

混合溶剂的良劣性

主讲:朱平平

>如何理解混合溶剂的良、劣性?

▶混合溶剂性能能直接从相应的两种组分溶剂的性能来推演吗?

溶剂影响高分子溶液的性质:

- ▶高分子链的形态、尺寸
- 〉溶液中高分子链能否聚集
- ▶用溶液浇膜制备共混物时,溶剂可能影响到混合物相容性、薄膜表面形貌

高聚物溶解过程的特点:

先溶胀后溶解

- (溶剂分子的单向修透,整个高分子链并没有松动)
- ➢溶剂分子一链单元间的作用逐步克服链单元间的吸引力,直至克服高分子间的吸引力,拆散高分子。一め同場で股本
- ➢溶解度与链的柔性:聚乙烯醇+水 → 溶解
 纤维素+水 → 不溶解

良溶剂一链单元间的相互作用

链单元间的排斥作用

不同链的 链单元间相斥力

同一链的 链单元间相斥力

拆散一个个高分子链 (溶解)

扩张每一个高分子链

溶剂不同,排除体积效应不同:

▶高聚物一良溶剂体系

良溶剂一链单元间的相互作用力>链单元间的内聚力,线团扩张,大,线团对溶剂流动的扰乱大,[n]值很大。

▶高聚物一劣溶剂体系

内聚力使线团收缩,同值较小。高分子线团塌缩。

- ▶高聚物/θ溶剂体系 $(T=\theta)$
- θ 溶剂一链单元间的相互作用力=链单元间的内聚力, 无扰高斯线团。

良溶剂中:

- ▶高分子溶液的粘度大
- ▶高分子线团扩张
- ▶排除体积效应较大
- ➤好像同一高分子链的链单元间作用着相斥 的力

劣溶剂中:

- ▶高分子溶液的粘度较小
- ▶高分子线团紧缩
- ▶排除体积效应较小
- $> \theta$ 溶剂中,排除体积为0

混合溶剂:

- ▶良溶剂+劣溶剂(或非溶剂)
- >劣(非)溶剂+劣(非)溶剂
- ▶良溶剂+良溶剂

混合溶剂性能往往不是两种单一溶剂性能的简单平均

PS/toluene+cyclohexane

甲苯:良溶剂 环己烷:劣溶剂

$arphi_{CH}$	0.50	0.57	0.70	0.87
[η] (dL/g)	0.758	0.675	0.549	0.464
k_H	0.320	0.384	0.421	0.576

 φ_{CH} : volume fraction of cyclohexane

Radius of gyration (nm) for PVP ($M_w = 7.5 \times 10^5$) in various mixed solvents at 20 °C

Mass fraction of non-solvent	0	0.10	0.20	0.30	0.40	0.50	0.60
H ₂ O+THF	43.9	44.7	45.1	44.1	40.7	33.8	22.3
H ₂ O+Acetone	43.9	45.4	47.3	48.8	49.2	47.6	43.5
Ethanol+ n-Hexane	44.9	46.0	47.4	48.4	48.0	47.3	43.9

水、乙醇: 良溶剂, 其它为非溶剂

The intrinsic viscosity $[\eta]$ (dL/g) of PMMA in pure solvents and in mixed solvents at the composition of maximum $[\eta]$ at 25 C

\overline{M}_{w}	MeCN	PAc	ClBu	MeCN+PAc	MeCN+BuOH	PAc+ClBu	MeCN+ClBu
$\times 10^{-3}$					$ \varphi_{MeCN} = 0.55$	$\varphi_{ClBu} = 0.50$	$\varphi_{MeCN} = 0.40$
73.4	0.131	0.139	0.159	0.242	0.228	0.153	0.283
87.5	0.139	0.151	0.165	0.280	0.274	0.169	-
124	0.155	0.170	0.176	-	-	-	0.416
189	0.178	0.188	0.211	0.446	0.433	0.213	0.549
232	0.191	0.207	0.234	0.504	0.488	0.237	0.633
654	n.s.	n.s.	n.s.	-	0.851	n.s.	-

n.s.: not solubl

 φ : volume fraction of one component solvent

- ▶良溶剂+劣溶剂(或非溶剂)
- >劣(非)溶剂+劣(非)溶剂
- ▶良溶剂+良溶剂

混合溶剂性能不能直接从相应的 两种组分溶剂的性能来推演

讨论:

- >溶度参数理论
- ▶高分子对某种溶剂的择优吸附
- ▶分子间相互作用

溶度参数理论:

 $\succ \delta$: 分子间相互作用的一种量度

>混合溶剂 $\delta_{ms} = \phi_1 \delta_{s1} + \phi_2 \delta_{s2}$

PMMA $(\delta = 19.5 \text{ J}^{1/2} \text{cm}^{-3/2})$

▶劣溶剂: 1-氯丁烷BuCl (δ =17.3)

乙腈AcN (
$$\delta = 24.3$$
)

▶非溶剂: 1-正丁醇BuOH(δ = 23.1)

四氯化碳
$$CCl_4$$
($\delta = 17.7$)

PMMA $(\delta = 19.5 \text{ J}^{1/2}\text{cm}^{-3/2})$

▶混合溶剂(对称共溶剂) **BuOH** (δ = 23.1) +**BuCl** (δ = 17.3) **AcN** (δ = 24.3) +**CCl4** (δ = 17.7)

▶混合溶剂(非对称共溶剂):

EtOH (
$$\delta = 26.4$$
) +FA ($\delta = 36.6$)

AcN (
$$\delta = 24.3$$
) +醇类 ($\delta > 20$)

PMMA 的数数) 当网络斯图)

δ	BuCl CCl ₄ 17.3 17.7	PMMA 19.5	AcN FA 24.3 36.6	
iPAc 17.0			S	
PAc 17.4			S	
BuCl 17.3			S	
CCl ₄ 17.7			S	
PMMA 19.5				
POH 21.6	S		NS	
sBuOH 22.2	S			
BuOH 23.1	S S		NS	
iPrOH 23.6	S		NS	
PrOH 24.4	S			
EtOH 26.4	S		NS	
MeOH 29.2	S			

如何理解非对称共溶剂的性能:

- ▶溶度参数理论是Hildebrand溶度公式在高分子物理中的推广
- ▶Hildebrand溶度公式仅适用于非极性溶质和溶剂的相互混合
- ▶溶度参数理论可适用于非极性或弱极性的无定形高聚物的溶解

溶度参数的三个组分值:

$$\delta^{2} = \delta_{p}^{2} + \delta_{d}^{2} + \delta_{h}^{2}$$

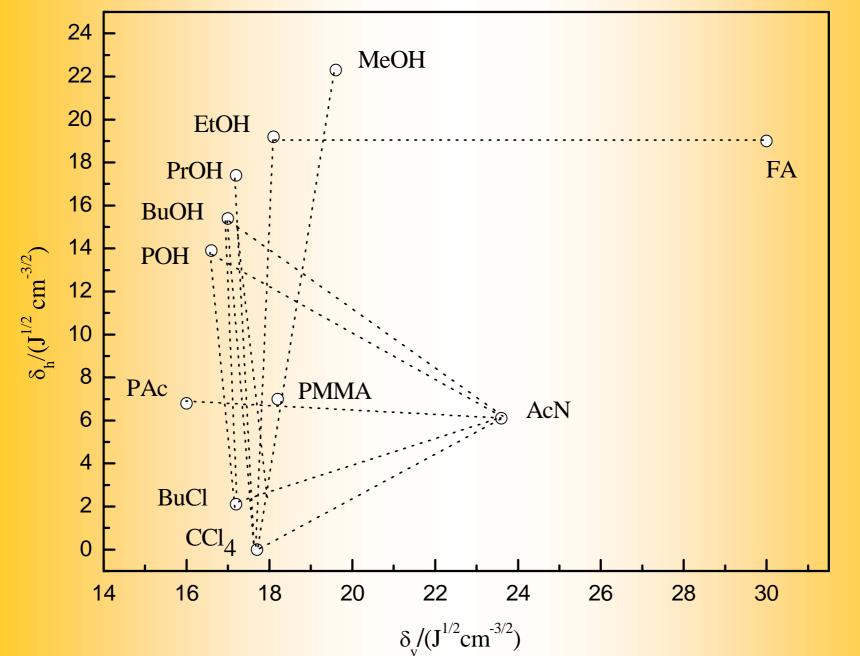
$$\delta_{m,i} = \phi_{1}\delta_{1,i} + \phi_{2}\delta_{2,i}$$

$$(i = p, d, h)$$

- ≻p:极性力
- ≻d:色散力
- ≻h:氢键或其他特殊相互作用

"溶度参数相近"原则:

- \triangleright 溶剂与高聚物的 δ 值相近
- \blacktriangleright 各组分值(δ_p , δ_d , δ_h)也要相近

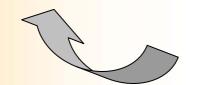

三维空间 $(\delta_p, \delta_d, \delta_h)$ 中。

- ▶"溶度参数相近"原则:共溶剂的点要比两种单一溶剂更靠近高聚物的点
- ▶溶剂一高聚物间距D:

$$D = \left[\left(\delta_{s,p} - \delta_{p,p} \right)^2 + \left(\delta_{s,d} - \delta_{p,d} \right)^2 + \left(\delta_{s,h} - \delta_{p,h} \right)^2 \right]^{1/2}$$

	单一	溶剂			共溶剂	
	D_1		D_2		$\phi_{ m min}$	$D_{ m min}$
AcN	9.78	PAc	5.03	AcN+PAc	0.34	0.77
AcN	9.78	BuCl	5.64	AcN+BuCl	0.32	3.82
AcN	9.78	CCl ₄	10.96	AcN+CCl ₄	0.53	3.97
AcN	9.78	РОН	7.88	AcN+POH	0.43	4.10
РОН	7.88	BuCl	5.64	POH+BuCl	0.39	3.20
BuOH	8.83	BuCl	5.64	BuOH+BuCl	0.39	2.76
BuOH	8.83	CCl ₄	10.96	BuOH+CCl ₄	0.58	5.43
AcN	9.78	BuOH	8.83	AcN+BuOH	0.46	5.13
PrOH	10.53	CCl ₄	10.96	PrOH+CCl ₄	0.51	5.26
EtOH	12.22	CCl ₄	10.96	EtOH+CCl ₄	0.47	4.67
MeOH	15.85	CCl ₄	10.96	MeOH+CCl ₄	0.40	3.92
EtOH	12.22	FA	21.6	EtOH+FA	1.00	12.22

(δ_{v},δ_{h}) 空间中标出溶剂和高聚物的位置: $(\delta:J^{1/2}cm^{-3/2})$


EtOH+FA是个例外:

- ➤EtOH与FA连线上任一点与PMMA的间距> EtOH与PMMA的间距
- >EtOH和FA都由于强烈的氢键作用极易 自缔合

$$\delta_{m,h} \neq \phi_1 \delta_{1,h} + \phi_2 \delta_{2,h}$$

$$\delta_{m,h} = \left(\phi_1 \delta_{1,h}^2 + \phi_2 \delta_{2,h}^2\right)^{1/2} + K \phi_1 \phi_2 \left(\delta_{1,h} \delta_{2,h}^2\right)^{1/2}$$

 $K \approx -1.5 < 0$

对应于结构的破坏

- ▶ 组分溶剂间存在不利或有利相互作 用
- ▶混合后原有的有序结构被破坏或新 的结构形成
- ►混合溶剂的溶度参数发生相应的变 化
- 〉混合溶剂性能变化

高分子对溶剂的择优吸附:

- ▶高分子对混合溶剂中不同溶剂的吸附程 度存在差异
- ▶某一组分溶剂被优先吸附
- >还可能出现吸附常数的反转
- ➤吸附常数的反转为溶剂1、溶剂2、高分子3的充分接触提供了机会—混合溶剂对高分子的最大溶剂化

影响选择性吸附的因素:

>两种溶剂摩尔体积的差异

$$(l-1)=V_1/V_2-1$$

> 两种溶剂与高分子亲和力的差异 $(\chi_{13} - l\chi_{23})$

〉溶剂间的相互作用参数

$$(\chi_{12})$$

AcN+BuCl:

$$\chi_{13} - l\chi_{23} = 0.244 > 0$$
 抵消了这种趋势

选择性吸附常数必然要发生反转

$$V_1 < V_2$$
 AcN更易被PMMA吸附

 $\chi_{13} - l\chi_{23}$ 小于前一体系,不利于吸附常数的反转

没有发生选择性吸附的反转

AcN+MeOH:

MeOH中的-OH与PMMA中的C=O间的作用

l - 1 > 0

MeOH优先被吸附

不发生选择性吸附常数的反转

- ▶只有在AcN+BuCl中发生了吸附常数的反转
- ➤在AcN+BuOH中,非溶剂BuOH不被吸附,
- 劣溶剂AcN被吸附

产生溶剂化

- ▶在AcN+MeOH中,劣溶剂AcN不被吸附,而非溶剂MeOH被优先吸附
- ▶PMMA择优吸附非溶剂不应是影响混合溶剂 性能的主要因素,因为非溶剂不可能对高聚物

小结:

- ▶高分子对某一组分溶剂的择优吸附或吸 附常数的反转可能不是影响混合溶剂良劣 性的主要因素
- ▶共溶剂化与选择性吸附参数反转经常有 关联,但是并不一定同时发生

分子间相互作用力:

- →选择性吸附参数与高分子一溶剂分子 间、不同溶剂分子间的相互作用有关
- ▶溶度参数则是对同种分子间相互作用力 的一种近似量度

AcN:强极性溶剂,可以与PMMA的酯基作用

BuOH:-OH与PMMA的-CO形成氢键

但是:

AcN只是PMMA的劣溶剂, BuOH甚至是非溶剂

- **➢AcN和BuOH**都是有序液体
- ≻AcN由于分子取向、聚集而具有各向异性
- ➤BuOH通过氢键自缔合
- ▶同种溶剂间的作用力很强
- ▶相互混合后,各自的有序结构被破坏,自缔合趋势减小
- ▶溶剂-高分子间的相互作用相对增强,溶剂性能明显改善,表现出共溶剂行为

 $\Delta S^E > 0$ (25℃下,等摩尔混合, 3.70J·mol⁻¹·K⁻¹)

表明: 有序度减小

 $\Delta G^E > 0$ (25℃下,等摩尔混合,1044J·mol⁻¹)

表明: AcN与BuOH间存在不利的相互作用,即-CN与-CH₂-的相斥作用

如何理解混合溶剂的良劣性:

- ▶高分子一溶剂分子间相互作用
- ▶高分子一高分子间相互作用
- ▶同种溶剂间相互作用
- >不同种溶剂间相互作用

理解: 从分子间相互作用的概念入手

参考文献:

- **1.**朱平平, 任琳, 杨海洋等. 混合溶剂中高分子的尺寸, 功能高分子学报, **2003**,**16**(2):261~268.
- 2.Masegosa R M, Prolongo M G, Hernandez-Fuentes I, et al. Macromolecules, 1984,17:1181~1187.
- 3.Fernandez-Pierola I, Horta A. Makromol Chem, 981,182:1705~1714
- 4. 胡文兵. 高分子通报, 2000,(2):97~98.
- 5. 朱平平,杨海洋,何平笙.如何理解混合溶剂的良、劣性.高分子通报,2004,(5):93~98.