as well as to Krawczyk [27] for more background on authenticated en-
cryption.

Definition 2 (Authenticated encryption (AE)). A symmetric encryption
scheme se = (AKgen, AEnc, ADec) is an authenticated encryption scheme (AE-
secure) if for all adversaries A, the advantage∣∣∣Pr

[
EXPA,seAE (1n) = 1

]
− 1

2

∣∣∣
is negligible.

EXPA,seAE (1n)

k←$ AKgen(1n)

b←$ {0, 1}
b∗ ←$AENC,DEC(1n)

return (b = b∗)

ENC(m)

if b = 0

c←$ AEnc(k,m)

if b = 1

c←$ AEnc(k, 0|m|)

C ← C ∪ {c}
return c

DEC(c)

if b = 0

if c /∈ C
m← ADec(k, c)

return m

return ⊥

2.1 Syntax of White-Box Cryptography

Definition 3 (White-Box Encryption Scheme). A white-box encryption
scheme WBEnc consists of four probabilistic polynomial-time algorithms (Kgen,
Enc, Dec, Comp), where (Kgen, Enc, Dec) is a symmetric encryption scheme and
Comp is a publicly known (possibly) randomized compiling algorithm that takes as
input the symmetric key k and generates a (probabilistic) white-box encryption
algorithm EncWB.

EncWB←$ Comp(k) (2)

For all messages m ∈ {0, 1}∗, the randomized program EncWB(m) produces a dis-
tribution that is statistically close to the distribution of the randomized program

6 E. Alpirez Bock, A. Amadori, J. W. Bos, C. Brzuska, W. Michiels

Enc(k,m). Moreover, the following correctness property holds. For all messages
m ∈ {0, 1}∗,

Pr[Dec(k, EncWB(m)) = m] = 1, (3)

where the probability is over the randomness of EncWB and k←$ Kgen(1n).

Remark. One can use Enc(k, ·) as well as EncWB(·) to encrypt a message under
key k. Both programs require randomness, and an honest user can provide the
program EncWB(·) with uniform randomness to generate a secure distribution of
ciphertexts. We will not mention this feature again, as the security properties
covered in this paper are concerned with the case that the owner of EncWB(·)
misbehaves. Note that we only demand statistical closeness between Enc(k, ·)
and EncWB(·) and not full functional equivalence, as notions such as traceability
benefit from flexibility on the functionality requirement.

We now define a white-box decryption scheme analogously that produces a
white-box of the decryption algorithm rather than the encryption algorithm.
Note that in the case of white-box encryption, there is a ciphertext distribution
for each message m. In turn, in the case of white-box decryption, for each cipher-
text c, there is merely a single plaintext. Therefore, for white-box decryption, no
requirement on statistical closeness is needed beyond correctness.

Definition 4 (White-Box Decryption Scheme). A white-box decryption
scheme WBDec consists of four probabilistic polynomial-time algorithms (Kgen,
Enc, Dec, Comp), where (Kgen, Enc, Dec) is a symmetric encryption scheme and
Comp is a publicly known (possibly) randomized compiling algorithm that takes as
input the symmetric key k and generates a white-box decryption program DecWB,
such that for all messages m ∈ {0, 1}∗,

Pr[DecWB(Enc(k,m)) = m] = 1, (4)

where the probability is over the randomness of k←$ Kgen(1n), DecWB←$ Comp(k)
and Enc(k, ·).

3 Definitions

Incompressibility aims to make redistribution attacks harder by making the
white-box program too large to distribute. The first formalization of incom-
pressibility was given by DLPR, and the notion has been adopted and studied
in several subsequent works [14,4,5]. We adopt the incompressibility notion by
DLPR with minor modifications: DLPR consider deterministic ciphers, while
we consider randomized encryption schemes. Therefore, our correctness require-
ment will ask to produce decryptable ciphertexts rather than ciphertexts that
are equal to a target value, as can be defined for deterministic ciphers. More-
over, we will add an encryption oracle for sake of completeness. As the adversary
has a white-box encryption algorithm, the adversary can emulate the encryption
oracle up to statistical distance and thus, our modification is merely esthetic.

Doubly half-injective PRGs for incompressible white-box cryptography 7

In the (δ, λ)-incompressibility game, conceptually, there are two collaborating
adversaries. One is the adversary A that is given a white-box encryption program
EncWB and outputs some smaller value Com. The second collaborating adversary
is the decompression algorithm Decomp that will try to decompress Com. The
winning condition says that the pair of adversaries is successful if

(i) Com is shorter than EncWB by λ bits and

(ii) the probability that the decompressed program Decomp(Com) produces a valid
ciphertext (i.e., a ciphertext that decrypts correctly) for a random message
m ∈ {0, 1}n is greater than δ.

Definition 5 (Incompressibility). A white-box encryption scheme WBEnc is
INC-(δ, λ)-secure if for all PPT adversaries A, the success probability

∣∣∣Pr
[
EXPA,WBEnc

INC-(δ, λ) = 1
]∣∣∣

is negligible, where the experiment EXPA,WBEnc
INC-(δ, λ) is defined as follows:

EXPA,WBEnc
INC-(δ, λ)

k←$ Kgen(1n)

EncWB ←$ Comp(k)

Com←$ARCA,ENC,DEC(EncWB)

if Prm ←$ {0,1}∗ [Dec(k, Decomp(Com)(m)) = m] ≥ δ
and if |Com| ≤ |EncWB| − λ
return 1

else return 0

RCA()

Enc
′
WB ←$ Comp(k)

return Enc
′
WB

ENC(m)

c←$ Enc(k,m)

return c

DEC(c)

m← Dec(k, c)

return m

Incompressibility for white-box decryption. The definition of incompressibility
for white-box decryption is analogous to Definition 5, except that in the former,
the compression attack targets a white-box decryption algorithm WBDecWB and
thus, the winning condition is Prm←$ {0,1}∗ [Decomp(Com)(Enc(k, (m)) = m] ≥ δ,
where the randomness is over m and Enc.

Definition 6. A white-box decryption scheme WBDec is INC-(δ, λ)-secure if for
all PPT adversaries A, the advantage

∣∣∣Pr
[
EXPA,WBDec

INC-(δ, λ) = 1
]∣∣∣

8 E. Alpirez Bock, A. Amadori, J. W. Bos, C. Brzuska, W. Michiels

is negligible, where the experiment EXPA,WBDec
INC-(δ, λ) is defined as follows:

EXPA,WBDec
INC-(δ, λ)

k←$ Kgen(1n)

DecWB ←$ Comp(k)

Com←$ARCA,ENC,DEC(DecWB)

if Pr
m ←$M

[Decomp(Com)(Enc(k,m)) = m] ≥ δ

∧ |Com| ≤ |DecWB| − λ
return 1

else return 0

RCA()

Dec
′
WB ←$ Comp(k)

return Dec
′
WB

ENC(m)

c←$ Enc(k,m)

return c

DEC(c)

m← Dec(k, c)

return m

4 Constructions of White-Box Cryptography

In this section, we first discuss existing white-box constructions and then present
our own construction with a security reduction for (δ, λ)-incompressibility, as-
suming one-way permutations.

4.1 Existing constructions

The white-box implementations of standardized cryptographic primitives that
have been published in [10,29,9,8,40,26] unfortunately turned out insecure with
respect to key extraction (see e.g. [7,36]). In turn, more recent works [11,5,6] fol-
low different approaches to construct white-box implementations for alternative
(non-standardized) primitives. In [11, Sec. 6], DLPR build a white-box encryp-
tion scheme based on a public-key encryption scheme which is secure under their
security notions of one-wayness under chosen plaintext attacks and incompress-
ibility. Their implementation is based on the RSA cryptosystem [35]. They first
consider the RSA cryptosystem as a symmetric cipher and then use the asym-
metric properties of RSA to prove the white-box properties. Likewise, SWP [37]
show that public-key encryption systems can first be interpreted as a symmetric
encryption algorithm, so that one can then use the asymmetric properties to
argue about IND-CPA and IND-CCA security.

Bogdanov and Isobe [5] propose a family of white-box secure block ciphers
called SPACE, and Bogdanov, Isobe and Tischhauser [6] present an improve-
ment of these designs called SPNbox. The authors claim that these designs are
secure under their models for weak and strong space hardness, a variant of the
DLPR model for incompressibility. Their designs are notable in that they present
the first symmetric-style construction for an incompressible white-box encryp-
tion scheme. The security of their design is based on symmetric cryptanalysis
techniques. In turn, a recent construction by FKKM [14] comes with a security
reduction. The reduction reduces incompressibility to a novel symmetric-style as-
sumption. Our construction below will improve upon FKKM by moving to the
(symmetric) standard-assumption of one-way permutations. Another difference

Doubly half-injective PRGs for incompressible white-box cryptography 9

between FKKM and our construction is that FKKM restricted the adversary to
return bits of the key rather than arbitrary strings. Such a restriction, poten-
tially, could enable expansion via secret-sharing, which is highly compressible
when allowing for arbitrary compression algorithms. We remove this restriction.

4.2 Incompressible constructions for white-box encryption

In this subsection, we provide an incompressible white-box encryption scheme
and an incompressible white-box decryption scheme. We start by introducing
our main tool, namely a pseudorandom function that admits a computationally
(δ, λ)-incompressible implementation. Then we show that if a PRF admits a com-
putationally (δ, λ)-incompressible implementation, then there is a (δ, λ− o(1))-
incompressible white-box encryption scheme and a (δ, λ− o(1))-incompressible
decryption scheme. Finally, we construct a computationally incompressible PRF,
assuming one-way permutations. Jumping ahead, we note that our incompress-
ible PRF construction makes use of a length-doubling, doubly half-injective pseu-
dorandom generator, a new tool that we introduce and construct in this work,
based on one-way permutations.

Computationally incompressible pseudorandom functions. In the following, we
consider PRFs whose message and key length are identical, unless stated explic-
itly otherwise.

Definition 7 (PRF-implementation). Let f be a PRF. We call a pair of
deterministic polynomial-time algorithms (F, CompPRF) an implementation of the
PRF f with expansion α if the following hold:

Key expansion ∀k ∈ {0, 1}∗ |K| = α · |k|, where K = CompPRF(k).
Functionality-preservation ∀k ∈ {0, 1}∗ ∀x ∈ {0, 1}|k|f(k, x) = F (K,x),

where K = CompPRF(k).

Definition 8 (computational PRF-incompressibility). An implementation
(F, CompPRF) of a PRF f with expansion factor α is called computationally (δ, λ)-
incompressible, if the following hold:

Pseudorandomness CompPRF(Un) is computationally indistinguishable from Uαn.
Incompressibility For any PPT computable leakage function Leak and any

PPT computable adversary S, it holds that, if |Leak(Uαn)| ≤ αn − λ, then
the probability that the experiment $-PRF-INCLeak,S returns 1 is less than δ.

$-PRF-INCLeak,S

K ←$Uαn

aux←$ Leak(K)

x←$ {0, 1}n

y←$S(aux, x)

return (y
?
= F (K,x))

PRF-INCLeak,S

k←$ {0, 1}n

K ← CompPRF(k)

aux←$ Leak(K)

x←$ {0, 1}n

y←$S(aux, x)

return (y
?
= F (K,x))

10 E. Alpirez Bock, A. Amadori, J. W. Bos, C. Brzuska, W. Michiels

In the $-PRF-INCLeak,S game, the key K is not generated via CompPRF, but
sampled randomly from the distribution Uαn. The leakage function Leak outputs
several bits of information of K, which are saved in aux. The adversary S tries to
compute the value y by using aux instead of the complete key K. The following
claim states that due to the pseudorandomness of the key, the success probability
of the adversary in the PRF incompressibility game $-PRF-INCLeak,S does not
depend (except for a negligible amount) on whether the game uses a real key
or a random key. The statement follows directly from the pseudorandomness
property of (F, CompPRF).

Claim 1. Let f be a PRF. If (F, CompPRF) is a (δ, λ)-incompressible implemen-
tation of the PRF f , then for any PPT computable leakage function Leak and
any PPT computable adversary S, it holds that, if |Leak(Uαn)| ≤ αn − λ, then
the probability that the experiment PRF-INCLeak,S returns 1 is at most negligibly
greater than δ.

An incompressible white-box encryption scheme. We now use an incompressible
PRF to construct an incompressible white-box encryption scheme. Hereby, we
focus on integrity features, i.e., the hardness of producing valid ciphertexts from a
compressed algorithm. We achieve this via a message authentication code (MAC)
which is generated using the large key K. Additionally, our construction achieves
confidentiality via an authenticated encryption scheme which makes use of a
small key k′′ for encrypting the plaintext and MAC. Since the key k′′ is very
short in comparison to K, it does not affect the incompressibility of our scheme
significantly. An authenticated encryption scheme is a symmetric encryption
scheme that satisfies ciphertext integrity and indistinguishability under chosen
plaintext attacks. For simplicity, in the following, we assume an authenticated
encryption scheme whose key generation algorithm AKgen samples uniformly
random keys of the same length as the security parameter.

Construction 1 (incompressible white-box encryption scheme). Let (AKgen,
AEnc, ADec) be an authenticated encryption scheme. Let f be a PRF and let
(F, CompPRF) be an implementation of f with expansion factor α. We construct
WBEnc = (Kgen, Enc, Dec, Comp) as given in Figure 1.

Theorem 1 (Incompressibility). If PRF f admits a computationally (δ, λ)-
incompressible implementation F , then white-box encryption scheme WBEnc in
Construction 1 is a (δ, λ−n−o(1))-incompressible white-box encryption scheme.

Proof. Given a pair of adversaries (A, Decomp) against (δ, λ)-incompressibility,
we need to construct a pair of adversaries (Leak,S) against the (δ, λ−n−o(1))-
incompressibility of the PRF implementation F . The adversary Leak receives as
input the key K, then draws a key k′′, builds EncWB as C[K, k′′] and runs A on
EncWB. The adversary Leak then emulates the oracles that A expects as follows:
Comp is a deterministic algorithm and thus, the recompilation algorithm would
always return the same program EncWB to A and so does Leak. Likewise, EncWB(·)
and Enc(k, ·) are functionally equivalent, and thus, Leak can perfectly emulate

Doubly half-injective PRGs for incompressible white-box cryptography 11

Kgen(1n)

k′ ←$ {0, 1}n

k′′ ←$ {0, 1}n

k ← k′||k′′

return k

Enc(k,m)

k′ ← k[0 : n− 1]

k′′ ← k[n : 2n− 1]

t← f(k′,m)

τ ← (m, t)

c←$ AEnc(k′′, τ)

return c

Dec(k, c)

k′ ← k[0 : n− 1]

k′′ ← k[n : 2n− 1]

τ ← ADec(k′′, c)

(m, t)← τ

if t = f(k′,m) return m.

else return ⊥

Comp(k)

k′ ← k[0 : n− 1]

k′′ ← k[n : 2n− 1]

K := CompPRF(k
′)

EncWB := C[K, k′′](.)

return EncWB

C[K, k′′](m)

t← F (K,m)

τ ← (m, t)

c←$ AEnc(k′′, τ)

return c

Fig. 1. Construction: Incompressible white-box encryption scheme based on PRF f
and an authenticated encryption scheme.

Enc(k, ·) by running EncWB(·). Finally, to emulate the decryption oracle, the ad-
versary Leak computes a function that is functionally equivalent to Dec(k, ·) as
follows: On input a ciphertext (m, t), the adversary Leak first decrypts using k′′

and then re-computes the PRF on the message m, using K, and checks whether
the value is equal to t. If yes, Leak returns m. Else, Leak returns ⊥ to the adver-
sary. Eventually, A produces some output Com that Leak outputs together with
k′′, i.e., aux := (Com, k′′).

Finally, we need to construct the adversary S from the algorithm Decomp.
Given the leakage aux and a value x, the adversary S runs Decomp on aux and
obtains a ciphertext c that is an encryption of a pair (x, t) under k′′. S decrypts
c using k′′ and returns t.

Analysis. Note that EncWB, encoded as a Turing machine, is a constant number
of bits larger than K and thus, a compressing adversary can strip off those
additional bits needed for the Turing machine encoding whence the loss of a
constant in λ. By the winning condition of (δ, λ)-incompressibility, S returns the
correct PRF value if and only if Decomp(Com) returns a ciphertext that decrypts
to the correct message. Thus, if (A, Decomp) satisfies the winning condition with
probability greater than δ, so does (Leak,S).

In the next subsection, we present a white-box decryption scheme based on
an incompressible PRF. Afterwards, in Section 5, we construct an incompressible
PRF.

12 E. Alpirez Bock, A. Amadori, J. W. Bos, C. Brzuska, W. Michiels

4.3 An incompressible white-box decryption scheme.

For constructing a white-box decryption scheme we focus on the hardness of re-
covering the message from the ciphertext. Note that analogous to our encryption
scheme presented in Construction 1, our decryption scheme can be augmented
by adding an authenticated encryption scheme with a comparatively short key
on top of it and thus upgrade it to a full authenticated decryption scheme.

Construction 2 (incompressible white-box decryption scheme). Let f be a
PRF and let (F, CompPRF) be an implementation of f with expansion factor α.
We construct WBDec = (Kgen, Enc, Dec, Comp) as given in Figure 2.

Kgen(1n)

k←$ {0, 1}∗

return k

Enc(k,m)

r←$ {0, 1}|k|

pad← f(k, r)

p← m⊕ pad

c← (r, p)

return c

Dec(k, c)

(r, p)← c

pad← f(k, r)

m← p⊕ pad

return m

Comp(k)

K := CompPRF(k)

DecWB := C[K](.)

return DecWB

C[K](c)

(r, p)← c

pad← F (K, r)

m← p⊕ pad

return m

Fig. 2. Construction of an incompressible white-box decryption scheme based on a
PRF f .

Theorem 2 (Incompressibility). If a PRF f admits a computationally (δ, λ)-
incompressible implementation F , then the white-box decryption scheme WBDec
in Construction 2 is a (δ, λ−o(1))-incompressible white-box decryption scheme.

The proof is analogous to the proof of Theorem 1 and thus omitted.

5 Incompressible PRFs from OWPs

The main theorem that we will prove in this section is the following.

Theorem 3. Assume that one-way permutations exist. Let α be a function in
the security parameter n such that for all n, α(n) > n and such that for all
n, α(n) is a power of 2. Then, there exists a PRF with a (δ, λ)-incompressible
implementation with δ = 1− λn

α + negl(n), where λn is the largest integer such
that n · λn ≤ λ.

We now construct the incompressible PRF that instantiates this theorem.
The writing style of this section is aimed at the parts of the cryptographic com-
munity that are familiar with the reduction-based approach to cryptography,
see e.g., Goldreich’s textbooks on the foundations of cryptography for an excel-
lent introduction [17,18]. Recall that we want to construct a PRF that has its

Doubly half-injective PRGs for incompressible white-box cryptography 13

standard small key as well as a much larger, pseudorandom key that cannot be
compressed. Towards this goal, we consider the PRF construction by Goldreich,
Goldwasser and Micali (GGM [19]). Recall that the GGM idea is to iterate a
PRG within a tree structure, where the paths within the tree is determined by
the bits of the PRF input x. That is, let g be a length-doubling PRG and let g0
be its left half and g1 be its right half. If k is the PRF key, then the GGM PRF
is computed as follows:

GGM(k, x) := gx[|x|]gx[|x|−1] ◦ ... ◦ gx[3] ◦ gx[2] ◦ gx[1](k)

We now provide an incompressible implementation of the GGM PRF.

Construction 3. The expansion factor of this incompressible implementation
of the GGM PRF is α = 2`. For 0 ≤ j ≤ 2` − 1, the notation < j > refers to
the `-bit string that encodes j in binary.

f(k, x)

y ← GGM(k, x)

return y

CompPRF(k)

for j from 0 to 2` − 1

kj := GGM(k,< j >)

K ← k0||...||k2`−1

return K

F (K,x)

(x[1...`], x[`+ 1...|x|])← x

j ← x[1...`]

y ← GGM(kj , x[`+ 1...|x|])
return y

Fig. 3. Construction of an incompressible implementation of the GGM PRF.

For Construction 3, the key expansion property is clear, and the pseudo-
randomness property follows from the PRF property of the GGM construction.
We thus focus on showing incompressibility properties of Construction 3. To do
so, intuitively, one needs to argue that if one loses one bit of the key kj , then
one loses one bit of information about all PRF values that are located in the
corresponding branch of the GGM PRF (which corresponds to evaluations of
messages that start by < j >. Unfortunately, such a tight connection might not
hold generally. Imagine, e.g., the case, that the PRG in the GGM construction
ignores one half of its input and only expands the other half of the input hugely.
Likewise, it might be the case that certain bits of the input only affect the left
half of the output or the right part of the input. To avoid both of those bad
properties, we will consider a PRG that is both, left-half injective and right-half
injective. We call such a PRG a doubly half-injective pseudorandom generator
(DPRG).

Definition 9 (Doubly Half-Injective Pseudorandom Generator). A dou-
bly half-injective pseudorandom generator (DPRG) is a deterministic polynomial-
time computable map g : {0, 1}∗ → {0, 1}∗ such that the following three properties
are satisfied:

14 E. Alpirez Bock, A. Amadori, J. W. Bos, C. Brzuska, W. Michiels

Length-doubling For all x ∈ {0, 1}∗, it holds that |g(x)| = 2 |x|. We write
g0(x) for the left half of g and g1(x) for the right half of g.

Doubly half-injective The functions g0 and g1 are injective.

Pseudorandomness g(Un) is computationally indistinguishable from U2n.

Remark. Note that, as g0 and g1 are length-preserving, injectivity is equivalent
to bijectivity, but we choose the term injectivity because we only need injectivity
in our proofs and because one could define analogous properties also for functions
with more stretch. For a further discussion of modification of this definition, see
the end of this section.

We build on an observation by Garg, Pandey, Srinivasan and Zhandry [15,16]
who show that the standard-construction of a PRG from a one-way permutation
is left-half-injective and then transform any left-half injective PRG into a doubly
half-injective PRG.

Definition 10 (Left-Half-Injective Pseudorandom Generator). A left-
half-injective pseudorandom generator is a deterministic polynomially-time com-
putable map g : {0, 1}∗ → {0, 1}∗ such that the following three properties are
satisfied:

Length-doubling For all x ∈ {0, 1}∗, it holds that |g(x)| = 2 |x|. We write
g0(x) for the left half of g and g1(x) for the right half of g.

Half-injective The function g0 is injective.

Pseudorandomness g(Un) is computationally indistinguishable from U2n.

For completeness, we include the proof of left-half-injectivity by Garg, Pandey,
Srinivasan and Zhandry [15,16].

Claim 2 ([15,16]). Assuming the existence of one-way permutations, there exist
left-half injective, length-doubling PRGs.

Proof. Let f ′ : {0, 1}∗ → {0, 1}∗ be a one-way permutation. Then the Goldreich-
Levin hardcore bit [20] implies that there exists a one-way permutation f :
{0, 1}∗ → {0, 1}∗ with hardcore bit B : {0, 1}∗ → {0, 1}. We define the func-
tion G : {0, 1}∗ → {0, 1}∗, as G(x) := f |x|(x)||B(x)||B(f(x))||...||B(f |x|−1(x)).
Indeed, |G(x)| = 2|x|. The pseudorandomness of G follows from the security of
the hardcore bit, see [17], and the left-injectivity follows, as f is a permutation
and therefore, for all `, f ` is a permutation, too.

We can now prove the existence of doubly half-injective pseudorandom gen-
erators, based on one-way permutations.

Lemma 1 (Doubly Half-Injective Pseudorandom Generators). Assum-
ing the existence of one-way permutations, there exist DPRGs.

The proof follows directly by combining Claim 2 and the following claim.

Doubly half-injective PRGs for incompressible white-box cryptography 15

Claim 3. If G = G0||G1 is a left-half injective, length-doubling PRG, where G0

denotes its left, injective half, then g is doubly half-injective PRG, where g is
defined as

g(x0||x1) := G0(x0)||G1(x0)⊕G0(x1)||G0(x1)||G1(x1)⊕G0(x0),

where || denotes concatenation and where ⊕ binds stronger than || and where
w.l.o.g., we consider even length |x| and denote x0 the left half of x and x1 the
right half of x.

Proof. We need to show that g is a doubly half-injective PRG, i.e., we need
to prove (1) that each half of g is injective and (2) that the output of g is
pseudorandom.

Double Half-Injectivity. We show that g0(x0||x1) = G0(x0)||G1(x0)⊕G0(x1) is
injective. The injectivity of g1 then follows analogously. Let w0||w1 be such that
g0(w0||w1) = g0(x0||x1). Firstly note that G0 is a permutation and therefore,
x0 = w0. Plugging this equality into G1(w0) ⊕ G0(w1) = G1(x0) ⊕ G0(x1), we
obtain that G0(w1) = G0(x1). As G0 is a permutation, it follows that w1 = x1.

Pseudorandomness. We now prove the pseudorandomness property. We denote
by U0

n, U00
n , U01

n , U1
n, U10

n , U11
n independent, uniform distributions on n bits.

We use that the output of the PRG G0(U0
n)||G1(U0

n) is computationally indis-
tinguishable from U00

n ||U01
n and that G0(U1

n)||G1(U1
n) is computationally indis-

tinguishable from U10
n ||U11

n . We get

G0(U0
n)||G1(U0

n)⊕G0(U1
n)|| G0(U1

n)||G1(U1
n)⊕G0(U0

n)
c
≈ U00

n ||U01
n ⊕G0(U1

n)|| G0(U1
n)||G1(U1

n)⊕ U00
n

c
≈ U00

n ||U01
n ⊕ U10

n || U10
n ||U11

n ⊕ U00
n

s
≈ U00

n ||U01
n || U10

n ||U11
n

The last step follows, as U01
n and U11

n are independent from the other uniform
distributions. We thus proved that G is a pseudorandom generator. Note that
the restriction on even input length can be removed by using G0 and G1 with
matching input and output length (G1 needs to output strings that are one bit
longer than those output by G0.) and by truncating the output of G1 appropri-
ately when creating the padding for the shorter half. This concludes the proof
of Claim 3.

We now prove the incompressibility properties of the GGM pseudorandom
function when based on a DPRG.

Claim 4. Let f be the GGM PRF using a DPRG g = g0||g1. We denote by m the
input length of the input x to the PRF. Then for each pair of randomized, possibly
inefficient algorithms (Leak,S), there exists a randomized possibly inefficient
algorithm P such that the probability that the following two experiments return
1 is equal.

16 E. Alpirez Bock, A. Amadori, J. W. Bos, C. Brzuska, W. Michiels

$-PRF-INCLeak,S

k←$Un

aux←$ Leak(k)

x←$ {0, 1}m

y←$S(aux, x)

return (y
?
= f(k, x))

$-KEY-INCLeak,P

k←$Un

aux←$ Leak(k)

k′ ←$P(aux)

return (k′
?
= k)

Moreover, for each pair of possibly inefficient algorithms (Leak,P), there exists
a randomized possibly inefficient algorithm S such that the probability that the
two experiments $-PRF-INCLeak,S and $-KEY-INCLeak,P return 1 is equal.

Proof. We observe that for each x ∈ {0, 1}m, the function f(·, x) is a permuta-
tion as, depending on the bits of x, it applies the functions g0 and g1 several
times subsequently to the input k. As g0 and g1 are permutations, we have a
fixed sequence of permutations (depending on the bits of x) that we apply to k.
A fixed sequence of permutations is a permutation as well. Therefore, any un-
predictability on k immediately translates into unpredictability on the function
values of the PRF. We now prove this statement formally. We use the notation
fx(·) for f(·, x) to emphasize that x is fixed and now, for each pair of algorithms
(Leak,S), construct and algorithm P (left column). We also describe, how for
each pair of algorithms (Leak,P), one can construct an algorithm S (right col-
umn).

P(aux)

x←$Un

y←$S(aux, x)

k′ := f−1
x (y)

return k′

P(aux, x)

k′ ←$P(aux)

y := f(k′, x)

return y

As fx is a permutation, k′ = k if and only if f(k′, x) = fx(k′) = fx(k) = f(k, x)
and the claim follows.

In other words, the average min-entropy (see Dodis et al. [12] and Reyzin [34])
of f(Un, Um), conditioned on Leak(Un), is equal to the average min-entropy of
Un, conditioned on Leak(Un). We recall the definition of average min-entropy.

Definition 11 (Average Min-Entropy). Let (Y,Z) be a pair of random vari-

ables. The average min-entropy of Y conditioned on Z is denoted H̃∞(Y |Z) and
defined as

− logEz ←$Z

[
max
y

Pr[Y = y|Z = z]

]
= − log

(
Ez ←$Z

[
2−H∞(Y |Z=z)

])
,

where H∞(Y |Z = z) = − log(max
y

Pr[Y = y|Z = z]) denotes min-entropy.

Doubly half-injective PRGs for incompressible white-box cryptography 17

We can now rephrase Claim 4 as

H̃∞(f(Un, Um)|Leak(Un)) = H̃∞(Un|Leak(Un)). (5)

Now, we can state the following lemma which concludes the proof of Theorem 3.

Lemma 2. Let α be a function in the security parameter n such that for all n,
α(n) > n and such that for all n, α(n) is a power of 2. Construction 3 is a (δ, λ)-
incompressible PRF implementation with expansion factor α of the GGM PRF
with δ = 1− λn

α − negl(n), where λn is the largest integer such that n · λn ≤ λ.

Proof. We need to show that for each pair of efficient algorithms (Leak,S), the
probability that $-PRF-INCLeak,S returns 1 is smaller than δ + negl(n). We will
show that this statement even holds for pairs of inefficient algorithms (Leak,S).
That is, the property holds statistically and we need to show that

H̃∞(F (Uαn, Un)|Leak(Uαn)) ≥ − log(δ + negl(n)). (6)

First, remark that as the length of the output of Leak is upper bounded by λ,
we have that

λ ≤ H̃∞(Uαn|Leak(Uαn)).

We can now split Uαn into α blocks of n bits each, where we denote the ith block
as Uαn[i], and we obtain

H̃∞(Uαn|Leak(Uαn)) ≤
α−1∑
i=0

H̃∞(Uαn[i]|Leak(Uαn)).

We denote by hi the entropy of the conditional uniform distribution
H̃∞(Uαn[i]|Leak(Uαn)), which, by Equation 5, is equal to the entropy of the con-

ditional PRF distribution H̃∞(f(Uαn[i], Um)|Leak(Uαn)). Putting all together,
we obtain that

λ ≤
α−1∑
i=0

hi, where (7)

∀0 ≤ i ≤ α− 1 : 0 ≤ hi ≤ n. (8)

Recall that we want to show Inequality 6. Using the notation hi, we can re-phrase
Inequality 6 equivalently as

S(h0, ..., hα−1) :=
1

α

α−1∑
i=0

2−hi ≤ δ + negl(n) . (9)

To summarize, we need to find h0,...,hα−1 such that Inequality 7 and Inequality 8
are satisfied and such that the term S(h0, ..., hα−1) on the left-hand side of In-
equality 9 is maximized. On the α-dimensional domain that satisfies Inequality 8,
the term S(h0, ..., hα−1) is maximized when h0 = ... = hα−1 = 0. Moreover, S is

18 E. Alpirez Bock, A. Amadori, J. W. Bos, C. Brzuska, W. Michiels

anti-monotone. That is, if (h′0, ..., h
′
α−1) ≤ (h0, ..., hα−1) component-wise, then

S(h′0, ..., h
′
α−1) ≥ S(h0, ..., hα−1). Moreover, given any point (h0, ..., hα−1) in the

domain [0, n]α, the descent of S is least steep in the direction of the largest entry
hi. As S is symmetric, we obtain that under the constraints of Inequality 7 and
Inequality 8, S is maximized at h = (n, ..., n, λrem, 0, ..., 0), which contains λn
entries n and where λrem is such that λ = λn · n+ λrem. We obtain

S(h) =
1

α
(λn · 2−n + 2−λrem + (α− λn − 1)) ≤ 1− λn

α
+ negl(n) ,

which concludes the proof of the lemma.

Discussion on stretch and assumptions.

Note that one can obtain DPRGs with more stretch from a DPRG that is length-
doubling simply by first applying the original DPRG and then applying an injec-
tive PRG to the left half and an injective PRG to the right half of the output of
the DPRG. Also note that a DPRG with stretch 2 implies (is actually equivalent
to) the existence of one-way permutations and that one-way permutations imply
injective PRGs via the Goldreich-Levin hardcore bit construction [20].

Our construction would also work with a DPRG that stretches its input
by more than a factor of 2. Such a function might be constructed based on
one-way functions only, as g0 and g1 would not be bijective anymore and thus,
such a DPRG does not seem to imply one-way permutations unlike a DPRG
whose stretch is exactly 2. In the rest of the paper, we considered DPRGs whose
stretch exactly 2. We made no attempt to construct DPRGs based on one-
way functions only, as one-way permutations are a standard symmetric-type
MiniCrypt assumption.5

Acknowledgements. The authors would like to thank the anonymous review-
ers of CT-RSA 2019 for their useful feedback and, in particular, for helping us
to clarify related work. Part of this work was done while Chris Brzuska and
Estuardo Alpirez Bock were at the Hamburg University of Technology and they
are grateful to NXP for supporting their chair for IT Security Analysis during
that period.

References

1. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, Aug.
2001.

5 That is, one-way permutations are not known to imply trapdoor functions, and, by
the seminal paper of Impagliazzo and Rudich [23], it seems unlikely that anyone
would show such an implication anytime soon. See also Impagliazzo [22] for an
excellent survey on cryptographic assumptions.

Doubly half-injective PRGs for incompressible white-box cryptography 19

2. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In T. Okamoto, editor,
ASIACRYPT 2000, volume 1976 of LNCS, pages 531–545. Springer, Heidelberg,
Dec. 2000.

3. O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a white box AES
implementation. In H. Handschuh and A. Hasan, editors, SAC 2004, volume 3357
of LNCS, pages 227–240. Springer, Heidelberg, Aug. 2004.

4. A. Biryukov, C. Bouillaguet, and D. Khovratovich. Cryptographic schemes based
on the ASASA structure: Black-box, white-box, and public-key (extended ab-
stract). In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part I, volume
8873 of LNCS, pages 63–84. Springer, Heidelberg, Dec. 2014.

5. A. Bogdanov and T. Isobe. White-box cryptography revisited: Space-hard ciphers.
In I. Ray, N. Li, and C. Kruegel:, editors, ACM CCS 15, pages 1058–1069. ACM
Press, Oct. 2015.

6. A. Bogdanov, T. Isobe, and E. Tischhauser. Towards practical whitebox cryptog-
raphy: Optimizing efficiency and space hardness. In J. H. Cheon and T. Takagi, ed-
itors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 126–158. Springer,
Heidelberg, Dec. 2016.

7. J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen. Differential computation
analysis: Hiding your white-box designs is not enough. In B. Gierlichs and A. Y.
Poschmann, editors, CHES 2016, volume 9813 of LNCS, pages 215–236. Springer,
Heidelberg, Aug. 2016.

8. J. Bringer, H. Chabanne, and E. Dottax. White box cryptography: Another at-
tempt. Cryptology ePrint Archive, Report 2006/468, 2006. http://eprint.iacr.
org/2006/468.

9. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. White-box cryptography
and an AES implementation. In K. Nyberg and H. M. Heys, editors, SAC 2002,
volume 2595 of LNCS, pages 250–270. Springer, Heidelberg, Aug. 2003.

10. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. A white-box DES imple-
mentation for DRM applications. In J. Feigenbaum, editor, Security and Privacy
in Digital Rights Management, ACM CCS-9 Workshop, DRM 2002, volume 2696
of LNCS, pages 1–15. Springer, 2003.

11. C. Delerablée, T. Lepoint, P. Paillier, and M. Rivain. White-box security notions
for symmetric encryption schemes. In T. Lange, K. Lauter, and P. Lisonek, editors,
SAC 2013, volume 8282 of LNCS, pages 247–264. Springer, Heidelberg, Aug. 2014.

12. Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In C. Cachin and J. Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 523–540. Springer, Heidelberg,
May 2004.

13. ECRYPT. Ches 2017 capture the flag challenge - the whibox contest, 2017. https:
//whibox.cr.yp.to/.

14. P.-A. Fouque, P. Karpman, P. Kirchner, and B. Minaud. Efficient and provable
white-box primitives. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016,
Part I, volume 10031 of LNCS, pages 159–188. Springer, Heidelberg, Dec. 2016.

15. S. Garg, O. Pandey, and A. Srinivasan. Revisiting the cryptographic hardness of
finding a nash equilibrium. In M. Robshaw and J. Katz, editors, CRYPTO 2016,
Part II, volume 9815 of LNCS, pages 579–604. Springer, Heidelberg, Aug. 2016.

16. S. Garg, O. Pandey, A. Srinivasan, and M. Zhandry. Breaking the sub-exponential
barrier in obfustopia. In J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pages 156–181. Springer, Heidelberg, May 2017.

http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2006/468
https://whibox.cr.yp.to/
https://whibox.cr.yp.to/

20 E. Alpirez Bock, A. Amadori, J. W. Bos, C. Brzuska, W. Michiels

17. O. Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge
University Press, Cambridge, UK, 2001.

18. O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

19. O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications of
random functions. In G. R. Blakley and D. Chaum, editors, CRYPTO’84, volume
196 of LNCS, pages 276–288. Springer, Heidelberg, Aug. 1984.

20. O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In
21st ACM STOC, pages 25–32. ACM Press, May 1989.

21. L. Goubin, J.-M. Masereel, and M. Quisquater. Cryptanalysis of white box DES
implementations. In C. M. Adams, A. Miri, and M. J. Wiener, editors, SAC 2007,
volume 4876 of LNCS, pages 278–295. Springer, Heidelberg, Aug. 2007.

22. R. Impagliazzo. A personal view of average-case complexity. In Proceedings of
the Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Min-
nesota, USA, June 19-22, 1995, pages 134–147. IEEE Computer Society, 1995.

23. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In 21st ACM STOC, pages 44–61. ACM Press, May 1989.

24. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In S. Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages
8–26. Springer, Heidelberg, Aug. 1990.

25. M. Jacob, D. Boneh, and E. W. Felten. Attacking an obfuscated cipher by injecting
faults. In J. Feigenbaum, editor, Security and Privacy in Digital Rights Manage-
ment, ACM CCS-9 Workshop, DRM 2002, Washington, DC, USA, November 18,
2002, Revised Papers, volume 2696 of LNCS, pages 16–31. Springer, 2003.

26. M. Karroumi. Protecting white-box AES with dual ciphers. In K. H. Rhee and
D. Nyang, editors, ICISC 10, volume 6829 of LNCS, pages 278–291. Springer,
Heidelberg, Dec. 2011.

27. H. Krawczyk. The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In J. Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 310–331. Springer, Heidelberg, Aug. 2001.

28. T. Lepoint, M. Rivain, Y. D. Mulder, P. Roelse, and B. Preneel. Two attacks on a
white-box AES implementation. In T. Lange, K. Lauter, and P. Lisonek, editors,
SAC 2013, volume 8282 of LNCS, pages 265–285. Springer, Heidelberg, Aug. 2014.

29. H. E. Link and W. D. Neumann. Clarifying obfuscation: Improving the security
of white-box encoding. Cryptology ePrint Archive, Report 2004/025, 2004. http:
//eprint.iacr.org/2004/025.

30. Mastercard. Mastercard mobile payment sdk, 2017. https://developer.

mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-

mobile-payment-sdk-security-guide-v2.0.pdf.
31. E. Alpirez Bock, C. Brzuska, W. Michiels, and A. Treff. On the ineffectiveness of

internal encodings - revisiting the dca attack on white-box cryptography. Cryp-
tology ePrint Archive, Report 2018/301, 2018. https://eprint.iacr.org/2018/

301.pdf.
32. Y. D. Mulder, P. Roelse, and B. Preneel. Cryptanalysis of the Xiao-Lai white-box

AES implementation. In L. R. Knudsen and H. Wu, editors, SAC 2012, volume
7707 of LNCS, pages 34–49. Springer, Heidelberg, Aug. 2013.

33. Y. D. Mulder, B. Wyseur, and B. Preneel. Cryptanalysis of a perturbated
white-box AES implementation. In G. Gong and K. C. Gupta, editors, IN-
DOCRYPT 2010, volume 6498 of LNCS, pages 292–310. Springer, Heidelberg,
Dec. 2010.

http://eprint.iacr.org/2004/025
http://eprint.iacr.org/2004/025
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://eprint.iacr.org/2018/301.pdf
https://eprint.iacr.org/2018/301.pdf

Doubly half-injective PRGs for incompressible white-box cryptography 21

34. L. Reyzin. Some notions of entropy for cryptography - (invited talk). In S. Fehr,
editor, ICITS 11, volume 6673 of LNCS, pages 138–142. Springer, Heidelberg, May
2011.

35. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signature and public-key cryptosystems. Communications of the Association for
Computing Machinery, 21(2):120–126, 1978.

36. E. Sanfelix, J. de Haas, and C. Mune. Unboxing the white-box: Practical attacks
against obfuscated ciphers. Presentation at BlackHat Europe 2015, 2015. https:

//www.blackhat.com/eu-15/briefings.html.
37. A. Saxena, B. Wyseur, and B. Preneel. Towards security notions for white-box

cryptography. In P. Samarati, M. Yung, F. Martinelli, and C. A. Ardagna, editors,
ISC 2009, volume 5735 of LNCS, pages 49–58. Springer, Heidelberg, Sept. 2009.

38. Smart Card Alliance Mobile and NFC Council. Host card emulation 101. white pa-
per, 2014. http://www.smartcardalliance.org/downloads/HCE-101-WP-FINAL-

081114-clean.pdf.
39. B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel. Cryptanalysis of white-

box DES implementations with arbitrary external encodings. In C. M. Adams,
A. Miri, and M. J. Wiener, editors, SAC 2007, volume 4876 of LNCS, pages 264–
277. Springer, Heidelberg, Aug. 2007.

40. Y. Xiao and X. Lai. A secure implementation of white-box AES. In 2009 2nd
International Conference on Computer Science and its Applications, pages 1–6.
IEEE Computer Society, 2009.

https://www.blackhat.com/eu-15/briefings.html
https://www.blackhat.com/eu-15/briefings.html
http://www.smartcardalliance.org/downloads/HCE-101-WP-FINAL-081114-clean.pdf
http://www.smartcardalliance.org/downloads/HCE-101-WP-FINAL-081114-clean.pdf

	Doubly half-injective PRGs forincompressible white-box cryptography

