ECOTOXICOLOGY

Lecture 6

Inorganic contamination

Fundamental Differences Organics vs. Inorganics

- For inorganics, what is essential at one dose may be toxic at another dose
- Natural abundance of inorganics can be high (soils, plants, air)
- Inorganics are not degraded
 - Change form (complexation with organics, new ligands, speciation)
 - Changes in form may affect ability to be absorbed by plants, stored in certain tissues, or affect toxicity

Composition (mg/kg) of Soil Reflects Composition (mg/kg) in Bedrock

Element (Symbol)	Average Content in Crustal Rocks	Typical Content in Basalt Rocks	Common Range for Soils
	Esse	ntial	
Chromium (Cr)	100	16.3	1 - 1,000
Cobalt (Co)	25		1 - 40
Copper (Cu)	55	22.4	2 - 100
Iron (Fe)	60,000		7,000 - 550,000
Manganese (Mn)	950		20 - 3,000
Molybdenum (Mo)	2.3		0.2 - 5
Nickel (Ni)	75	15.0	5 - 500
Selenium (Se)	0.09		0.1 -2
Tin (Sn)	2		2 - 200
Vanadium (V)	135		20 -500
Zinc (Zn)	70	132	10 - 300

Composition (mg/kg) of Soil Reflects Composition (mg/kg) in Bedrock

Element	Average Content	Typical Content in	Common Range
(Symbol)	in Crustal Rocks	Basalt Rocks	for Soils
	Nones	sential	
Aluminum (Al)	81,000		10,000 - 300,000
Arsenic	5		1 - 50
Beryllium (Be)	2.8		0.1 - 40
Cadmium (Cd)	0.2	0.07	0.01 - 0.70
Lead (Pb)	13	18.0	2 - 200
Mercury (Hg)	0.1	0.01	0.01 - 0.3
Titanium (Ti)	6,000		1,000 - 10,000

Speciation of Metals Influenced by pH

Variation in dissolved forms: lead

Global Discharge of Trace Metals (1000 metric tons/yr)

Nriagu & Pacyna (1988)

Metal	Water	Air	Soil
arsenic	41	19	82
cadmium	9.4	7.6	22
chromium	142	30	896
copper	112	35	954
lead	138	332	796
mercury	4.6	3.6	8.3
nickel	113	56	325
selenium	41	3.8	41
tin	no data	6.4	no data
zinc	226	132	1372

Largely industrial and municipal sources.

Note that fertilizer and sludge additions can also add metals to soil.

- 1. Metal & ligand associate in solution (MeL)
- Metal ion binds to carrier protein (may be competition from H⁺ and Ca²⁺)
- 3. Metal transported through cell membrane
- 4. Metal release in cell
- 5. Metal interacts with cellular protein

Mercury (Hg)

- Molecular wt. = 80
- Valence: +1 or +2
- Environmental forms
 - Metallic Hg (zero valence)
 - Inorganic (mercuric chloride, sulfides)
 - Organic (methyl mercury)
 - Considered the biologically active form regarding toxicity

Solubility of Hg relative to pH & redox potential

Worldwide Anthropogenic Input of Hg to Surface Waters

Source	Input
	(1000 metric tons/year)
Coal-burning power plants	0-3.6
Atmospheric fallout	0.22-1.8
Manufacturing processes	
Chemicals	0.02-1.5
Metals	0-0.75
Petroleum products	0-0.02
Domestic wastewater	
Central	0-0.18
Noncentral	0-0.42
Dumping of sewage sludge	0.01-0.31
Base metal mining and dressing	0-0.15
Smelting and refining, nonferrous	0-0.04
metals	

Historical Deposition

- Ice cores from
 Wyoming glacier
 - 1720-1993
 - Total Hg analysis
- Sources:
 - Anthropogenic: 52%
 - Volcanoes: 6%
 - Background: 42%
- Over last 100 years, anthropogenic sources contributed 70% of deposition
- Current record suggest a decline in atmospheric Hg deposition

35 **4 Schuster et al. 2002 ES& T 36:2303**

Toxicology

- Methyl mercury is the form of most concern
- Neurotoxicity, especially to developing fetus, but post natal exposure is also of concern
- Reference Dose protective of brain development in fetus is 0.1 μg/kg/day

Environmental Chemistry of Lead (Pb)

- Inorganic lead ubiquitous in soil environment (avg. ~15-25 mg/kg)
- Group IV element (includes C and Si) but does not bind with itself
- Stable +2 and +4 oxidation states
- In freshwater forms low solubility complexes with anions: hydroxide, carbonate, sulfides, sulfates
- Chelates with humic and fulvic acids
- Solubility increases as pH is lowered
- ~75% of lead in rivers is in suspension, 25% in solution

Anthropogenic Sources

- · Banned pesticide "lead arsenate"
- Refuse incineration
- Coal combustion
- Production of chemicals, including caulking 堵塞材料 compounds, paint pigments, solder, cable covering, ammunition, storage batteries ^選由池
- Manufacture of glass & ceramics
- Combustion of fuels containing lead additives
 - Organoleads (a.k.a. alkylleads, esp. tetraethyl Pb) added to gasoline starting ~1923
 四乙基铅

Fuel Emissions

- Alkyl leads added as anti-knock compound to achieve better fuel combustion
- 20-55% of lead consumed by an engine is exhausted
- Emitted as lead halides. chiefly as PbBrCl or as PbCl₂ 卤化物
 - The CI comes from the exhaust system
- 净化 scavengers, ethylene dichloride and ethylene剂 dibromide 二氯乙烯 二溴乙烯
- ~18 h after emission, 30-40% of chlorides and 75% of bromides transformed into carbonates and oxides
- Aerosol-bound lead precipitated by rainfall

 50-90% of lead particles are less than 1 μm diam.

Nano-particles

Deposition

- Sedimentation and rainfall are responsible for widespread lead distribution
 - In late 1960's, average concentrations in precipitation were ~35-40 μ g/L
 - Roadside concentrations (measured as elemental Pb) were much higher than concentrations measured at a distance

Pb,µg/cu meter of air

Lead species in rainwater runoff, soils, and dust in an urban environment; note the amount of organic bound lead

	Total Pb	Organic	Extractable	Triethyl	Diethyl
Sample	mg/kg	Bound	mg/kg	Pb	Pb
		mg/kg		µg/kg	µg/kg
First rainwater runoff;	-	1.45	1.39	0.16	1.8
5 m from gas station,					
residential area					
First runoff, 45 m from	2.6	0.37	-	0.40	0.47
gas station, urban area					
First runoff;	17.9	17	8.5	0.28	0.36
busy street intersection,					
urban area					
Soil from a park;	568	248	132	1.2	10
5 m from bust street,					
urban area					
Soil from a potted tree;	50	14	13	0.7	4
1 m from busy street,					
urban area					
Street dust; busy street;	1669	1313	305	8	42
urban					
Street dust; 5 m from a	1062	377	447	29	166
gas station; urban area			— Blais & Mars	hall (1986)	IEO V 15

Disposition of Organolead in Soils Spiked with Triethyl- and Diethyl Lead; note that DDTA extracts represent organolead; phosphate buffer represents non-lead organics

Soil Depth	$^{14}CO'$	Hexane-	Phosphate	Nonextract	Recovery
(cm)		NaDDTA	Buffer	^{14}C	(% of adde
14C-triethyl					
lead					
0-15	15.4	22.1	9.4	27.8	74.7
15-30	16.0	20.7	6.0	23.8	66.5
30-45	16.2	20.7	3.0	28.5	68.4
14C-diethyl					
lead					
0-15	18.3	23.5	11.2	37.0	90.0
15-30	19.4	7.6	10.3	32.7	70.0
30-45	19.2	8.3	6.0	21.2	54.7

Sterilization of the soil resulted in significant decrease in mineralization (production of ¹⁴CO₂) Ou et al. (1995) ETAC 14:545

	300	T					1.1				
	250	-									
sauu	200	-		2							
101 500	150	-	в								
lousar	100	-						012222 01222 0122 01222 012 01		8	
PD, II	50					A second		1012021 101202 10000 10000 1000000	ALANAY MANANA MANANA	ann a	
	0										B
	1	945	1950	1955	1960	1965	1970	1975	1980	198	5 1990
						YEA	R				
					IIII U	SA	222 Euro	pe			

Historical Use of Lead in Gasoline

Lobinski et al. (1994) ES&T 28:1459

Lobinski et al. 1994

Lead content is highest on leaf surfaces of a plant compared to roots, stems, fruit, etc. Probably due to deposition from air. This portion of lead can be washed off the leaf. Shown in the graph are dislodgeable lead levels relative to placement of plant from a street. 移离

Toxicological Issues

- Excessive lead exposure has been associated with hematological disease, kidney disease, and neurological disorders including impaired intellectual and behavioral development in children ^{智力的}
 - Adults absorb about 5-10% of ingested lead, but children absorb significantly more
 - 150-day old monkeys (infants) retained ~70% of an oral lead nitrate dose compared with 3.2% retained by adult monkeys
 - Organoleads are stored in adipose tissue
 - Under steady state intake, ~40-70% of ingested dose is excreted in the urine
 - No "biomagnification"

Toxicokinetics

- Human volunteers were given 156-215 μ g/day of a lead salt for 108-210 days
- Three compartments of bioconcentration:
 - Blood lead (mostly red blood cell associated (1900 µg average; turnover every 36 days
 - Soft tissue (for ex., liver, kidneys); ~600 µg average; turnover every 40 days
 - Bone; contained 200 mg average; turned over every 104 days

Diagnostic Blood Levels

- Prior to 1970, benchmark blood concentrations considered without effect were 80 µg Pb/100 mL (dL) for adults and 50-60 µg/dL for children
- After 1970, adult and children benchmark levels considered to be 40 µg/dL (based on disruption of heme synthesis) 亚铁血红素
 After 1985, Centers for Disease Control
- After 1985, Centers for Disease Control recommended intervention level be revised downward to 10 µg Pb/dL
 - Based on literature that suggested pre-school children were at risk for long-lasting adverse neurobehavioral effects when blood levels >10 µg/dL

Lead Exposure Linked to Antisocial Behavior

CINCINNATI, Ohio, March 1, 2002 (ENS) - Exposure to lead in childhood could lead to antisocial or even criminal behavior in adults, a new study suggests. The first comprehensive lead study to track children over a period of time found that both prenatal and postnatal exposure to lead were associated with antisocial behavior in children and adolescents.

Trend in Tons of Lead Used Per 1000 Persons and Murder Rate per 100,000 Inhabitants Nevin (2000) Environ. Res. A83:1-22

How Are Children Exposed?

- Original hypothesis for excessive exposure of children involved lead paint chipping and associated dust in households
 - This pathway would predominate in houses built prior to the 1950's when lead-based paint was predominantly used
- More recent hypothesis suggest the lead originated from outdoor soil and surface deposition owing to combustion of leaded gasoline
 - Hand-to-mouth behavior of children would raise exposure potential

Contribution of Source to Children's Exposure (Based on Geometric Means of Measurements)

Rasmussen et al. (2001) Sci. Total Environ. 267:125

Note that lead levels are highest near the building foundation

Correspondence of blood lead levels and soil lead concentrations are better than correspondence of blood lead and pre-1940 housing, which would be expected to have a lot of leadbased paint.

Arsenic

Worldwide anthropogenic input of arsenic to freshwater

Moore 1991

Source	Input 1000 metric tons/yr
Domestic Wastewater	3.0-15.3
Sewage sludge	0.4-6.7
Manufacturing Processes	
Metals	0.3-1.5
Chemicals	0.6-7.0
Pulp & Paper 纸浆	0.4-4.2
Petroleum Products	0-0.1
Smelting & refining	1.0-13
Base metal mining	0-0.75
Steam electrical production	2.4-14
Atmospheric production	
(combustion processes)	3.6-7.7
Total Input	12-70

Figure 2.1. Documented cases of arsenic problems in groundwater related to natural contamination. Cases include some of the major mining and geothermal occurrences reported in the literature.
BGS and DPHE (2001)

Table 1.Maximum permissible limits for arsenic in drinking water in different countries

Country Guidelines (µg/L) References

Argentina	50	Firentin et al.,1998
Bangladesh	50	Chakraborti et al.,2004
Chile	50	Caceres et al.,2005
<u>China</u>	50	<u>Gu et al.,2001</u>
India	10	BIS 10500 :1991,Amendment II,2003
Mexico	50	Ongley et al.,2001
Nepal	50	Shrestha et al.,2003
Newzeland	10	R bins n et al.,2003
Taiwan	10	Tseng,1989;Tseng et al.,2005
USA	10	USEPA,2001
Vietnam	10	Berg et al.(2001)

Health effects of drinking water arsenic

Arsenic-related diseases

short term: skin lesions, respiratory illnesses, and eye problems. Commonly called "black foot disease."

long term: cancer, heart disease and neurological disorders.

□ Toxicity: As(III) (arsenite) > As(V) (arsenate) >> Organic As (MMA, DMA, and arseno-sugar, etc.)

Dissolved As is highly bioavailable. Adsorbed in stomach and intestine Band methylated in liver to MMA then DMA. New study found ability of methylation is key – varies among population.

Fundamentals of Arsenic Geochemistry

□ Arsenate and arsenite dominate

At circum-neutral pH conditions of groundwater, Main dissolved species are: H₃AsO₃, H₂AsO₄⁻, HAsO₄²⁻.

Redox control

Arsenate is the main form in oxidized environment (e.g., surface and near surface), while arsenite in control in slightly reducing condition. Under very reducing redox state, As will form Fe/S minerals that sequester As.

□ Fe-oxides play key role

Main pathways that controls the mobilization and fixation of As in natural and remediation systems are through various forms of Feoxides and hydroxides.

□ Arsenate similar to PO₄³⁻

modified from Ferguson and Gavis, 1972

History and Timeline

- Early 1970's, because sewage bacteria tainted pond and river water in rural Bangladesh. UNICEF spent millions of dollars for tube wells to provide "clean" drinking water. Some local people called it "devil water."
- Cases of arsenic contamination began surface in <u>1993</u> (some claim to as early as 1985). Well water never tested for As before 1993.
- The international community finally appeared to accept some responsibility to solve this mass poisoning of Bangladesh in <u>1998</u>.
- Columbia University's Superfund Basic Research Program was first funded in <u>2001</u> with focus on the Bangladesh groundwater arsenic problem.

Early survey suggest about 1/3 wells have As above 50 ug/L (Bangladesh limit), and 2/3 above 10 ug/L (WHO limit)

At least <u>25 million</u> people drink tube well water containing As > 50 ug/L

The biggest fear is that because the effect of drinking water As is chronic, people (especially kids) have been drinking As-laiden water for 10-15 years, we may see a dramatic increase of patients: "the worst is yet to come"

Map prepared by J. W. Rozenboom (UNICEF-Dhaka)

Parameters Studied:

 Lithology – color quantified by spectroreflectance

Dissolved As profile

Site A, Zheng et al., 2003

First Order Findings

- Shallow wells (<30 m) dominant, and higher % As contaminated wells. These usually tap Holocene grey sediments. Those usually have more "mobilizable" As.
- Deeper wells that tap orange Pleistocene sandy aquifer are usually safe. 更新世
- Often very old groundwater a few years to thousands of years.

Starting point: As-Fe interactions ...

Figure 1. Bacterial mobilization processes for iron oxide-complexed arsenic.

Abiotic mobilization?

Stute et al, revised & submitted, WRR

Thank you for your attentions!