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Abstract

Let p be a small prime and n = n1n2 > 1 be a composite integer. For the function field sieve
algorithm applied to Fpn , Guillevic (2019) had proposed an algorithm for initial splitting of the
target in the individual logarithm phase. This algorithm generates polynomials and tests them for
B-smoothness for some appropriate value of B. The amortised cost of generating each polynomial
is O(n22) multiplications over Fpn1 . In this work, we propose a new algorithm for performing the
initial splitting which also generates and tests polynomials for B-smoothness. The advantage over
Guillevic splitting is that in the new algorithm, the cost of generating a polynomial is O(n log(1/π))
multiplications in Fp, where π is the relevant smoothness probability.
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1 Introduction

Designing efficient algorithms for the discrete logarithm problem over finite fields is an important prob-
lem. Let p be a prime, n ≥ 1 be an integer and Fpn be the finite field of pn elements. Let α be a generator
of F∗pn . Given an element β ∈ F∗pn , the discrete logarithm of β to base α is an integer i ∈ [0, pn− 2] such
that β = αi, i.e., i = logα β. The discrete logarithm problem in Fpn is to find i, given α and β. When
α is understood, one simply writes log β instead of logα β.

Let LQ(a, c) be the usual sub-exponential notation:

LQ(a, c) = exp
(
(c+ o(1))(lnQ)a(ln lnQ)1−a

)
; where Q = pn, a ∈ [0, 1], c 6= 0. (1)

Let p = LQ(a, c). Fields for which a < 1/3 are usually referred to as small characteristic fields. For
small characteristic fields, the algorithm of choice is the function field sieve (FFS) algorithm [4, 5]. This
is a complex algorithm consisting of three major steps, namely, relation collection, linear algebra and
the individual logarithm steps. The individual logarithm step itself consists of two sub-tasks, initial
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splitting followed by descent. In this paper, our focus will be on the task of initial splitting for small
characteristic, composite extension degree fields.

Let Fpn be the finite field of pn elements where p is a small prime and n = n1n2 > 1 is a composite
integer. For practical scenarios, n1 � n2. The standard algorithm for initial splitting for such fields is
the Waterloo algorithm [8, 7]. The Waterloo algorithm iteratively generates a pair of polynomials of
degrees at most n2/2 and tests both of them for B-smoothness for an appropriate choice of B. The cost
of generating the pair of polynomials is O(n22) multiplications over Fpn1 . Considering a multiplication
in Fpn1 to require O(n21) Fp multiplications, the cost of generating the pair of polynomials is O(n2) Fp
multiplications.

Guillevic [19] proposed a different algorithm for initial splitting over such fields. This algorithm
iteratively generates a polynomial of degree n2 − d/n1 and tests it for B-smoothness, where d is the
largest non-trivial divisor of n. The key insight utilised in [19] is that multiplying the target by an
element of a proper subfield does not change the discrete logarithm modulo Φn(p), where Φn(x) is the
n-th cyclotomic polynomial. This insight was earlier stated in [18]. The amortised cost of generating
a polynomial in the Guillevic splitting algorithm is the same as that of the Waterloo algorithm which
as mentioned above is O(n2) multiplications over Fp. The advantage of Guillevic splitting is that only
a single polynomial is required to be B-smooth while for the Waterloo algorithm two polynomials are
required to be B-smooth.

In this paper, we present a new algorithm for initial splitting for FFS applied to small characteristic,
composite extension degree fields. We also utilise the insight that multiplying the target by elements of
a proper subfield does not change the logarithm modulo Φn(p). Our utilisation of this insight, however,
is different from that in [19]. The main improvement that we obtain over Guillevic splitting is that the
cost of generating a polynomial to be tested for B-smoothness is O(n logp(1/π2)) operations over Fp
where π2 is the probability that a polynomial of degree n2−s−1 over Fpn1 is B-smooth. The parameter
s is new to our work and can be chosen such that the degrees of the polynomials generated by the new
method is only slightly larger than those generated by the Guillevic splitting algorithm. Consequently,
the smoothness probabilities and the times for smoothness testing of both the Guillevic splitting and
the new algorithm are almost the same. Since logp(1/π2) � n, the time for generating a polynomial
by the new method is significantly lower than the time for generating a polynomial using the Guillevic
splitting algorithm.

Previous Works

Coppersmith [9] described an L(1/3, ·) algorithm to solve the discrete logarithm problem over small
characteristic fields. This was followed by the function field sieve algorithm [4, 5]. For small charac-
teristic fields, there has been a substantial progress in the efficiency of the FFS algorithm [13, 12, 10,
21, 6, 20, 14, 3, 17, 23, 16, 3, 17]. A quasi-polynomial algorithm was described in [6]. In characteristic
2, Granger, Kleinjung and Zumbrägel [15] have performed a record computation of discrete log in the
field F29234 . In characteristic 3, record discrete log computation as well as concrete analysis for certain
fields have been described in [1, 3, 2, 22].

2 Preliminaries

Let p be a prime and n > 1 be a composite integer. Let Fpn be the finite field of pn elements.
Write n = n1n2. Let h(y) be an irreducible polynomial of degree n1 over Fp. The finite field Fpn1 is
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represented as Fp[y]/〈h(y)〉. Let I(x) be an irreducible polynomial of degree n2 over Fpn1 . The field
Fpn is represented as Fpn1 [x]/〈I(x)〉. We will denote this as the (I(x), h(y))-representation of the field
Fpn . We will further assume that a generator α of F∗pn is available.

Using the (I(x), h(y))-representation, any element T ∈ Fpn can be written as follows.

T (x) = t0(y) + t1(y)x+ · · ·+ tn2−1(y)xn2−1

where t0(y), t1(y), . . . , tn2−1(y) are polynomials of degree at most n1 − 1 over Fp.
Let Φn(x) be the n-th cyclotomic polynomial and ` be a non-trivial prime divisor of Φn(p). Given

a target T0 ∈ F∗pn , the goal is to find its discrete logarithm modulo `.
The function field sieve algorithm has three broad computational steps. In the first step, a suitable

factor basis is identified and linear relations among the discrete logarithms of the factor basis elements are
obtained. The second step applies sparse linear algebra computation to obtain the discrete logarithms
of the factor basis elements. The logarithm of the target element T0(x) is obtained in the third step
which is called the individual logarithm step.

The goal of the individual logarithm step is to express the logarithm of T0 as an F`-linear combination
of logarithms of elements which are either in the factor basis or whose logarithms are known. For FFS
over small characteristic and composite extension degree fields, the individual logarithm step is carried
out in two parts. An initial splitting step followed by descent to factor basis elements.

Let B be a positive integer. A polynomial is said to be B-smooth, if all its irreducible factors have
degrees less than or equal to B. The initial splitting step expresses the logarithm of T0 in terms of
logarithms of one or more polynomials each of which is B-smooth for a suitable value of B. The descent
step attempts to descend the irreducible factors of the B-smooth polynomial(s) to the factor basis. In
this paper, we will only be concerned with the initial splitting step.

A simple and important result proved by Guillevic [18] and extensively used in [19] is the following.

Lemma 1. Let p be a prime and n > 1 be an integer. Let T ∈ Fpn and u be an element in a proper
subfield of Fpn. Then log T ≡ log uT mod Φn(p) and hence log T ≡ log uT mod ` for any divisor ` of
Φn(p).

The importance of Lemma 1 stems from the fact that one may try to multiply the target element
T0 with a proper subfield element u to obtain W = uT0 such that the degree of W is substantially less
than that of T0. Then for any integer B, the chance of W being B-smooth is significantly higher than
the chance of T0 being B-smooth.

Let g be the generator of the order ` subgroup of Fpn which is of interest. Given the target T0 and an
integer t ∈ {0, . . . , `−1}, let Tt = gtT0 so that log Tt = t+ log T0 mod `. Since t is known, it is sufficient
to find the logarithm of Tt. A well known method for initial splitting is the Waterloo algorithm [8, 7].
This algorithm expresses Tt as Tt(x) = N(x)/D(x) mod I(x) using the extended Euclidean algorithm
such that the degrees of N(x) and D(x) are much smaller than that of Tt(x). The procedure is repeated
for random choices of t until both N(x) and D(x) are obtained to be B-smooth for a pre-defined choice
of B. Once this is obtained, initial splitting is said to have been achieved.

Improvement to the Waterloo algorithm based on Lemma 1 has been described by Guillevic [19]. We
call this the Guillevic splitting (GS) algorithm and the complete description is shown in Algorithm-1.
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Algorithm 1: Guillevic splitting for small characteristic composite order fields.

Input: An (I(x), h(y))-representation of Fpn ; generator g of the order ` (where `|Φn(p))
subgroup over which logarithms are to be computed; a target element T0(x); and a
smoothness bound B

Output: A B-smooth polynomial P (x) such that logP (x) ≡ log T0(x) mod `
1 Let d be the largest non-trivial divisor of n
2 Set d = gcd(d, n1) and d′ = d/d

3 Obtain U(x) ∈ Fpn such that {1, U, . . . , Ud′−1} is a basis for Fpd′
4 repeat
5 Choose t randomly from {1, 2, . . . , `− 1}
6 T ← gtT0

7 Define L =


T
UT

...

Ud
′−1T

 a d′ × n2 matrix over Fpn1

8 M ← RowEchelonForm(L) (with Fpd-linear combinations)
9 Set P (x) as the polynomial obtained from the first row of M

10 until P is B-smooth;
11 return (t, P (x)).

Guillevic [19] proved the following properties of Algorithm 1.

1. P (x) is a polynomial of degree at most n2−d/n1 over Fpn1 . So, the degree of P (x) is substantially
less than that of T0(x) which has degree n2 − 1.

2. P (x) = uT (x) = ugtT0(x) for some u ∈ Fpd′ and so logP (x) = t + log T0(x) mod ` (using
Lemma 1).

It was shown in [19] that the efficiency of Algorithm 1 can be further improved using the following two
ideas.
Improvement-1: In Algorithm 1, M is obtained as the row echelon form of L. This requires running a
Gaussian elimination on L. Another round of Gaussian elimination (again with Fpd-linear combinations)
is run on M from the reverse side to obtain a matrix M ′ of the following form.

∗ . . . ∗ ∗ 0 . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 ∗ . . . ∗ ∗

 (2)

The i-th row of M ′ is of the form xeiPi(x), with degree of Pi(x) ≤ n2 − d/n1 and ei ≈ (i − 1)d/n1.
The element x is a member of the factor basis, and so it is sufficient to obtain the logarithm of Pi.
Incorporating this into Algorithm 1 requires two rounds of Fpd-linear Gaussian elimination. The ad-
vantage is that after the two rounds, it provides a set of d′ polynomials which are to be tested for
B-smoothness. This is to be contrasted with the basic description of Algorithm 1 where one round of
Fpd-linear Gaussian elimination results in only one polynomial to be tested for B-smoothness.
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Improvement-2: In each iteration, it is possible to further increase the number of polynomials to be
tested for smoothness by taking Fpd-linear combinations of a small number of consecutive rows. This
will increase the degrees of the resulting polynomials by one or two which does not significantly affect
the probability of the polynomials being B-smooth.

Cost of Algorithm 1: A one-time computation is required by Algorithm 1 to obtain U(x). Given

α, U(x) is computed as U(x) = α(pn−1)/(pd′−1). So, obtaining U(x) requires an exponentiation which in
turn requires O(n log p) multiplications over Fpn . Each multiplication in Fpn requires O(n2) operations
over Fp. Using Karatsuba this cost would be O(n1.59) operations over Fpn and using the Fast Fourier
Transform will provide even lower asymptotic costs. We take the cost of a multiplication in Fpn to be
O(n2) so that the cost of obtaining U(x) is O(n3 log p). In practice, the actual time for obtaining U(x)
is negligible in comparison to the cost of generating and testing polynomials for smoothness. So, the
best asymptotic cost for computing U(x) is not very relevant in practice. Note that it is not required
to compute the basis {1, U, . . . , Ud′−1}.

Apart from smoothness testing, the cost per iteration of Guillevic splitting algorithm consists of the
following.

1. An exponentiation over Fpn to compute gt.

2. A total of d′ multiplications over Fpn to compute gtT0 and the products UT, . . . , Ud
′−1T .

3. Two rounds of Fpd-linear Gaussian eliminations (considering Algorithm 1 along with Improvement-
1).

Let π1 be the probability that a polynomial of degree n2 − d/n1 over Fpn1 is B-smooth. The generated
polynomials are not statistically independent. Heuristically however, trying out about 1/π1 polynomials
of degrees n2−d/n1, it is likely to obtain one that is B-smooth. It has been shown in [19] that the amor-
tised cost of obtaining one polynomial to be tested for smoothness by Algorithm 1 plus Improvement-1
is O(n22) multiplications over Fpn1 which is the same as that of the Waterloo algorithm.

A single multiplication over Fpn1 consists of a polynomial multiplication followed by a reduction.
Asymptotically, the cost of the reduction step is negligible in comparison to the polynomial multiplica-
tion step though in practice, reduction consumes a significant fraction of the time for the entire field
multiplication. Using the schoolbook method to perform polynomial multiplication requires (n21) multi-
plications over Fp and so the O(n22) multiplications over Fpn1 has a cost of O(n2) multiplications over Fp.
Using Karatsuba’s algorithm or an asymptotically faster algorithm will yield lower asymptotic costs.
However, for small values of n1, as is typically the case, the schoolbook method will be faster and it
may be assumed that for Algorithm 1, the cost of generating a polynomial to be tested for smoothness
is O(n2) multiplications over Fp.

The total cost of Algorithm 1 is the one-time cost plus the cost of generating and testing about
1/π1 polynomials for smoothness. This cost is O(n3 log p + (n2 + t1)/π1) operations over Fp, where
O(t1) is the number of Fp operations required to test a polynomial of degree n2 − d/n1 over Fpn1 for
B-smoothness.

3 A New Algorithm for Initial Splitting

The setting is as in Section 2. Given a prime p and a composite integer n, the finite field Fpn is
represented by (I(x), h(y)) where h(y) is an irreducible polynomial of degree n1 over Fp and I(x) is
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an irreducible polynomial of degree n2 over Fpn1 = Fp[y]/〈h(y)〉 so that Fpn = Fpn1 [x]/〈I(x)〉. Also, a
generator α of F∗pn is available. Given a target element T0(x) ∈ Fpn , the goal is to compute the logarithm
of T0 modulo ` where ` is a prime divisor of Φn(p).

Let d be the largest non-trivial divisor of n and U(x) ∈ Fpn be such that {1, U(x), . . . , Ud−1(x)} is
a polynomial basis for Fpd . Note the difference to Guillevic splitting, where {1, U(x), . . . , Ud

′−1(x)} is
a polynomial basis for Fpd′ for d′ = d/d and d = gcd(d, n1). In our method, we will not require either d
or d′.

We also make use of Lemma 1. Let

a = (a0, . . . , ad−1)
T ∈ Fdp. (3)

Then

V = a0 + a1U + · · ·+ ad−1U
d−1 (4)

is an element of Fpd . Define

W = V T0. (5)

By Lemma 1, the logarithms of W and T0 are equal modulo `, i.e.,

logW ≡ log T0 mod `. (6)

We introduce a new parameter s which is a positive integer less than n2. The first step is to obtain
a such that W is a monic polynomial of degree n2 − s− 1 over Fpn1 . Next, the polynomial W is tested
for B-smoothness.

A single polynomial may not be smooth. Let π2 be the probability that a monic polynomial of degree
n2 − s − 1 over Fpn1 is B-smooth. By generating and testing about 1/π2 random polynomials W it is
likely to obtain a polynomial which is B-smooth. We use linear algebra to generate 1/π2 polynomials
over Fpn1 each of degree n2 − s− 1.

Given T0, define

Ui = U iT0, for i = 0, . . . , d− 1. (7)

Each Ui is a polynomial of degree at most n2 − 1 over Fpn1 . The polynomial Ui can be represented by
a (column) vector ui in Fnp .

We define an n× d matrix M with entries from Fp as follows.

M = [u0 u1 · · · ud−1] =

[
M0

M1

]
(8)

where M0 is an (n1(n2 − s − 1)) × d matrix and M1 is an (n1(s + 1)) × d matrix. Note that, given T0
and U , the matrix M is fixed and needs to be computed only once.

The polynomial W (x) can be represented as a vector w ∈ Fnp . We write w as

w =

[
w0

w1

]
where w0 is in Fn1(n2−s−1)

p and w1 is in Fn1(s+1)
p .
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The relation

W = V T0 = (a0 + a1U + · · ·+ ad−1U
d−1)T0 = a0U0 + a1U1 + · · ·+ ad−1Ud−1

can be written in matrix notation as follows.[
w0

w1

]
= Ma =

[
M0

M1

]
a (9)

From (9), we obtain the following two equations.

w0 = M0a; (10)

w1 = M1a. (11)

Recall that our goal is to obtain W (x) as a monic polynomial of degree n2 − s− 1 over Fpn1 . This
puts constraints on the coefficients of W (x), namely, the coefficient of xn2−s−1 has to be one and the
coefficients of xi for i = n2 − s, . . . , n2 − 1 have to be zeros. These conditions define the vector w1 to
be the following:

w1 = [0, 0, . . . , 0, 1︸ ︷︷ ︸
n1

, 0, 0, . . . , 0︸ ︷︷ ︸
n1s

]T . (12)

Given w1 and the matrix M1, the inhomogeneous system of equation given by (11) is to be solved for
a and the resulting solution is to be substituted in (10) to obtain w0. This w0 provides the polynomial

W (x) = xn2−s−1 +W0(x) (13)

where W0(x) ∈ Fpn1 [x] is the polynomial represented by w0 and is of degree less than n2 − s− 1. The
polynomial W (x) is to be tested for smoothness.

M1 is an n1(s+1)×dmatrix and so a necessary condition for a solution to (11) to exist is d ≥ n1(s+1).
Define

r = d− n1(s+ 1). (14)

Then a general solution a to (11) can be written as

a = Bb + c (15)

where B is an d× r matrix over Fp which is a basis for the null space of M1, b is in Frp and c ∈ Fdp is a
particular solution to (11).

Substituting the general solution given by (15) into (10) we obtain

w0 = M0a = M0 (Bb + c) = Lb + d (16)

where

L = M0B and d = M0c. (17)

L is a matrix of order n1(n2 − s− 1)× r and d ∈ Fn1(n2−s−1)
p . Once the system (11) is solved, B and c

are obtained and from these it is possible to obtain L and d.
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Suppose r is chosen such that

r = d− n1(s+ 1) ≥ dlogp 1/π2e. (18)

Then varying b over all possible vectors in Frp, it is possible to generate more than 1/π2 distinct polyno-
mials W (x) = xn2−s−1+W0(x) of degrees n2−s−1. These polynomials are not statistically independent
and so theoretically the smoothness estimate does not apply to these polynomials. Heuristically how-
ever, it is likely that one of these polynomials is B-smooth. Our experiments confirm this heuristic
assumption.

A necessary condition for the method to work is given by (18). Using Theorem 1 of [25] and using
the estimate ρ(u) ≈ u−u of the Dickman function, an estimate of the probability that a polynomial of
degree n2 − s− 1 is B-smooth is as follows.

π2 ≈
(
n2 − s− 1

B

)−(n2−s−1
B

)
(19)

Combining with (18), we obtain the condition

d− n1(s+ 1) ≥
⌈(

n2 − s− 1

B

)
logp

(
n2 − s− 1

B

)⌉
. (20)

Increasing the value of s decreases the degree of W (x) to be tested for smoothness and hence increases
the smoothness probability π2. On the other hand, increasing the value of s reduces the left hand side
of (20) and (20) may fail to hold. So, the goal is to choose the maximum possible value of s such
that (20) holds.

An algorithmic description of the above theory is given in Algorithm 2.

Algorithm 2: The new algorithm for initial splitting.

Input: An (I(x), h(y))-representation of Fpn ; a target element T0(x); a smoothness bound B;
and an s satisfying (20);

Output: A B-smooth polynomial W (x) such that logW (x) ≡ log T0(x) mod ` where ` is a
divisor of Φn(p)

1 Choose the maximum value of s such that (20) holds
2 Let r = d− n1(s+ 1)

3 Let U(x) be such that {1, U(x), . . . , Ud−1(x)} is a polynomial basis for Fpd
4 Compute the matrices M0 and M1 as given in (8)
5 Set w1 as given in (12)
6 Solve (11) to obtain B and c as given in (15)
7 Compute L = M0B and d = M0c
8 for each b ∈ Frp do

9 Compute w0 = Lb + d and let W0(x) ∈ Fpn1 [x] be the polynomial represented by w0

10 Set W (x) = xn2−s−1 +W0(x)
11 if W (x) is B-smooth then
12 break

13 return W (x).
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Remarks:

1. A difference between Algorithm 1 and Algorithm 2 pertains to the target. In Algorithm 2, the
original target T0 remains unchanged, whereas in Algorithm 1, for every d′ candidate polynomials
a fresh target Tt = gtT0 is computed.

2. In her paper [19], Guillevic had also proposed an initial splitting algorithm for the number field
sieve (NFS) algorithm in the large characteristic case. Our method of generating polynomials
does not help in improving the efficiency of Guillevic splitting for the NFS algorithm.

3.1 Implementation Issues

Since p is small, it is possible to speed up the computation of Lb + c at the cost of extra storage.

For k = 1, . . . , p − 1, let L(k) = kL and denote by L
(k)
∗,j the j-th column of L(k). Suppose the matrices

L(1), . . . , L(p−1) have been computed and stored. Suppose b = (b1, . . . , br). Then Lb+c can be computed
as follows.

sum← c;
for j = 1, . . . , r do

if bj > 0, then sum← sum + L
(bj)
∗,j

end for;
return sum.

This method of computation avoids all the multiplications over Fp during the generation of the polyno-
mial W (x).

Parallelism: In Algorithm 2, after the matrix L and the vector c has been generated, the generation
of the polynomials and testing them for smoothness can be completely parallelised. It is possible to
allocate non-intersecting subsets of Frp to different processes. Each process independently uses the
vectors in its alloted subset to generate polynomials and test them for smoothness. There is no need
for any coordination between the processes.

Guillevic splitting in Algorithm 1 also supports parallelism though of a somewhat restricted kind.
The completion of the doubly reduced row echelon form provides a total of d′ polynomials to be tested
for smoothness by independent processes. The testing of these polynomials can be done in parallel.
However, once these polynomials have been checked, the processes have to halt until the next batch of
d′ polynomials have been generated. Alternatively, there can be a process which successively generates
batches of d′ polynomials and feeds them to other processes to be tested for smoothness. Neither of
these options is as simple as the parallelism that can be obtained from Algorithm 2.

3.2 Degrees of Polynomials Generated by Algorithm 2

Each iteration generates a polynomial W (x) of degree n2 − s− 1. As mentioned above, s is a positive
integer less than n2 which is to be chosen as the maximum value satisfying (20). We determine the
value of s and hence the degrees of W (x) for the two examples considered in [19].

Example-1: For this example, p = 3, n1 = 6, n2 = 509 and so d = 3 · 509. For 26 ≤ B ≤ 32, the
maximum value of s satisfying (20) is s = 250. So, the degrees of the corresponding W (x)’s are
258.
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Example-2: For this example, p = 3, n1 = 5 and n2 = 479 and so d = n2 = 479. For 42 ≤ B ≤ 50, the
maximum value of s satisfying (20) is s = 91. So, the degrees of the corresponding W (x)’s are
387.

Using Algorithm 1, the degrees of the generated polynomials for Example-1 and Example-2 are 254 and
383 respectively. So, compared to Algorithm 1, the polynomials generated by Algorithm 2 have slightly
larger degrees. This has two consequences.

1. The smoothness probability π2 for Algorithm 2 is slightly smaller than the smoothness probability
π1 for Algorithm 1. For Example-1, π1/π2 is in the range [1.33, 1.46] for 32 ≥ B ≥ 26 while for
Example-2, π1/π2 is in the range [1.20, 1.26] for 50 ≥ B ≥ 42.

2. The cost of smoothness checking t2 in Algorithm 2 is slightly greater than the cost of smoothness
checking t1 in Algorithm 1. For the degrees considered, it is reasonable to assume t1 ≈ t2.

We note that Algorithm 1 combined with both Improvement-1 and Improvement-2 result in polyno-
mials whose degrees are one or two more than those obtained from Algorithm 1 combined only with
Improvement-1. So, the degrees of polynomials generated by Algorithm 1 plus Improvement-1 and
Improvement-2 are even closer to the degrees of polynomials generated by Algorithm 2.

3.3 Cost of Algorithm 2

The one-time cost of Algorithm 2 consists of the following components.

1. Computation of U(x) = α(pn−1)/(pd−1). As in the case of Algorithm 1, this cost is O(n3 log p).
Also, as in the case of Algorithm 1, it is not required to compute the basis {1, U(x), . . . , Ud−1(x)}.

2. Computation of M0 and M1 requires the elements {T0, UT0, . . . , Ud−1T0}. This requires a total of
d− 1 multiplications in Fpn which we estimate as O((d− 1)n2) operations over Fp.

3. Solving (11) to obtain B and c. Since M1 is an n1(s+ 1)× d matrix over Fp, the cost for this step
is O(n1(s+ 1)d2) operations over Fp.

4. Computing L = M0B and d = M0c where M0 is an n1(n2− s−1)×d matrix over Fp, B is a d× r
matrix over Fp and c is in Fdp. The cost for the matrix multiplication M0B is O(n1(n2− s− 1)dr)
operations over Fp and the cost for the matrix-vector multiplication M0c is O(n1(n2 − s − 1)d)
operations over Fp.

The total one-time cost is O(n3 log p+ (d− 1)n2 + n1(s+ 1)d2 + n1(n2 − s− 1)dr) = O(n3) operations
over Fp. In practice, the one-time computation is negligible in comparison to the time for generating
and testing polynomials for smoothness.

The cost of generating a polynomial to be tested for smoothness is the cost of computing the
matrix-vector multiplication Lb. Since L is an n1(n2−s−1)× r matrix over Fp and b ∈ Frp, this cost is
O(n1(n2− s−1)r) operations over Fp. Noting that n1n2 = n and r ≈ logp(1/π2), the cost of generating
each polynomial is O((n − n1(s + 1))r) = O((n − n1(s + 1)) logp(1/π2)) Fp operations. The value of s
is less than n2, and so, the cost of generating a polynomial is O(n logp(1/π2)) Fp-operations.

The total cost of Algorithm 2 is the cost of one-time computation plus the cost for generating and
testing the polynomials for B-smoothness. This cost is O(n3 log p+ (t2 − n log π2)/π2) operations over
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Fp, where O(t2) is the number of Fp operations required to test a polynomial of degree n2 − s− 1 over
Fpn1 for B-smoothness.

In contrast, the total cost of Algorithm 1 is O(n3 log p + (t1 + n2)/π2) operations over Fp. Based
on the discussion in Section 3.2, we may take π1 and π2 to be approximately equal and denote by π
this common smoothness probability. Similarly, we may take t1 and t2 to be approximately equal and
denote by t to be the time for smoothness checking in both the algorithms. Then the total time for
Algorithms 1 and 2 are respectively O(n3 log p+ (t+n2)/π) and O(n3 log p+ (t−n log π)/π) operations
over Fp. The main cost for Algorithm 1 is O((t + n2)/π) while for Algorithm 2 it is O((t− n log π)/π).

From [11], for a degree δ polynomial over Fpn1 , the costs of square-free factorisation, distinct degree
factorisation and equal degree factorisation are respectively O(δ2), O(δ3 log pn1) and O(δ2 log pn1). So,
the cost t of smoothness checking is substantial. In comparison to Algorithm 1, the main advantage of
Algorithm 2 is that it makes the cost of generating a polynomial negligible in comparison to the cost of
testing the polynomial for smoothness.

4 Computational Results

To demonstrate that Algorithm 2 works, we made a basic Magma implementation for Example-1 men-
tioned in Section 3.2, i.e., p = 3, n1 = 6 and n2 = 509. The field Fpn is represented using (I(x), h(y)).
The polynomials h(y) and I(x) and the generator x + y2 are given in [19]. Further, we also used the
target T0 that was used in [19]. The largest prime divisor of n is d = 3 · 509.

We ran Algorithm 2 for two values of B, namely B = 28 and B = 30. In both cases, the value of
s satisfying (20) is 250 and so the degrees of the generated polynomials are n2 − s − 1 = 258. Since
d = 3 · 509, n1 = 6 and s = 250, the value of r from (14) is 21.

Given α, U(x) is uniquely defined. Given T0(x) and U(x), the matrices M0 and M1 are completely
defined. Since w1 is fixed by (12), given M1, the matrix B and the particular solution c to (11) are
completely defined. Further, given B and c, the matrix L and d are also completely defined. So, given
α and T0(x), the matrix L and the vector d are defined. Different values of b generates different values
of w0 (equivalently, different values of W0(x)) and so different values of W (x). From (6), we have
logW ≡ log T0 mod `.

Below we provide the obtained values of b such that the corresponding W (x)’s are B-smooth for
B = 28 and B = 30. Along with the b’s we also provide the smoothness probabilities.

B = 28: π2 ≈ 2−29.5, b = (0, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 0, 0, 2, 0).

B = 30: π2 ≈ 2−26.7, b = (0, 0, 1, 2, 2, 1, 1, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 2, 0, 0, 0).

In both the cases, the degrees of the generated polynomials are 258. So, the time for one-time compu-
tation and the average times for generating a polynomial and smoothness checking are also the same.
The one-time computation took less than 2 hours.

To obtain an estimate of the times required per iteration, we averaged over 1000 iterations. The
average time to generate a polynomial is about 10−5 seconds while the average time to check the
polynomial for smoothness is about 0.4 seconds. As mentioned earlier, the advantage of the new method
is that the time for generating a polynomial is negligible in comparison to the time for smoothness
checking.

For the actual computations of b for B = 28 and B = 30, the iterative part of Algorithm 2 was
parallelised as mentioned in Section 3.1. The subspace Fr3 was divided into disjoint subspaces to be
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searched by 320 parallel processes running on four servers have 100 cores each. The computation for
B = 30 took less than a day while the computation for B = 28 took about 10 days. We did not have
exclusive access to the servers during the execution of the programs. The server was loaded with long
running R and Matlab programs by other users. Due to this, the exact times for the completion of our
programs are not informative and so we do not report these times.

5 Conclusion

For small characteristic, composite extension degree fields, we have shown that in the initial split-
ting step, the cost of generating polynomials to be tested for smoothness can be brought down to
O(n log(1/π)) operations in Fp from the cost O(n22) multiplications in Fpn1 that is required by the
Guillevic splitting algorithm [19]. This improvement should help in the computation of future record
discrete logarithm computations over such fields.
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discrete logarithms in F36.137 and F36.163 using Magma. In Çetin Kaya Koç, Sihem Mesnager,
and Erkay Savas, editors, Arithmetic of Finite Fields - 5th International Workshop, WAIFI 2014,
Gebze, Turkey, September 27-28, 2014. Revised Selected Papers, volume 9061 of Lecture Notes in
Computer Science, pages 3–22. Springer, 2014.

[3] Gora Adj, Alfred Menezes, Thomaz Oliveira, and Francisco Rodŕıguez-Henŕıquez. Weakness of
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and the impact of higher splitting probabilities - application to discrete logarithms in F21971 and
F23164 . In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part
II, volume 8043 of Lecture Notes in Computer Science, pages 109–128. Springer, 2013.
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