DOI: 10.11817/j.issn.1672-7207.2018.02.009

锂离子电池负极材料 NiSi2 嵌锂性质的第一性原理研究

龙朝辉^{1,2,3},丁静^{1,2,3},邓博华^{1,2,3},龚晋^{1,2,3},李小波^{1,2,3},尹付成^{1,2,3}

(1. 湘潭大学 材料设计及制备技术湖南省重点实验室,湖南 湘潭,411105;
 2. 湘潭大学 材料科学与工程学院,湖南 湘潭,411105;

3. 湘潭大学 装备用关键薄膜材料及应用湖南省国防科技重点实验室,湖南 湘潭, 411105)

摘要:采用基于密度泛函理论的第一性原理方法研究锂离子电池负极材料 NiSi₂的嵌锂路径。首先计算 Li 嵌入 NiSi₂各反应的嵌锂形成能、理论质量比容量和体积膨胀率,然后研究 Li_xNi₈Si₄ (x=0, 1, 4)的电子结构,计算其能带结构、态密度和差分电荷密度。研究结果表明: Li 嵌入 NiSi₂最有可能的 3 步反应路径为 12Li⁺+12e⁻+7NiSi₂→ Li₁₂Si₇+7NiSi, 13Li⁺+13e⁻+8NiSi→Li₁₃Si₄+4δ-Ni₂Si 和 Li⁺+e⁻+δ-Ni₂Si→LiNi₂Si; Li_xNi₈Si₄呈现出金属特性, Ni-Si 之间形成较强的共价键,能够有效缓解嵌锂过程中的体积膨胀,稳定基体骨架,从而提高材料的循环性能。 关键词: 锂离子电池;负极材料; Ni-Si 合金;第一性原理 中图分类号: TG146.1 文献标志码: A 文章编号: 1672-7207(2018)02-0323-07

First-principle study of Li-insertion properties of NiSi₂ as anode materials for lithium-ion batteries

LONG Zhaohui^{1, 2, 3}, DING Jing^{1, 2, 3}, DENG Bohua^{1, 2, 3}, GONG Jin^{1, 2, 3}, LI Xiaobo^{1, 2, 3}, YIN Fucheng^{1, 2, 3}

(1. Key Laboratory of Materials Design and Preparation Technology of Hunan Province,

Xiangtan University, Xiangtan 411105, China;

2. School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China;

3. National Defense Key Laboratory of Key Film Materials & Application for Equipment,

Xiangtan University, Xiangtan 411105, China)

Abstract: First-principle calculation based on the density functional theory was employed to investigate the reaction pathway of NiSi₂ with Li. Li-intercalation formation energy, specific capacity and volume expansion ratio of NiSi₂ as well as its lithiated products were calculated. Then, the energy band structure, density of states and deformation charge density of Li_xNi₈Si₄ (x=0, 1, 4) phases were discussed to study their electronic structures. The results show that the most possible reaction pathway for Li-insertion into NiSi₂ is as follows: firstly, Li reacts with NiSi₂ to form Li₁₂Si₇ and NiSi, then Li reacts with NiSi to produce Li₁₃Si₄ and δ -Ni₂Si, and finally ternary compound LiNi₂Si is formed by further lithiation of δ -Ni₂Si. Li_xNi₈Si₄ reveals metallic feature, and there exists strong covalent bond between Ni and Si. Moreover, the strong Ni-Si covalent bond can provide a stable framework during Li intercalation process, which benefits the cyclic stability.

Key words: lithium-ion batteries; anode material; Ni-Si alloys; first-principle

通信作者:龙朝辉,博士,副教授,从事材料热力学与动力学、锂离子电池电极材料、第一性原理计算等研究; E-mail: zhlong@xtu.edu.en

收稿日期: 2017-03-12; 修回日期: 2017-05-16

基金项目(Foundation item): 国家自然科学基金资助项目(51201146); 湖南省教育厅优秀青年教师基金资助项目(15B230)(Project(51201146) supported by the National Natural Science Foundation of China; Project(15B230) supported by Science Foundation for the Excellent Youth Scholars of Educational Commission of Hunan Province)

锂离子电池因其具有电压高、能量密度高、循环 寿命长、环境友好等优点,已广泛应用于便携式电子 设备和电动汽车等领域^[1]。目前,商业化的锂离子电 池普遍采用石墨类碳材料作为负极材料,但这类负极 材料存在比容量低(理论容量为 372 mA·h/g)、易发生 有机溶剂共嵌入等缺点。因此,近年来开发替代碳材 料的新型负极材料成为研究热点。硅的理论储存锂容 量高达 4 200 mA·h/g, 是极有潜力的一种高性能锂离 子电池负极材料^[2-4],然而,硅在嵌锂过程中体积膨胀 巨大,易破坏电极结构,从而导致容量急剧衰减、电 极失效。PARK 等^[5-6]的研究表明,通过添加惰性嵌锂 金属与硅复合可有效地缓解硅在嵌锂过程中产生的体 积膨胀,提高其循环性能。硅镍合金作为新型负极材 料,已表现出较优异的电化学性能^[7]。将镍与硅进行 合金化,能保持负极材料主体结构的稳定性,缓冲脱 嵌锂过程中的体积效应,提高材料的循环性能。因此, 研究 Si-Ni 合金负极材料的嵌锂性质具有实际意义。 关于 Si-Ni 合金嵌 Li 性质的研究, WEN 等^[8]的研究表 明 NiSi2 首次容量达到了 600 mA·h/g, 当 Li 嵌入 NiSi2 时,会形成NiSi2-v化合物和非晶态的LixSiv。KIRKLIN 等^[9]通过第一性原理计算认为 Li 与 NiSi₂反应生成的 化合物是 NiSi 和 Li₁₂Si₇; 当 Li 继续嵌入 NiSi 时,将 形成 Li₁₂Si₇和三元化合物 LiNi₂Si。而 WANG 等^[10-11] 通过高能球磨制备了 NiSi 合金,其结果表明 Li 与 NiSi 反应会形成 Li_xSi_y和单质 Ni, 此过程 NiSi 的容量高达 1 180 mA·h/g。ZHOU 等^[12]采用激光沉积制备了 NiSi 金属间化合物薄膜, Li 嵌入 NiSi 会形成 Li22Si5 和单 质 Ni, 且 NiSi 的容量高达 1 220 mA·h/g。但 LIU 等^[13] 通过机械球磨制取了 NiSi-Si 复合物,其结果表明 Li 嵌入 NiSi 负极材料会形成 Li_xSi_y和 δ-Ni₂Si 化合物。 WEN 等^[8-9]的研究结果表明, Li 嵌入 NiSi₂ 会形成 Li12Si7和NiSi。随着Li继续嵌入NiSi, KIRKLIN等^[9] 的计算结果表明仅需一步反应就形成了三元化合物 LiNi₂Si 和 Li-Si 化合物(Li₁₂Si₇); 而根据文献[10-13], Li 嵌入 NiSi 经一步反应后并没有形成三元化合物,而 是形成了 Li_xSi_v和 Ni(或 δ-Ni₂Si)。综上所述, NiSi₂的 嵌Li路径目前还存在较多争议,因此,有必要对NiSi2 的嵌 Li 路径进一步研究并阐明其嵌 Li 机理。本文作 者采用第一性原理计算方法,计算 Li 嵌入 NiSi,的各 种可能的反应,从而推导出 NiSi,最有可能的反应路 径,并分析最终嵌锂产物 Li_xNi₈Si₄(x=0, 1, 4)的电子 结构,进一步揭示其嵌锂性质,以期为设计新型的 Si-Ni 合金负极材料提供参考依据。

1 计算方法

本文采用基于密度泛函理论的第一性原理计算软件 VASP(vienna Ab-initio simulation package)^[14-15]进行计算。离子和电子之间的相互作用采用全电子 Blöchl投影缀加波函数(projector augmented waves, PAW)^[16]方法描述。交换相关能用广义梯度近似(GGA)下的Perdew-Burke-Ernzerhof(PBE)泛函^[17]进行处理。各原子的最外层电子组态分别为 Li-1s²2s¹, Si-3s²3p²和Ni-3d⁸4s²。平面波截断能取为 400 eV,以保证足够收敛,布里渊区的 K 点用 Monkhorst-Pack 方法^[18]产生。 K 点网格数目都经过了优化,如 NiSi₂和 LiNi₂Si 的 K 点网格设置为 11×11×11。对每个结构都进行全优化(即原子位置、晶格常数、晶胞体积等),直到优化到原子间的 Hellmann-Feynman 力小于 0.01 eV/(10⁻¹⁰m)为止。所有计算都是基于温度为 0 K 时的情况。

理论质量比容量 Ccal 的计算公式如下:

$$C_{\rm cal} = \frac{xN_{\rm A}e}{3.6M} \tag{1}$$

式中: x 为嵌锂数目; N_A 为阿伏伽德罗常数; e 为基本电荷的电量; M 为电极材料的相对分子质量。同时, 根据嵌 Li 前后的体积变化,定义体积膨胀率 η 为

$$\eta = \frac{V^{\mathrm{L}} - V^{\mathrm{D}}}{V^{\mathrm{D}}} \times 100\%$$
 (2)

式中: V^D和 V^L分别为嵌 Li 前、后主体材料的晶胞体积。平均嵌锂形成能 ΔE 定义为

$$\Delta E = \frac{E_{\text{tot}}^{\text{D}} + xE_{\text{Li}} - E_{\text{tot}}^{\text{L}}}{x}$$
(3)

式中: E_{tot}^{D} 和 E_{tot}^{L} 分别为嵌锂前、后各反应物和产物 的原胞的总能之和; E_{Li} 为金属锂的总能, x 为嵌 Li 数目。

2 结果和分析

2.1 NiSi2的嵌 Li 路径

为筛选出最有可能发生的反应,得到最有可能的 反应路径,可把反应的嵌Li形成能、体积膨胀率和理 论比容量作为判断反应发生难易程度的主要指标^[9]。 热力学上,若嵌Li形成能越大,则反应越容易发生, 生成的产物也更加稳定。因此,本文作者在比较各反 应发生的可能性时,主要以嵌Li形成能作为判断反应 发生的难易程度。此外,对于新型的负极材料而言, 其理论比容量至少要与碳负极材料的比容量相当。但 容量越高,嵌Li数量也越大,导致材料的体积膨胀也 越大。因此,在考虑理论比容量的同时,体积膨胀率 越小,反应发生的可能性越大。综上所述,若反应的 嵌Li形成能越大,理论比容量越高,体积膨胀率越小, 则该反应发生的可能性越大。

根据前述第一性原理计算结果^[9]以及实验信 息^[10-13],本文假设 Li 嵌入 NiSi 经过 2 步反应可形成 三元化合物 LiNi₂Si。为研究该反应路径,首先计算 Li, Si 和 Li-Si 相, Ni, LiNi₂Si 和 Ni-Si 相的总能和体 积,分别如表 1 和表 2 所示。再根据式(1)~(3),得到 Li 与 NiSi 的各种可能反应的理论质量比容量、体积膨 胀率和嵌 Li 形成能。表 3~4 所示分别为 Li 与 NiSi 形 成 Li_xSi_y和 Ni(或δ-Ni₂Si)各种反应的理论质量比容量、 嵌 Li 形成能和体积膨胀率。由表 3 可知:大部分反应 的嵌 Li 形成能为负值,尽管第⑤,⑦,⑧和⑨个反应 的嵌 Li 形成能为正值,但其值也远小于表 4 中各反应 的嵌 Li 形成能。此外,表 3 中各反应的体积膨胀率比 表 4 中对应的各反应的体积膨胀率要大,因此,相对 于表 4 中的各个反应,表 3 中的反应不容易发生。由 表 4 可知:第④,⑤和⑦个反应途径的嵌 Li 形成能较 大,且比容量接近或者高于碳的理论比容量,这 3 个 反应途径都有可能发生。其中,第⑤个反应途径的嵌 Li 形成能是最大的,且比容量要比第④个反应途径的嵌 大,体积膨胀率比第⑦个反应途径的要小。因此,可 认为第⑤个反应途径是最有可能发生的,这与 LIU 等^[13]的实验结果即 Li 嵌入 NiSi 形成 Li_xSi_y和 δ-Ni₂Si 化合物相符。

随着 Li 继续嵌入, Li 将继续与 δ-Ni₂Si 反应。表 5 所示为 Li 嵌入 δ-Ni₂Si 形成 LiNi₂Si 反应的嵌 Li 形 成能、理论比容量和体积膨胀率。由表 5 可知: Li 嵌 入δ-Ni₂Si 形成 LiNi₂Si 反应的嵌 Li 形成能为 0.373 eV, 体积膨胀率仅为 28.99%。该反应的理论比容量只有 184.30 mA·h/g。这是因为该反应只嵌入了 1 个 Li⁺, 且仅是 Li 嵌入 NiSi₂反应路径中的一步,因此,该反 应较容易发生。

综上所述, Li 嵌入 NiSi2最可能的 3 步反应路径 如下:

表1 第一性原理计算的 Li, Si 和 Li-Si 相的总能(E_{tot})和体积(V)

分子式	应问晋(序旦)	原子	个数	日交	\mathbf{F}_{i}	17/10-33
	全间矸(厅亏)	Li	Si	帕尔	$E_{\rm tot}/e_{\rm V}$	<i>V</i> /10 nm
Li	Im3m(229号)	2	0	立方晶系	-3.806	40.53
Si	Fd3mS (227 号)	0	8	立方晶系	-43.399	163.53
LiSi	I4 ₁ /aZ(88 号)	16	16	四方晶系	-123.630	501.60
$Li_{12}Si_7$	Pnma(62 号)	96	56	正交晶系	-523.698	2 399.04
Li ₂ Si	C12/m1(12号)	8	4	单斜晶系	-39.511	201.39
Li ₇ Si ₃	R3mH(166号)	14	6	三方晶系	-64.313	301.48
$Li_{13}Si_4$	Pbam(55 号)	26	8	正交晶系	-101.408	529.45
Li_7Si_2	Pbam(55 号)	28	8	正交晶系	-104.353	537.68
$Li_{15}Si_4$	I43d (220 号)	60	16	立方晶系	-218.907	1 193.50
$Li_{21}Si_5$	F43m(216号)	84	20	立方晶系	-291.658	1 596.05
$Li_{22}Si_5$	F23(196号)	88	20	立方晶系	-297.326	1 625.31

Table 1 Total energy (E_{tot}) and cell volume (V) of Li, Si and Li-Si phases calculated by first-principles

表2 第一性原理计算的 Ni, LiNi₂Si 和 Ni-Si 相的总能 E_{tot} 和体积 V

Table 2	Total energy (E_{tot})	and cell volume (V) of	Ni, LiNi ₂ Si and Ni-S	i phases calculated	by first-principles
---------	--------------------------	------------------------	-----------------------------------	---------------------	---------------------

ハスキ	☆ 同飛(皮見)		原子个数		日乏		1/10-33
万丁八	工间矸(厅丂)	Li	Ni	Si	田尔	$E_{\rm tot}/e_{\rm V}$	<i>V</i> /10 nm
Ni	Fm3m (225 号)	0	4	0	立方晶系	-22.280	43.59
NiSi ₂	Fm3m (225 号)	0	4	8	立方晶系	-69.870	161.48
NiSi	Pnma(62 号)	0	4	4	正交晶系	-48.002	97.83
δ -Ni ₂ Si	Pbnm(62 号)	0	8	4	正交晶系	-72.959	132.61
LiNi ₂ Si	Fm3m (225 号)	4	8	4	立方晶系	-82.062	171.06

表3 Li 与 NiSi 反应生成 Li_xSi_v和 Ni 的比容量 C_{cal} 、嵌 Li 形成能 ΔE 和体积膨胀率 η

Table 3 Specific capacity (C_{cal}), Li-intercalation formation energy (ΔE) and volume expansion

ratio (n) of lithiation	reaction that Li reac	ts with NiSi to	produce Li.Si.	and Ni
futio (ij) of minution	reaction that bi icac		produce Engor	, and 1 11

嵌Li反应	$C_{\rm cal}/({\rm mA}\cdot{\rm h}\cdot{\rm g}^{-1})$	η/%	$\Delta E/\mathrm{eV}$
①Li ⁺ +e ⁻ +NiSi→LiSi+Ni	308.82	28.18	-0.607
$\textcircled{2}12Li^{+}+12e^{-}+7NiSi\rightarrow Li_{12}Si_{7}+Ni$	529.42	75.16	-0.199
$\textcircled{3}2Li^++2e^-+NiSi\rightarrow Li_2Si+Ni$	617.65	105.86	-0.180
$\textcircled{4}7Li^++7e^-+3NiSi\rightarrow Li_7Si_3+3Ni$	720.60	105.44	-0.065
$\textcircled{5}13Li^{+}+13e^{-}+4NiSi\rightarrow Li_{13}Si_{4}+4Ni$	1003.69	170.60	0.019
$\textcircled{6}7Li^{+}+7e^{-}+2NiSi\rightarrow Li_{7}Si_{2}+2Ni$	1080.89	174.80	-0.014
$\textcircled{7}15Li^{+}+15e^{-}+4NiSi\rightarrow Li_{15}Si_{4}+4Ni$	1158.10	204.99	0.031
$\textcircled{8}21Li^++21e^-+5NiSi\rightarrow Li_{21}Si_5+5Ni$	1297.07	226.29	0.038
$\textcircled{9}22Li^++22e^-+5NiSi\rightarrow Li_{22}Si_5+5Ni$	1358.84	232.27	0.014

表4 Li 与 NiSi 反应生成 Li_xSi_y和 δ-Ni₂Si 的比容量 C_{cal} 、嵌 Li 形成能 ΔE 和体积膨胀率 η

Table 4 Specific capacity (C_{cal}), Li-intercalation formation energy (ΔE) and volume expansion ratio (η) for lithiation reaction that Li reacts with NiSi to produce Li_xSi_y and δ -Ni₂Si

	I I I I I I I I I I I I I I I I I I I	- y	
嵌 Li 反应	$C_{\rm cal}/({\rm mA}\cdot{\rm h}\cdot{\rm g}^{-1})$	$\eta^{/0}$	$\Delta E/\mathrm{eV}$
①Li ⁺ +e ⁻ +2NiSi→LiSi+δ-Ni ₂ Si	154.41	31.87	0.062
$\textcircled{2}14Li^{+}+14e^{-}+14NiSi\rightarrow Li_{12}Si_{7}+7\delta\text{-}Ni_{2}Si$	264.71	55.36	0.191
$\textcircled{3}2Li^{+}+2e^{-}+2NiSi\rightarrow Li_{2}Si+\delta-Ni_{2}Si$	308.83	70.70	0.155
(④7Li ⁺ +7e ⁻ +6NiSi→Li ₇ Si ₃ +3δ-Ni ₂ Si	360.30	70.50	0.220
ⓑ13Li ⁺ +13e ⁻ +8NiSi→Li ₁₃ Si ₄ +4δ-Ni ₂ Si	501.84	103.07	0.224
$\textcircled{6}7Li^++7e^-+4NiSi{\rightarrow}Li_7Si_2+2\delta\text{-}Ni_2Si$	540.84	105.18	0.178
$\bigcirc 15Li^++15e^-+8NiSi \rightarrow Li_{15}Si_4+4\delta-Ni_2Si$	579.05	120.27	0.209
$\textcircled{8}21Li^{+}+21e^{-}+10NiSi \rightarrow Li_{21}Si_{5}+5\delta\text{-}Ni_{2}Si$	648.54	130.92	0.197
$\textcircled{9}22Li^{+}+22e^{-}+10NiSi\rightarrow Li_{22}Si_{5}+5\delta-Ni_{2}Si$	679.42	133.91	0.166

表5 Li 与 δ-Ni₂Si 反应生成 LiNi₂Si 的

比容量 C_{cal} 、嵌 Li 形成能 ΔE 和体积膨胀率 η

Table 5 Specific capacity (C_{cal}), Li-intercalation

formation energy (ΔE) and volume expansion ratio (η) of lithiction reaction for δ Ni Si

numation reaction for 0-101251						
嵌Li反应	$C_{\text{cal}}/(\text{mA}\cdot\text{h}\cdot\text{g}^{-1})$	η /%	$\Delta E/\mathrm{eV}$			
$Li^++e^-+\delta$ -Ni ₂ Si \rightarrow LiNi ₂ Si	184.30	28.99	0.373			

$$12\text{Li}^{+}+12\text{e}^{-}+7\text{NiSi}_{2}\rightarrow\text{Li}_{12}\text{Si}_{7}+7\text{NiSi}$$
(4)

$$13\text{Li}^++13\text{e}^-+8\text{NiSi}\rightarrow\text{Li}_{13}\text{Si}_4+4\delta\text{-Ni}_2\text{Si}$$
(5)

$$Li^{+}+e^{-}+\delta-Ni_{2}Si\rightarrow LiNi_{2}Si \qquad (6)$$

2.2 δ-Ni₂Si 的嵌 Li 过程

NiSi₂ 的第 3 步嵌 Li 反应即 Li⁺+e⁻+ δ -Ni₂Si \rightarrow LiNi₂Si, 其中 δ -Ni₂Si 的空间群为 Pbnm, 晶体结构模 型与 MgSrSi 的一致; 而 LiNi₂Si 空间群为 Fm3m, 晶 体结构模型与 BiF₃ 的相同, 从 δ -Ni₂Si 到形成 LiNi₂Si 将会发生晶体结构的转变。为此,假设 Li 嵌入 δ-Ni₂Si 的初始阶段,δ-Ni₂Si 吸收一定的能量后可能先转变为 反萤石结构,该过程的体积膨胀率为 13.656%。随着 Li 继续嵌入,Li 将继续与反萤石结构的 Ni₂Si 反应, 并最终形成 LiNi₂Si。反萤石结构的 Ni₂Si 晶胞中包含 8 个 Ni 原子和 4 个 Si 原子。图 1 所示为 Li_xNi₈Si₄(*x*=0, 1,4)的晶体结构模型。计算时,假设 Li 嵌入到反萤 石结构的 Ni₂Si(Ni₈Si₄) 晶胞中,生成嵌 Li 合金相 Li_xNi₈Si,此过程不改变晶胞结构^[19]。该嵌 Li 过程的 反应式如下:

xLi⁺+xe⁻+Ni₈Si₄→Li_xNi₈Si₄(0<x≤4) (7) 为进一步研究 Ni₈Si₄ 的嵌 Li 过程,计算各个嵌 Li 合金相的电化学参数,如表 6 所示。由表 6 可知: 嵌 Li 形成能随着 Li 嵌入量的增大而增大,其平均值 约为 0.76 eV。在热力学上,嵌 Li 形成能越大,嵌 Li 反应越容易发生,生成的产物也越稳定。此外,即使 Ni₈Si₄ 所有的八面体间隙都被 Li 所占据,其体积膨

(a) Ni₈Si₄; (b) L1Ni₈Si₄; (c) L1₄Ni₈Si₄
 图 1 Li_xNi₈Si₄ 的晶体结构
 Fig. 1 Crystal structures of Li_xNi₈Si₄

- 表 6 Li_xNi₈Si₄相的晶胞体积 V、体积膨胀率 η 、总能 E_{tot} 、 嵌 Li 形成能 ΔE 和比容量 C_{cal}
 - **Table 6** Cell volume (V), volume expansion ratio (η), total energy (E_{tot}), Li-intercalation formation energy (ΔE) and specific capacity (C_{cal}) for Li_xNi₈Si₄ phases

分子式	<i>V/</i> 10 ⁻³ nm ³	η/%	$E_{\rm tot}/{\rm eV}$	$\Delta E/\mathrm{eV}$	C_{cal} / (mA·h·g ⁻¹)
Ni ₈ Si ₄	150.72	—	-71.124		
LiNi ₈ Si ₄	155.98	3.490	-73.724	0.697	46.075
$Li_2Ni_8Si_4$	160.89	6.748	-76.441	0.756	92.150
Li ₃ Ni ₈ Si ₄	165.99	10.131	-79.208	0.792	138.225
Li ₄ Ni ₈ Si ₄	171.06	13.495	-82.062	0.832	184.300

胀率也只有 13.495%,因此,Li 能够较容易地嵌入 Ni₈Si₄ 形成 Li₄Ni₈Si₄。

2.3 Li_xNi₈Si₄(x=0, 1, 4)的电子结构

图 2 所示为反萤石结构的 Ni₂Si 在嵌锂过程中生成的 3 种典型合金相 Li_xNi₈Si₄(x=0, 1, 4)的能带结构。 由图 2 可知三者的能带结构大体相似,能带均在 Fermi 能级附近相互交错并穿越 Fermi 能级,且均表现出金 属性质,这说明 Li 嵌入 Ni₈Si₄前后没有发生导电性质 的相变。

图 3 所示为 Li_xNi₈Si₄(x=0, 1, 4)合金相的总态密

度(TDOS)图和分波态密度(PDOS)图。Fermi 能级处的 态密度不为 0 eV, 也正好说明了它们呈现出金属性 质,这与能带结构分析结果一致。由图 3(a)可知:在 Fermi 能级以下即-12~-8 eV 之间的态密度主要由 Si-3s 电子贡献;在-6~0 eV 之间的态密度主要由 Ni-3d 电子贡献,而 Si-3p 电子的贡献相对较小, Fermi 能级 处的态密度 $N(E_{\rm F})$ 为 4.855 ${\rm eV}^{-1}$ 。此时, Ni-Si 原子间 的共价作用主要由 Ni-3d 与 Si-3p 轨道的电子杂化引 起。由图 3(b)可知: Li 原子对态密度的贡献主要表现 在 Fermi 能级附近,其余与 Ni₈Si₄ 的态密度(DOS)基本 相似。由于 Li 的嵌入, Si 的电荷向 Ni 转移, 且 Si-3p 与Li-2s 电子相互作用,使得 Si 原子对态密度的贡献 下降。LiNi₈Si₄在 Fermi 能级处的态密度, N(E_F)为 4.483 eV⁻¹,表明体系中金属性略有减弱。由图 3(c) 可知: 当 Li 占据 Ni₈Si₄ 所有的八面体间隙位置形成 Li₄Ni₈Si₄时, Li 和 Si 原子对 Fermi 能级处总态密度贡 献有所增加,而Ni原子的贡献有所减小, $N(E_F)$ 为3.950 eV⁻¹,这表明此时体系的金属性有所下降。 $N(E_F)$ 变小, 是因为随着Li嵌入,更多电子进入Ni₈Si₄的结构中, 其中一些电子由Si转移到了Ni上,并占据更多的Ni-3d轨道,使得Ni-3d态转移到更低的能量区域。此 外, $N(E_F)$ 越小,对应的材料越稳定^[20]。 $N(E_F)$ 变小也 表明Ni₈Si₄经LiNi₈Si₄到Li₄Ni₈Si₄的稳定性有所提高, 这与嵌Li形成能增加、生成的材料越稳定的结论相符 合。总而言之,虽然 $N(E_F)$ 有所变小,但仍然远大于 0 eV。因此,Li₂Ni₈Si₄仍然呈现良好的金属性质。

为直观地理解原子间的成键性质,进一步计算各 嵌 Li 相的差分电荷密度。图 4 所示为典型合金相的 (110)面差分电荷密度。由图 4(a)可知: Ni-Si 原子之 间的电荷密度差异较大且呈一定的方向性,说明 Ni-Si 之间主要呈现共价键的特征。由图 4(b)和(c)可知: Li-Si 之间主要以共价键结合,且随着嵌 Li 量增加,共价作

(a) Ni₈Si₄; (b) LiNi₈Si₄; (c) Li₄Ni₈Si₄
 图 4 典型合金相的(110)面差分电荷密度

Fig. 4 Charge differential density of (1 1 0) plane in typical alloy phases

用稍有增强;而 Ni-Si 之间仍然呈现出较强的共价键。 正是由于 Ni-Si 之间存在较强的共价键,使得主体结 构框架保持稳定,从而提高了材料的循环性能。

3 结论

 Li 嵌入 NiSi₂最有可能的 3 步反应路径为: 12Li⁺+12e⁻+7NiSi₂→Li₁₂Si₇+7NiSi; 13Li⁺+13e⁻+8NiSi→Li₁₃Si₄+4δ-Ni₂Si; Li⁺+e⁻+δ-Ni₂Si→LiNi₂Si。

2) Li 嵌入反萤石结构的 Ni₂Si(Ni₈Si₄)的平均嵌 Li 形成能约为 0.76 eV,表明 Li 能较容易嵌入到 Ni₈Si₄。 Li 嵌入 Ni₈Si₄前后的化合物没有导电性质的相变,都 呈现出良好的金属性质; Ni-Si 原子之间以较强的共价 键结合。这种较强的共价键能够提高主体结构稳定性, 进而改善材料的循环性能。

参考文献:

- LI Aiyu, WU Shunqing, YANG Yong, et al. Structural and electronic properties of Li-ion battery cathode material MoF₃ from first-principles[J]. Journal of Solid State Chemistry, 2015, 227: 25–29.
- [2] CHANDRASEKAEA R, MAGASINSKI A, YUSHIN G, et al. Analysis of lithium insertion/deinsertion in a silicon electrode particle at room temperature[J]. Journal of the Electrochemical Society, 2010, 157(10): A1139–A1151.
- [3] CUI Zhiwei, GAO Feng, CUI Zhihua, et al. A second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys[J]. Journal of Power Sources, 2012, 207(6): 150–159.
- [4] YIN Yaxia, SEN Xin, WAN Lijun, et al. Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115(29): 14148–14154.
- [5] PARK C M, KIM J H, KIM H, et al. Li-alloy based anode materials for Li secondary batteries[J]. Chemical Society Reviews, 2010, 39(8): 3115–3141.
- [6] FLEISCHAUER M D, TOPPLE J M, DAHN J R. Combinatorial Investigations of SiM (M=Cr+Ni, Fe, Mn) thin film negative electrode materials[J]. Electrochemical and Solid-State Letters, 2005, 8(2): A137–A140.
- [7] KIM H, IM D, DOO S G. Electrochemical properties of Ni-based inert phases incorporated Si/graphite composite anode[J]. Journal of Power Sources, 2007, 174(2): 588–591.

- [8] WEN Zhongsheng, JI Shijun, SUN Juncai., et al. Mechanism of lithium insertion into NiSi₂ anode material for lithium ion batteries[J]. Rare Metals, 2006, 25(6): 77–81.
- [9] KIRKLIN S, MEREDING B, WOLVERTON C. High-throughput computational screening of new Li-ion battery anode materials[J]. Advanced Energy Materials, 2013, 3(2): 252–262.
- [10] WANG Guoxiu, SUN Li, BRADHURST D H, et al. Innovative nanosize lithium storage alloys with silica as active centre[J]. Journal of Power Sources, 2000, 88(2): 278–281.
- [11] WANG Guoxiu, SUN Li, BRADHURST D H, et al. Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2000, 306(1/2): 249–252.
- [12] ZHOU Yongning, LI Wenjing, CHEN Huajun, et al. Nanostructured NiSi thin films as a new anode material for lithium ion batteries[J]. Electrochemistry Communications, 2011, 13(13): 546–549.
- [13] LIU Weiren, WU N L, SHIEH D T, et al. Synthesis and characterization of nanoporous NiSi-Si composite anode for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2007, 154(2): A97–A102.
- [14] KRESSE G, FURTHMULLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15–50.
- [15] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169.
- [16] KRESSE G, JOUBERTJ D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758–1775.
- [17] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865.
- [18] MONHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188.
- [19] LEE J W, ANGUCHAMY Y K, POPOV B N. Simulation of charge-discharge cycling of lithium-ion batteries under low-earth-orbit conditions[J]. Journal of Power Sources, 2006, 162(2): 1395–1400.
- [20] YU Chun, LIU Junyan, LU Hao, et al. First-principles investigation of the structural and electronic properties of Cu_{6-x}Ni_xSn₅(x=0, 1, 2) intermetallic compounds[J]. Intermetallics, 2007, 15(11): 1471–1478.

(编辑 伍锦花)