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Abstract. The problem of reliably certifying the outcome of a computation per-
formed by a quantum device is rapidly gaining relevance. We present two proto-
cols for a classical verifier to verifiably delegate a quantum computation to two
non-communicating but entangled quantum provers. Our protocols have near-
optimal complexity in terms of the total resources employed by the verifier and
the honest provers, with the total number of operations of each party, including
the number of entangled pairs of qubits required of the honest provers, scaling
as O(glogg) for delegating a circuit of size g. This is in contrast to previous
protocols, whose overhead in terms of resources employed, while polynomial,
is far beyond what is feasible in practice. Our first protocol requires a number
of rounds that is linear in the depth of the circuit being delegated, and is blind,
meaning neither prover can learn the circuit or its input. The second protocol is
not blind, but requires only a constant number of rounds of interaction.

Our main technical innovation is an efficient rigidity theorem which allows a
verifier to test that two entangled provers perform measurements specified by an
arbitrary m-qubit tensor product of single-qubit Clifford observables on their re-
spective halves of m shared EPR pairs, with a robustness that is independent of
m. Our two-prover classical-verifier delegation protocols are obtained by com-
bining this rigidity theorem with a single-prover quantum-verifier protocol for
the verifiable delegation of a quantum computation, introduced by Broadbent.

1 Introduction

Quantum computers hold the potential to speed up a wide range of computational tasks
(see, for example, [Mon16]). Recent progress towards implementing limited quantum
devices has added urgency to the already important question of how a classical veri-
fier can test a quantum device. This verifier could be an experimentalist running a new
experimental setup; a consumer who has purchased a purported quantum device; or
a client who wishes to delegate some task to a quantum server. In all cases, the user
would like to exert some form of control over the quantum device. For example, the
experimentalist may think that she is testing that a particular experiment prepares a
certain quantum state by performing a series of measurements, i.e. by state tomogra-
phy, but this assumes some level of trust in the measurement apparatus being used.
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For a classical party to truly test a quantum system, that system should be modeled
in a device-independent way, having classical inputs (e.g. measurement settings) and
classical outputs (e.g. measurement results).

Tests of quantum mechanical properties of a system first appeared in the form
of Bell tests [Bel64/CHSH69]. In a Bell test, a verifier asks classical questions to a
quantum-device and receives classical answers. These tests make one crucial assump-
tion on the system to be tested: that it consists of two spatially isolated components
that are unable to communicate throughout the experiment. One can then upper bound
the value of some statistical quantity of interest subject to the constraint that the two
devices do not share any entanglement. Such a bound is referred to as a Bell inequality.
While the violation of a Bell inequality can be seen as a certificate of entanglement,
the area of self-testing, first introduced in [MYO04]], allows for the certification of much
stronger statements, including about which measurements are being performed, and on
which state. Informally, a robust rigidity theorem is a statement about which kind of
apparatus, quantum state and measurements, must be used by a pair of isolated devices
in order to succeed in a given statistical test. Following a well-established tradition, we
will refer to such tests as games, call the devices players (or provers), and the quan-
tum state and measurements that they implement the strategy of the players. A rigidity
theorem is a statement about the necessary structure of near-optimal strategies for a
game.

In 2012, Reichardt, Unger and Vazirani proved a robust rigidity theorem for playing
a sequence of n CHSH games [RUV13|. Aside from its intrinsic interest, this rigid-
ity theorem had two important consequences. One was the first device-independent
protocol for quantum key distribution. The second was a protocol whereby a com-
pletely classical verifier can test a universal quantum computer consisting of two non-
communicating devices. The resulting protocol for delegating quantum computations
has received a lot of attention as the first classical-verifier delegation protocol. The task
is well-motivated: for the foreseeable future, making use of a quantum computer will
likely require delegating the computation to a potentially untrusted cloud service, such
as that announced by IBM [Cas17].

Unfortunately, the complexity overhead of the delegation protocol from [RUV 13|,
in terms of both the number of EPR pairs needed for the provers and the overall time
complexity of the provers as well as the (classical) verifier, while polynomial, is pro-
hibitively large. Although the authors of [RUV13]] do not provide an explicit value for
the exponent, in [HPDF13] it is estimated that their protocol requires resources that
scale like Q)(g8192), where g is the number of gates in the delegated circuit (notwith-
standing the implicit constant, this already makes the approach thoroughly impractical
for even a 2-gate circuit!). The large overhead is in part due to a very small (although
still inverse polynomial) gap between the completeness and soundness parameters of
the rigidity theorem; this requires the verifier to perform many more Bell tests than the
actual number of EPR pairs needed to implement the computation, which would scale
linearly with the circuit size.

Subsequent work has presented significantly more efficient protocols for achieving
the same, or similar, functionality [McK16/GKW 15/HPDF15]. We refer to Tablefor
a summary of our estimated lower bounds on the complexity of each of these results
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(not all papers provide explicit bounds, in which case our estimates, although generally
conservative, should be taken with caution). Prior to our work, the best two-prover
delegation protocol required resources scaling like g2048 for delegating a g-gate circuit.
Things improve significantly if we allow for more than two provers, however, the most
efficient multi-prover delegation protocols still required resources that scale as at least
Q(g*logg) for delegating a g-gate circuit on 1 qubits. Since we expect that in the
foreseeable future most quantum computations will be delegated to a third-party server,
even such small polynomial overhead is unacceptable, as it already negates the quantum
advantage for a number of problems, such as quantum search.

The most efficient classical-verifier delegation protocols known [FH15INV17], with
poly(n) and 7 provers, respectively, require resources that scale as O(g3), but this ef-
ficiency comes at the cost of a technique of “post-hoc” verification. In this technique,
the provers must learn the verifier’s input even before they are separated, so that they
can prepare the history state for the computation As a result, these protocols are not
blin Moreover, while the method does provide a means for verifying the outcome of
an arbitrary quantum computation, in contrast to [RUV13] it does not provide a means
for the verifier to test the provers’ implementation of the required circuit on a gate-
by-gate basis. Other works, such as [HH16|], achieve two-prover verifiable delegation
with complexity that scales like O(g*log g), but in much weaker models; for exam-
ple, in [HH16| the provers’ private system is assumed a priori to be in tensor product
form, with well-defined registers. General techniques are available to remove the strong
assumption, but they would lead to similar large overhead as previous results.

In contrast, in the setting where the verifier is allowed to have some limited quan-
tum power, such as the ability to generate single-qubit states and measure them with
observables from a small finite set, efficient schemes for blind verifiable delegation
do exist [ABE10/FK17,Mor14)Brol 8l HM15IMF16JFH17MTH17] (see also [Fit16|] for
a recent survey). In this case, only a single prover is needed, and the most efficient
single-prover quantum-verifier protocols can evaluate a quantum circuit with g gates in
time O(g). The main reason these protocols are much more efficient than the classical-
verifier multi-prover protocols is that they avoid the need for directly testing any of the
qubits used by the prover, instead requiring the trusted verifier to directly either prepare
or measure the qubits used for the computation.

New rigidity results. We overcome the efficiency limitations of multi-prover delegation
protocols by introducing a new robust rigidity theorem. Our theorem allows a classical
verifier to certify that two non-communicating provers apply a measurement associated
with an arbitrary m-qubit tensor product of single-qubit Clifford observables on their
respective halves of m shared EPR pairs. This is the first result to achieve self-testing
for such a large class of measurements. The majority of previous works in self-testing
have been primarily concerned with certifying the state and were limited to simple

1 Using results of Ji [Jil6], this allows the protocol to be single-round. Alternatively, the state
can be created by a single prover and teleported to the others with the help of the verifier,
resulting in a two-round protocol.

2 Blindness is a property of delegation protocols, which informally states that the prover learns
nothing about the verifier’s private circuit.
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Provers Rounds Total Resources Blind
RUV 2012 [RUVI3]| 2 poly(n) > ¢8192 yes
McKague 2013 [McK16] poly(n) poly(n) > 2153¢22 yes
GKW 2015 [GKWI3] 2 poly(n) > ¢?048 yes
HDF 2015 [HPDF13]| poly(n) poly(n) ©(g*logg)  yes
Verifier-on-a-Leash Protocol (Section 4))|2 O(depth) ©(glogg) yes
Dog-Walker Protocol (Section 2 0(1) O(glogyg) no

Table 1: Resource requirements of various delegation protocols in the multi-prover
model. We use 7 to denote the number of qubits and g the number of gates in the
delegated circuit. “depth” refers to the depth of the delegated circuit. “Total Resources”
refers to the gate complexity of the provers, the number of EPR pairs of entanglement
needed, and the number of bits of communication in the protocol. To ensure fair com-
parison, each protocol is required to produce the correct answer with probability 99%.
For all protocols except our two new protocols, this requires a polynomial number of
sequential repetitions, which is taken into account when computing the total resources.

single-qubit measurements in the X-Z plane. Prior self-testing results for multi-qubit
measurements only allow to test for tensor products of oy and oz observables. While
this is sufficient for verification in the post-hoc model of [FH13], testing for ox and
oz observables does not directly allow for the verification of a general computation
(unless one relies on techniques such as process tomography [RUV 13]], which introduce
substantial additional overhead).

Our first contribution is to extend the “Pauli braiding test” of [NV 17], which allows
to test tensor products of oy and oz observables with constant robustness, to allow for
oy observables as well. This is somewhat subtle due to an ambiguity in the complex
phase that cannot be detected by any classical two-player test; we formalize the ambi-
guity and show how it can be effectively accounted for. Our second contribution is to
substantially increase the set of elementary gates that can be tested, to include arbitrary
m-qubit tensor products of single-qubit Clifford observables. This is achieved by intro-
ducing a new “conjugation test”, which tests how an observable applied by the provers
acts on the Pauli group. The test is inspired by general results of Slofstra [Slo16]], but is
substantially more direct.

A key feature of our rigidity results is that their robustness scales independently of
the number of EPR pairs tested, as in [NV17]]. This is crucial for the efficiency of our
delegation protocols. The robustness for previous results in parallel self-testing typically
had a polynomial dependence on the number of EPR pairs tested. We give an informal
statement of our robust rigidity theorem.

Theorem 1 (Informal). Let m € Z~. Let G be a fixed, finite set of single-qubit Clif-
ford observables. Then there exists an efficient two-prover test RIGID(G, m) with O(m)-
bit questions (a constant fraction of which are of the form W € G™) and answers such
that the following properties hold:
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— (Completeness) There is a strategy for the provers that uses m + 1 EPR pairs and
succeeds with probability at least 1 — e~ M) in the test.

— (Soundness) For any € > 0, any strategy for the provers that succeeds with proba-
bility 1 — € in the test must be poly (¢)-close, up to local isometries, to a strategy
in which the provers begin with (m + 1) EPR pairs and is such that upon receipt of
a question of the form W € G™ the prover measures the “correct” observable W.

Although we do not strive to obtain the best dependence on €, we believe it should
be possible to obtain a scaling of the form C+/¢ for a reasonable constant C. We discuss
the test in Section[3] The complete analysis can be found in the full version of the paper.

New delegation protocols. We employ the new rigidity theorem to obtain two new
efficient two-prover classical-verifier protocols in which the complexity of verifiably
delegating a g-gate quantum circuit solving a BQP problem scales as O(g log g)EI

We achieve our protocols by adapting the efficient single-prover quantum-verifier
delegation protocol introduced by Broadbent [Brol8|] (we refer to this as the “EPR
protocol”), which has the advantage of offering a direct implementation of the delegated
circuit, in the circuit model of computation and with very little modification needed to
ensure verifiability, as well as a relatively simple and intuitive analysis.

Our first protocol is blind, and requires a number of rounds of interaction that scales
linearly with the depth of the circuit being delegated. The second protocol is not blind,
but only requires a constant number of rounds of interaction with the provers. Our
work is the first to propose verifiable two-prover delegation protocols that overcome
the prohibitively large resource requirements of all previous multi-prover protocols,
requiring only a quasilinear amount of resources, in terms of number of EPR pairs
and time. However, notwithstanding our improvements, a physical implementation of
verifiable delegation protocols remains a challenging task for the available technology.

We introduce the protocols in more detail. The protocols provide different methods
to delegate the quantum computation performed by the quantum verifier from [Brol8]|
to a second prover (call him PV for Prover V). The rigidity test is used to verify that
the second prover indeed performs the same actions as the honest verifier, which are
sequences of single-qubit measurements of Clifford observables from the set ¥ =
{X,Y,Z,F,G} (where F and G are defined in (2)).

In the first protocol, one of the provers plays the role of Broadbent’s prover (call him
PP for Prover P), and the other plays the role of Broadbent’s verifier (PV). As PV just
performs single-qubit and Bell-basis measurements, universal quantum computational
power is not needed for this prover. The protocol is divided into two sub-games; which
game is played is chosen by the verifier by flipping a biased coin with appropriately
chosen probabilities.

— The first game is a sequential version of the rigidity game RIGID(X, 1) (from The-
orem|[T) described in Figure[9] This aims to enforce that PV performs precisely the
right measurements;

3 The log ¢ overhead is due to the complexity of sampling from the right distribution in rigidity
tests. We leave the possibility of removing this by derandomization for future work. Another
source of overhead is in achieving blindness: in order to hide the circuit, we encode it as part
of the input to a universal circuit, introducing a factor of O(log g) overhead.
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— The second game is the delegation game, described in Figures [6] [7} and [8] and
whose structure is summarized in Figure 4] Here the verifier guides PP through the
computation in a similar way as in the EPR Protocol.

We remark that in both sub-games, the questions received by PV are of the form
W € E" where £ = {X,Y,Z,F,G} is the set of measurements performed by the
verifier in Broadbent’s EPR protocol. The questions for PV in the two sub-games are
sampled from the same distribution. This ensures that the PV is not able to tell which
kind of game is being played. Hence, we can use our rigidity result of Theorem [I] to
guarantee honest behavior of PV in the delegation sub-game. We call this protocol
Verifier-on-a-Leash Protocol, or “leash protocol” for short.

The protocol requires (24 + 1) rounds of interaction, where d is the depth of the
circuit being delegated (see Section[2.3|for a precise definition of how this is computed).
The protocol requires O(n + ¢) EPR pairs to delegate a g-gate circuit on 1 qubits, and
the overall time complexity of the protocol is O(glog g). The input to the circuit is
hidden from the provers, meaning that the protocol can be made blind by encoding
the circuit in the input, and delegating a universal circuit. We note that using universal
circuits incurs a log n factor increase in the depth of the circuit [BEGHI10].

The completeness of the protocol follows directly from the completeness of [Brol8].
Once we ensure the correct behavior of PV using our rigidity test, soundness follows
from [Brol8]] as well, since the combined behavior of our verifier and an honest PV is
nearly identical to that of Broadbent’s verifier.

The second protocol also starts from Broadbent’s protocol, but modifies it in a dif-
ferent way to achieve a protocol that only requires a constant number of rounds of inter-
action. The proof of security is slightly more involved, but the key ideas are the same:
we use a combination of our new self-testing results and the techniques of Broadbent’s
protocol to control the two provers, one of which plays the role of Broadbent’s verifier,
and the other the role of the prover. Because of the more complicated “leash” struc-
ture in this protocol, we call it the Dog-Walker Protocol. Like the leash protocol, the
Dog-Walker Protocol has overall time complexity O(glog g). Unlike the leash proto-
col, the Dog-Walker protocol is not blind. In particular, while PV and PP would have
to collude after the protocol is terminated to learn the input in the leash protocol, in the
Dog-Walker protocol, PV simply receives the input in clear.

Based on the Dog-Walker Protocol, it is possible to design a classical-verifier two-
prover protocol for all languages in QMA. This is achieved along the same lines as
the proof that QMIP = MIP* from [RUV13]]. The first prover, given the input, creates
the QMA witness and teleports it to the second prover with the help of the verifier. The
verifier then delegates the verification circuit to the second prover, as in the Dog-Walker
Protocol; the first prover can be re-used to verify the operations of the second one.

Subsequent work. Bowles et al. [BvCA 18] have independently re-derived a variant of
our rigidity test for multi-qubit oy, oy and 0z observables in the context of entangle-
ment certification protocols in quantum networks. Their self-test result has a slightly
smaller set of questions but significantly weaker robustness bounds.

Recently [Gril7|] proposed the first protocol for verifiable delegation of quantum
computation by classical clients where such space-like separation can replace the non-
communication assumption, but his protocol is not blind.
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Open questions and directions for future work. We have introduced a new rigidity the-
orem and shown how it can be used to transform a specific quantum-verifier delegation
protocol, due to Broadbent, into a classical-verifier protocol with an additional prover,
while suffering very little overhead in terms of the efficiency of the protocol. We believe
that a similar transformation could be performed starting from delegation protocols
based on other models of computation, such as the protocol in the measurement-based
model of [EK17] or the protocol based on computation by teleportation considered
in [RUV 13|}, and would lead to similar efficiency improvements.

Recently, [HZM ™ 17|] provided an experimental demonstration of a two-prover del-
egation protocol based on [RUV13] for a 3-qubit quantum circuit based on Shor’s algo-
rithm to factor the number 15; in order to obtain an actual implementation, necessitating
“only” on the order of 6000 CHSH tests, the authors had to make the strong assump-
tion that the devices behave in an 1.i.d. manner at each use, and could not use the most
general testing results from [RUV13]]. We believe that our improved rigidity theorem
could lead to an implementation that does not require any additional assumption. We
also leave as an open problem investigating whether (a variant of) our protocol can be
made fault-tolerant, making it more suitable for future implementation.

We note that our protocols require the verifier to communicate with one prover af-
ter at least one round of communication with the other has been completed. Therefore,
the requirement that the provers do not communicate throughout the protocol cannot
be enforced through space-like separation, and must be taken as an a priori assump-
tion. Since the protocol of [Gril7|] is not blind, it is an open question whether there
exists a two-prover delegation protocol that consists of a single round of simultane-
ous communication with each prover, and is blind and verifiable. We also wonder if
the fact that blindness is compromised after the provers collude is unavoidable in this
model. A different avenue to achieve this is to rely on computational assumptions on the
power of the provers to achieve protocols with more properties (non-interactive, blind,
verifiable) [DSS16/ADSS17/Mah17/Mah18]], albeit not necessarily in a truly efficient
manner.

Finally, due to its efficiency and robustness, our ridigity theorem is a potentially
useful tool in many other cryptographic protocols. For instance, an interesting direction
to explore is the possibility of exploiting our theorem to achieve more efficient protocols
for device-independent quantum key distribution, entanglement certification or other
cryptographic protocols involving more complex untrusted computation of the users.

Organization. In Section [2] we give the necessary preliminaries, including outlining
Broadbent’s EPR Protocol (Section [2.3). In Section [3| we introduce our new rigidity
theorems. In Section[d} we present our first protocol, the leash protocol, and in Section[5]
we discuss our second protocol, the Dog-Walker Protocol.
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2 Preliminaries

2.1 Notation

We often write x = (x1,...,x,) € {0,1}" for a string of bits, and W = Wy - - - W, €
> for a string, where X is a finite alphabet. If S C {1, el m} we write Ws for the
sub-string of W indexed by S. For an event E, we use 1f to denote the indicator variable
for that event, so 1p = 1if E is true, and otherwise 1 = 0. We write poly (¢) for O(¢°),
where c is a universal constant that may change each time the notation is used.

‘H is a finite-dimensional Hilbert space. We denote by U(7) the set of unitary op-
erators, Obs(7) the set of binary observables (we omit the term “binary” from here on;
in this paper all observables are binary) and Proj(7{) the set of projective measurements
on H respectively. We let |[EPR) denote an EPR pair:

1
N

Observables. We use capital letters X, Z, W, ... to denote observables. We use greek
letters o, T with a subscript oy, Ty, to emphasize that the observable W specified as
subscript acts in a particular basis. For example, X is an arbitrary observable but oy is
specifically the Pauli X matrix defined in ().

For a € {0,1}" and commuting observables oy, ..., ow,, we write oy (a) =

n a; : st — 40 1 (/-
1T, (awz.) i. The associated projective measurements are oy, = Oy, — Ow, and oy, =

[EPR) = — (]00) + [11)).

E;(—1)*“gw(a). Often the oy, will be single-qubit observables acting on distinct
qubits, in which case each is implicitly tensored with identity outside of the qubit on
which it acts.

Pauli and Clifford groups. Let

= L0 , O0Ox = 01 , Oy = Q_l and o0y = 10 (1)
01 10 i 0 0-1

denote the standard Pauli matrices acting on a qubit. The single-qubit Weyl-Heisenberg
group
HY = H(Zy) = {(~1)0x(a)o2(b), a,b,c € {0,1}}

is the matrix group generated by the Pauli ox and 07. We let H(") = H (Z%) be the

direct product of 1 copies of HD  The n-qubit Clifford group is the normalizer of H M)
in the unitary group, up to phase:

Gl = {G e U((C?)®") : GoG' e H™ Vo e HMY.
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Some Clifford observables we will use include

ox + 0z ox — 0z —0x + 0y ox + 0y
oH=—F%=—, Og=—7" 0p=—-7— 0c=—7 (2
V2 V2 V2 V2
Note that oy and opr are characterized by oxoyox = oy and ozogoy = —og.
Similarly, or and o are characterized by oxorox = —0g and oyopoy = 0.

2.2 Quantum circuits

We use capital letters in sans-serif font to denote gates. We work with the universal
quantum gate set {CNOT,H, T}, where the controlled-not gate is the two-qubit gate
with the unitary action

CNOT|by, ba) = |by, by @ by),

and the Hadamard and T gates are single-qubit gates with actions
1
V2

respectively. We will also use the following gates:

HIb) = —= (10) + (=1)"[1)) and TIp) = e™/4]p),

X|b) = [b& 1), Z|b) = (=1)°|b), and P|b) = i’|b).

Measurements in the Z basis (or computational basis) will be denoted by the standard
measurement symbol:

To measure another observable, W, we can perform a unitary change of basis Uy before
the measurement in the computational basis.

We assume that every circuit has a specified output wire, which is measured at the
end of the computation to obtain the output bit. Without loss of generality, we can
assume this is always the first wire. For an n-qubit system, we let IT;, for b € {0,1},
denote the orthogonal projector onto states with |b) in the output wire: |b) (b| ® Id. For
example, the probability that a circuit Q outputs 0 on input |x) is [|[IToQ|x) ||2

We can always decompose a quantum circuit into layers such that each layer con-
tains at most one T gate applied to each wire. The minimum number of layers for which
this is possible is called the T depth of the circuit. We note that throughout this work,
we will assume circuits are compiled in a specific form that introduces extra T gates
(see the paragraph on the H gadget in Section[2.3)). The T depth of the resulting circuit
is proportional to the depth of the original circuit.

2.3 Broadbent’s EPR Protocol

In this section we summarize the main features of a delegation protocol introduced
in [Brol8], highlighting the aspects that will be relevant to understanding our subse-
quent adaptation into two-prover protocols. The “EPR Protocol” from [Brol8] involves
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the interaction between a verifier Vepr and a prover P. We write Pgppr for the “hon-
est” behavior of the prover. The verifier Vepg has limited quantum powers. Her goal
is to delegate a BQP computation to the prover P in a verifiable way. Specifically, the
verifier has as input a quantum circuit Q on 7 qubits and an input string x € {0,1}",
and the prover gets as input Q. The verifier and prover interact. At the end of the pro-
tocol, the verifier outputs either accept or reject. The protocol is such that there exist

values psound and p compl with psound < p compl such that p compl — Psound> called the
soundness-completeness gap, is a constant independent of input size, and moreover:

Completeness: If the prover is honest and ||ITpQ|x) ||2 > 2/3, then the verifier out-
puts accept with probability at least peompl;

Soundness: If [|ITpQ|x) H2 < 1/3, then the probability the verifier outputs accept is
at most Psound-

In the EPR protocol, Vepg and Pgpg are assumed to share (1 + ) EPR pairs at the
start of the protocol, where ¢ is the number of T gates in Q and n the number of input
bits. (In [Brol8]] the EPR protocol is only considered in the analysis, and it is assumed
that the EPR pairs are prepared by the verifier.) The first # EPR pairs correspond to the
input to the computation; they are indexed by N = {1, ..., n}. The remaining pairs are
indexedby T = {n+1,...,n 4 t}; they will be used as ancilla qubits to implement
each of the T gates in the delegated circuit.

The behavior of Vepr depends on a round type randomly chosen by Vpr after her
interaction with Pppgr. There are three possible round types:

— Computation round (» = 0): the verifier delegates the computation to Pppg, and at
the end of the round can recover its output if Prpr behaves honestly;
— X-testround (r = 1) and Z-test round (r = 2): the verifier tests that Pepg behaves
honestly, and rejects if malicious behavior is detected.
For some constant p, V chooses r = 0 with probability p, and otherwise chooses
r € {1,2} with equal probability. Since the choice of round type is made after inter-
action with Prpr, Pepr’s behavior cannot depend on the round type. In particular, any
deviating behavior in a computation round is reproduced in both types of test rounds.
The analysis amounts to showing that any deviating behavior that affects the outcome
of the computation will be detected in at least one of the test rounds.

In slightly more detail, the high-level structure of the protocol is the following.
Vepr measures her halves of the n qubits in N in order to prepare the input state on
Prpr’s system. As a result the input is quantum one-time padded with keys that depend
on Vepr’s measurement results. For example, in a computation round, Vgpr measures
each input qubit in the Z basis, and gets some result d € {0,1}", meaning the input on
Pgpr’s side has been prepared as X% |0)®" . In [Brol8], the input is always considered to
be 0, but we can also prepare an arbitrary classical input x € {0,1}" by reinterpreting
the one-time pad key as a = d @ x so that the input state on Pgpg’s side is X?|x). In a
test round, on the other hand, the input is prepared as the one-time pad of either |0)®"
or |+)®". Note that as indicated in Figure [2| this choice of measurements will be made
after the interaction with Prpr has taken place.

The honest prover Peppr applies the circuit Q, which we assume is compiled in
the universal gate set {H, T, CNOT}, to his one-time padded input. We will shortly
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describe gadgets that Pepg can apply in order to implement each of the three gate
types. The gadgets are designed in a way that in a test round each gadget amounts to
an application of an identity gate; this is what enables VEpr to perform certain tests in
those rounds that are meant to identify deviating behavior of a dishonest prover. After
each gadget, the one-time padded keys can be updated by Vgpgr, who is able to keep
track of the keys at any point in the circuit using the update rules in Table

Key Update Rule
Computation Round (a]-,bj) — (aj +cibj+eitajt+ci+ (aj +¢i)zi)
T X-Test, even parity; or Z-test, odd parity (aj, b/') — (e;,0)
Z-Test, even parity; or X-test, odd parity (aj,bj) < (0,bj +e; +z;)
H (aj,by) (b))
CNOT (u]-,bj,a/-r,bj/) “— (u/-,bj+bj/,aj+a]/,bj/)

Table 2: Rules for updating the one-time-pad keys after applying each type of gate in
the EPR Protocol, in particular: after applying the i-th T gate to the j-th wire; applying
an H gate to the j-th wire; or applying a CNOT gate controlled on the j-th wire and
targeting the j'-th wire.

We now describe the three gadgets, before giving a complete description of the
protocol.

CNOT Gadget To implement a CNOT gate on wires j and j/, Pppg simply performs the
CNOT gate on those wires of his input qubits. The one-time pad keys are changed by the
update rule in Table[2] because CNOT - X412 @ X% 2% = X% 2%+ @ X"+ 2V -
CNOT. Note that CNOT|0)|0) = [0)|0) and CNOT|+)|+) = |+)|+), so in the test
runs, Pgpg is applying the identity.

H Gadget To implement an H gate on wire j, Pepr simply performs the H on wire
j, and the one-time-pad keys are changed as in Table [2| Unlike CNOT, H does not
act as the identity on |0) and |4), so it is not the identity in a test round. To remedy
this, assume that Q is compiled so that every H gate appears in a pattern H(TTH)k,
where the maximal such k is odd. This can be accomplished by replacing each H by
HTTHTTHTTH, which implements the same unitary. In test rounds, the T gadget,
described shortly, implements the identity, and since H(Id H)k for odd k implements
the identity, H(TTH)¥ will also have no effect in test rounds.

Parity of a T Gate Within a pattern H(TTH)¥, the H has the effect of switching between
an X-test round scenario (the state |0)) and a Z-test round scenario (the state |+)). In
order to consistently talk about the type of a round while evaluating the circuit, we can
associate a parity with each T gate in the circuit. The parity of the T gates that are not
part of the pattern H(TTH)¥ will be defined to be even. A H will always flip the parity,
so that within such a pattern, the first two T gates will be odd, the next two will be even,
etc., until the last two T gates will be odd again.
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T Gadget The gadget for implementing the i-th T gate on the j-th wire is performed on
Prpr’s j-th input qubit, and his i-th auxiliary qubit (indexed by n + i), which we can
think of as being prepared in a particular auxiliary state by Vppr measuring her half of
the corresponding EPR pair, as shown in Figure[I] The gadget depends on a random bit
z; that is chosen by Vepr and sent to the prover.

Verifier (VepRr) {

Fig. 1: The gadget for implementing the i-th T gate on the j-th wire. The gate Uy,
implementing the change of basis associated with observable W; is applied as part of
the procedure Vipp (see Figure and is determined by the round type 7, the parity of
the i-th T gate, z;, ¢;, and a; (the X-key going into the i-th T gate), as in Table

Uy, (observable W;)
) @@z =0 HT (observable G)
Computation Round ;
a;®cdz; =1 HPT (observable F)
even T gate Id (observable Z)
_ zi =0 H (observable X
X-Test Round odd T gate i ( v )
zi =1 HP (observable Y)
odd T gate Id (observable Z)
Z-Test Round z; =0 H (observable X)
even T gate
zi=1 HP (observable Y)

Table 3: The choice of Uy, in the T gadget. We also indicate the observable W; associ-
ated with the final measurement W; = U}L,viZ Uw;.

The EPR Protocol. We show how the gadgets just described are used in the complete
protocol. We first describe the protocol for Vepr below. For later convenience we have
divided the action of Vgpg into classical actions and a single quantum subroutine Vi,
depending on the round type.

The procedure Vip, measures each of the n + t EPR halves according to some
observable that depends on r, ¢, and z. In the case of a computation round, VBP R Mmea-
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Fig.2: This figure describes how different

pieces of the protocol fit together. Vppr

ze {01}t and Pppr share n 4 t EPR pairs. The hon-

est prover Pppr can be seen as a proce-

Zfee{?(’),ll}; Perg dure that acts on n + f qubits — the EPR

X6z pair halves — depending on a f-bit string
z. We have separated the quantum part of

VEepr into its own procedure, called Vipp,

e where ¥ € {0,1,2} indicates the round

| type, which Vgpgr runs on her n + t EPR

abe halves, and the 2f bits ¢ and z. Aside from
Vepr running Vipp, VEPR is classical.

sures the qubits in T adaptively. We describe the steps of Vgpr, Vipr and the honest
behaviour of Pgpg in Fig.

Completeness and Soundness. We summarize the relevant part of the analysis of the
EPR protocol from [Brol8]. First suppose Pgpg behaves honestly. If | TTpQ|0™) ||* = p.
then in a computation round, Vgpgr outputs accept with probability p, whereas in a test
round, Vepr outputs accept with probability 1. This establishes completeness of the
protocol:

Theorem 2 (Completeness). Suppose the verifier executes the EPR Protocol, choosing
r = 0 with probability p, on an input (Q, |x)) such that || IToQ|x) H2 > 1— 6. Then the
probability that Vepr accepts when interacting with the honest prover Pepg is at least
(1—=p)+p1-9)

The following theorem is implicit in [Brol8| Section 7.6], but we include a brief
proof sketch:

Theorem 3 (Soundness). Suppose the verifier executes the EPR Protocol, choosing
r = 0 with probability p, on an input (Q, |x)) such that |TToQ|x)||* < 6. Let Pior
be an arbitrary prover such that Pfpy is accepted by Vgpr with probability q; condi-
tioned on v # 0, and q. conditioned on v = 0. Then the prover’s overall acceptance

probability is pq. + (1 — p)qs, and
ge < 2(q:6+ (1 —q1)) — 6.
Proof (Proof sketch). Using the notation of [Brol8]l, let A = Y} nep |04le

For intuition, A should be thought of as the total weight on attacks that C(t)’flld change

the outcome of the computation, called non-benign attacks in [Brol8§]]. By [Brol8], the

probability of rejecting in a computation round is 1 — g, > (1 — J)(1 — A), whereas

the probability of rejecting in a test round is 1 — gq; > %A. Combining these gives

ge < 2(q10+ (1 —q1)) — 0.

4 Here, we consider the decomposition of the attack as a sum of tensors of Pauli A =
Yk Le{1,x,2,y} %R

2
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1. Vepg sends z € {0,1} to Pgpg, and receives back ¢ € {0,1}! and cp€{0,1}.

2. Vgpg chooses a random round type r € {0,1,2} and runs V[, (see Figure on her EPR
halves, x, ¢ and z, to obtain bits a,b € {0,1}" and e € {0,1}'.

3. VEpr applies the update rules from Tableon the initial keys (a, b), gate-by-gate, to obtain,
for every i € [t], the X-key before the i-th T gate is applied, a;, and the final X key for the
output wire, a’f. If r = 1 (X-test round) and there exists an 7 such that the i-th T gate is even
and ¢; # u; @ e;, output reject. If r = 2 (Z-test round) and there exists an 7 such that the i-th
T gate is odd and ¢; # a; @® e;, output reject. If ¥ € {0,1} (computation or X-test round)
and ¢y & a} # 0, output reject. Otherwise, output accept.

(a) Vepgr’s point of view.

Input: A circuit Q with t T gates, x € {0,1}", ¢,z € {0,1}, an n-qubit system indexed by N,
and a t-qubit system indexed by T.

1. Ifr e {0, 1}, measure each qubit in N in the Z basis, and otherwise measure in the X
basis, to get results d € {0,1}". 1fr = 0, set (a,b) = (d D x,0"); if r = 1, set
(a,b) = (d,0"); and if r = 2 set (a,b) = (0", d).

2. Going through Q gate-by-gate, use the update rules in Table|2|to update the one-time-pad
keys. For every i € [t], when the i-th T gate is reached, let a} be the X key before the i-th T
gate is applied. Choose an observable W; according to Tablein which to measure the i-th
qubit in T, corresponding to the i-th T gate, obtaining result e;.

(b) The procedure Vipr, employed by VEpg.

1. Receive z € {0,1} from Vgpg.

2. Evaluate Q gate-by-gate using the appropriate gadget for each gate. In particular, use z; to
implement the i-th T gadget, and obtain measurement result c;.

3. Measure the output qubit to obtain ¢ iz and return ¢ and ¢ 1 to VEPR.

(c) Honest prover strategy Prppr

Fig. 3: The EPR Protocol.

3 Rigidity

Each of our delegation protocols includes a rigidity test that is meant to verify that
one of the provers measures his half of shared EPR pairs in a basis specified by the
verifier, thereby preparing one of a specific family of post-measurement states on the
other prover’s space; the post-measurement states will form the basis for the delegated
computation. This will be used to certify that one of the provers in our two-prover
schemes essentially behaves as the quantum part of Vgpg would in the EPR protocol.
In this section we outline the structure of the test, giving the important elements for
its use in our delegation protocols. We refer the reader to the full version of the paper
for a detailed presentation, including the soundness analysis. The test is parametrized
by the number m of EPR pairs to be used. The test consists of a single round of clas-
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sical interaction between the verifier and the two provers. With constant probability
the verifier sends one of the provers a string W chosen uniformly at random from X"
where the set ¥ = {X, Y,Z,F, G} contains a label for each single-qubit observable to
be tested. With the remaining probability, other queries, requiring the measurement of
observables not in ™ (such as the measurement of pairs of qubits in the Bell basis),
are sent.

In general, an arbitrary strategy for the provers consists of an arbitrary entangled
state |¢) € Ha ® Hpg (which we take to be pure), and measurements (which we take
to be projective) for each possible questionE] This includes an m-bit outcome projective
measurement { W"}, {0,1ym for each of the queries W € 2™, Our rigidity result states
that any strategy that succeeds with probability 1 — € in the test is within poly (¢) of the
honest strategy, up to local isometries (see Theorem [4] for a precise statement). This is
almost true, but for an irreconcilable ambiguity in the definition of the complex phase
v/—1. The fact that complex conjugation of observables leaves correlations invariant
implies that no classical test can distinguish between the two nontrivial inequivalent
irreducible representations of the Pauli group, which are given by the Pauli matrices
0x, 0y, 07 and their complex conjugates oy = oy, 0z = 0z, 0Oy = —0y respectively.
In particular, the provers may use a strategy that uses a combination of both representa-
tions; as long as they do so consistently, no test will be able to detect this behaviorﬁ The
formulation of our result accommodates this irreducible degree of freedom by forcing
the provers to use a single qubit, the (1 + 1)-st, to make their choice of representation
(so honest provers require the use of (1 + 1) EPR pairs to test the operation of m-fold
tensor products of observables from Xs).

Theorem [4| below summarizes the guarantees of our main test, which is denoted
as RIGID(X, m). Informally, Theorem 4| establishes that a strategy that succeeds in
RIGID(X, m) with probability at least 1 — € must be such that (up to local isometries):

— The players’ joint state is close to a tensor product of m EPR pairs, together with
an arbitrary ancilla register;

— The projective measurements performed by either player upon receipt of a query
of the form W € X are, on average over the uniformly random choice of W €
2™ close to a measurement that consists in first, measuring the ancilla register to
extract a single bit that specifies whether to perform the ideal measurements or their
conjugated counterparts, and second, measuring the player’s m half-EPR pairs in
either the bases indicated by W, or their complex conjugate, depending on the bit
obtained from the ancilla register.

For an observable W € %, let oy = 07, — ‘TV_vl be its eigendecomposition, where
oy are the “honest” Pauli matrices defined in (T) and (). Foru € {£1} letoyy, , = oy

5 We make the assumption that the players employ a pure-state strategy for convenience, but it is
easy to check that all proofs extend to the case of a mixed strategy. Moreover, it is always pos-
sible to consider (as we do) projective strategies only by applying Naimark’s dilation theorem,
and adding an auxiliary local system to each player as necessary, since no bound is assumed
on the dimension of their systems.

6 See [RUV12, Appendix A] for an extended discussion of this issue, with a similar resolution
to ours.
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for W € ¥, and

ox_ =0y, 0y =0y 0y_ =0, o0p_=05" o5 =o0p".
(In words, oy, _ is just the complex conjugate of ¢y;,.) We note that for the purpose of
our delegation protocols, we made a particular choice of the set 3. The result generalizes
to any constant-sized set of single-qubit Clifford observables, yielding a test for m-fold
tensor products of single-qubit Clifford observables from .

Theorem 4. Let € > 0 and m an integer. Suppose a strategy for the players succeeds
with probability 1 — ¢ in test RIGID(X, m). For W € X" and D € {A, B} let {Wj},
be the measurement performed by prover D on question W. Let also ) be the state
shared by the players. Then for D € {A, B} there exists an isometry
Vb : Hp— (C)5" @ Hp
such that
1(Va @ Vi) [9) ag — [EPR) ™ @ [aux) z5]|” = O(V2), 3

and positive semidefinite matrices T) on A with orthogonal support, for A € {+,—},
such that Tr(t4) + Tr(1—) = 1 and

X

ue{£1}m

VaTrg((Ida @WE) [9)p|as(Ids @WE) ') V4

Wexm

m Ui

0w
- L (®@75)en|
~ Ofpoly(e)).

Moreover, players employing the honest strategy succeed with probability 1 — e~
in the test.

1

Q(m)

The proof of the theorem is based on standard techniques developed in the literature
on “rigidity theorems” for nonlocal games. We highlight two components. The first is a
“conjugation test” that allows us to extend the guarantees of elementary tests based on
the CHSH game or the Magic Square game, which test for Pauli oy and 07 observables,
to a test for single-qubit Clifford observables — since the latter are characterized by
their action on the Pauli group (see full version of the paper for details). The second
is an extension of the “Pauli braiding test” from [NV 17| to handle tensor products of
not only ox and oz, but also oy Pauli observables (see full version of the paper for
details). As already emphasized in the introduction, the improvements in efficiency of
our scheme are partly enabled by the strong guarantees of Theorem[d] and specifically
the independence of the final error dependence from the parameter m1.

4 The Verifier-on-a-Leash Protocol

4.1 Protocol and statement of results

The Verifier-on-a-Leash Protocol (or “Leash Protocol” for short) involves a classical
verifier and two quantum provers. The idea behind the Leash Protocol is to have a
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first prover, nicknamed PV for Prover V, carry out the quantum part of Vepgr from
Broadbent’s EPR Protocol by implementing the procedure Vi . (See Section for
a summary of the protocol and a description of Vrpg. Throughout this section we as-
sume that the circuit Q provided as input is compiled in the format described in Sec-
tion[2.3]). A second prover, nicknamed PP for Prover P, will play the part of the prover
Pepr. Unlike in the EPR Protocol, the interaction with PV (i.e. running Vi) will
take place first, and PV will be asked to perform random measurements from the set
2= {X, Y,Z,F, G}. The values z, rather than being chosen at random, will be chosen
based on the corresponding choice of observable. We let n be the number of input bits
and ¢ number of T gates in Q.

The protocol is divided into two sub-games; which game is played is chosen by the
verifier by flipping a biased coin with probability (py, pg = 1 — py).

— The first game is a sequential version of the rigidity game RIGID (X, 1) described in

Figure[9] This aims to enforce that PV performs precisely the right measurements;

— The second game is the delegation game, described in Figures [6] [7} and [§] and
whose structure is summarized in Figure 4] Here the verifier guides PP through the
computation in a similar way as in the EPR Protocol.

We call the resulting protocol the Leash Protocol with parameters (p;, p4). In both
sub-games the parameter m = ©(n + t) is chosen large enough so that with probability
close to 1 each symbol in ¥ appears in a random W € X" at least nn + f times. It is
important that PV is not able to tell which kind of game is being played. Notice also
that in order to ensure blindness, we will require that the interaction with PV in the
delegation game is sequential (more details on this are found in Section [4.4). In order
for the two sub-games to be indistinguishable, we also require that the rigidity game
RIGID(X, m) be played sequentially (i.e. certain subsets of questions and answers are
exchanged sequentially, but the acceptance condition in the test is the same). Note,
importantly, that the rigidity guarantees of RIGID(X, m) hold verbatim when the game
is played sequentially, since this only reduces the number of ways that the provers can
cheat. The following theorem states the guarantees of the Leash Protocol.

Theorem 5. There are constants pr,pg = 1 — p;, and A > 0 such that the following
hold of the Verifier-on-a-Leash Protocol with parameters (py, p4), when executed on

an input (Q, |x)).

— (Completeness:) Suppose that |[T1gQ|x)||? > 2/3. Then there is a strategy for PV
and PP that is accepted with probability at least peompl = pr(1— e_Q(”‘H)) +
8pa/9.

— (Soundness:) Suppose that ||T1gQ|x)||> < 1/3. Then any strategy for PV and PP
is accepted with probability at most psound = Pcompl — A-

Further, the protocol leaks no information about x to either prover individually, aside
from an upper bound on the length of x.

The proof of the completeness property is given in Lemma I} The soundness prop-
erty is shown in Lemma[4] Blindness is established in Section [4.4] We first give a de-
tailed description of the protocol. We start by describing the delegation game, specified
in Figures [6] [7] and [8] which describe the protocol from the verifier’s view, an honest
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PV’s view, and an honest PP’s view respectively. This will motivate the need for a se-
quential version of the game RIGID(X, m), described in Figure@ As we will show, the
rigidity game forces PV to behave honestly. Thus, for the purpose of exposition, we
assume for now that PV behaves honestly, which results in the joint behavior of PV
and V being similar to that of the verifier Vepr in the EPR Protocol.

From the rigidity game we may also assume
that PV and PP share m EPR pairs, labeled
AW, €zl {1,...,m}, for m = O(n+t). We will as-

en {0,134 sume that the circuit Q is' broken into d laye'rs,
B Wy € 2 Q = Q1...Qy, such that in every Q,, each wire
— has at most one T gate applied to it, after which no
es, € {01 | proverv | other gates are applied to that wire. We will sup-
5 pose the T gates are indexed from 1 to ¢, in order

By, Wi, € =/ of layer.
e, € {01}/ The protocol begins with an interaction be-
Verifer TN C ] tweep the verifier and P\./.. The verifier selects
a uniformly random partition A, Bq,...,B; of
en, € {1} {1,...,m}, with |[A| = ©O(n), and for every
zr, € {0,1}" ¢ e {1,...,d}, |By| = O(ty), where t; is the
5 Prover P number of T gates in Q,. The verifier also se-
er, € {0,137 lects a uniformly random W € X, and partitions
27, € {0,1}7 it into substrings W, and WBl, ...,Wp ,» meant
¢refo1) to contain observables to initialize the computa-
tion qubits and auxiliary qubits for each layer of

T gates respectively. The verifier instructs PV to
measure his halves of the EPR pairs using the ob-
servables Wy first, and then Wp,, ..., Wp > Se-
quentially. Upon being instructed to measure a set
of observables, PV measures the corresponding
half-EPR pairs and returns the results e to the verifier. Breaking this interaction into
multiple rounds is meant to enforce that, for example, the results output by PV upon
receiving Wg,, which we call ep,, cannot depend on the choice of observables Wp, ;.
This is required for blindness.

Fig.4: Structure of the delegation
game.

Once the interaction with PV has been completed, as in the EPR Protocol, V selects
one of three round types: computation (* = 0), X-test (r = 1), and Z-test (r = 2).
The verifier selects a subset N C A of size n of qubits to play the role of inputs to the
computation. These are chosen from the subset of A corresponding to wires that PV has
measured in the appropriate observable for the round type (see Table ). For example,
in an X-test round, PV’s EPR halves corresponding to input wires should be measured
in the Z basis so that PP is left with a one-time pad of the state |0)®", so in an X-test
round, the computation wires are chosen from the set {i € A : W; = Z}. The input
wires N are labeled by A7, ..., A).

The verifier also chooses subsets Ty = Tg U Tel» C By of sizes t;g and ty; =
ty — ty respectively, where t; is the number of odd T gates in the /-th layer of Q
(recall the definition of even and odd T gates from Section . The wires Tg and
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T} will play the role of auxiliary states used to perform T gates from the ¢-th layer.
They are chosen from those wires from B, whose corresponding EPR halves have been
measured in a correct basis, depending on the round type. For example, in an X-test
round, the auxiliaries corresponding to odd T gates should be prepared by measuring
the corresponding EPR half in either the X or Y basis (see Table , so in an X-test
round, T/,l is chosen from {i € By : W; € {X,Y}} (see Table@). We willlet 71, ..., 7T¢
label those EPR pairs that will be used as auxiliary states. In particular, the system 7;
will be used for the i-th T gate in the circuit, so if the i-th T gate is even, 7; should
be chosen from T = U,T?, and otherwise it should be chosen from T} = U, Tl}. The
verifier sends labels 77, ..., Tfand X7, ..., X, to PP, who will act as Pgpg onthe n + ¢
qubits specified by these labels.

Just as in the EPR Protocol, the input on PP’s system specified by &A7,..., X} is a
quantum one-time pad of either |x), |0)®", or |+)®", depending on the round type, with
V holding the keys (determined by e). Throughout the interaction, PP always maintains
a one-time pad of the current state of the computation, with the verifier in possession of
the one-time-pad keys. The verifier updates her keys as the computation is carried out,
using the rules in Table

From PP’s perspective, the protocol works just as the EPR Protocol, except that he
does not receive the bit z; needed to implement the T gadget until during the T gadget,
after he has sent V his measurement result c; (see Figure [5).

To perform the i-th T gate on the j-th wire, PP performs the circuit shown in Figure
[5] As Figure[5|shows, PV has already applied the observable specified by V to his half
of the EPR pair. The T gadget requires interaction with the verifier, to compute the bit
z;, which depends on the measured c;, the value W;, and one-time-pad key a i» however,
this interaction can be done in parallel for T gates in the same layer.

aj+ ¢ ifW; =G
aj+c;i+1 ifWy=F
zi=14zer {01} if W;=Z
0 ifW; =X
1 ifW; =Y

W; €r {X,Y,Z,G, F}

v Vv

Fig. 5: The gadget for implementing the i-th T gate, on the j-th wire.

It is simple to check that the T gadget in Figure [5]is the same as the T gadget for
the EPR Protocol shown in Figure (1| In the case of the leash protocol, W is chosen at
random, and then z is chosen accordingly, whereas in the case of the EPR Protocol, z
is chosen at random and then W is chosen accordingly.

We now give the precise protocols for V (Figure[6) and honest provers PV (Figure

and PP (Figure ().
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Computation Round X-test Round Z-test Round
N{iEAZWi:Z} {iEAZWi:Z} {iGAZWi:X}
T){ieBy:W; € {GF}} {i € By: W; =Z} {ieBy:W; € {X,Y}}
T{ieB: W, e {GF}}{ieB: W, e{XY}} {icB:Wi=Z}

Table 4: How the verifier chooses index sets T = T° U T! and N for each type of round.
These sets determine which systems are labeled by {7;}!_; and {Xj}?:l’ respectively.

Let (Q, x) be the input to the verifier, where Q is compiled in the form described in Section
Let n be the size of the input to Q. Let d be the T-depth, and for £ € {1,...,d} let ¢, be the
number of T gates in the /-th layer.

1. The verifier selects W €gr X™. She partitions {1,...,m} arbitrarily into non-overlapping
subsets A and By, ..., B such that W4 contains at least n copies of each symbol in X, and
foreach £ € {1,...,d}, Wp, contains at least t, copies of each symbol in X.

2. The verifier sends A, W4 to PV, who returns ey € {O, l}A. The verifier sequentially sends
(B1,Wg,), ..., (Bg, Wg,) to PV, each time receiving eg, € {0,1}% as answer.

3. The verifier selects a round type uniformly at random. She selects sets N C A and T, C By,
for¢ € {1,...,d}, of sizes |N| = n and | Ty| = ty, as follows:

Computation Round: N is chosen at random from {i € A : W; = Z}. Ty is chosen at
random from {i € B;: W; € {G,F}}. Shesets a = ey + x and b = 0".

X-test Round: N is chosen at random from {i € A : W; = Z}. Ty = Tj U T}, where T?
is of size ty chosen at random from {i € By : W; = Z} and Té1 is of size ty 1 chosen
at random from {i € By : W; € {X,Y}}. She sets a = ey and b = 0".

Z-test Round: N is chosen at random from {i € A : W; = X}. T) = T{ U T}, where T?
is of size t7 chosen at random from {i € By : W; € {X,Y}} and T} is of size t;
chosen at random from {i € By : W; = Z}. She sets a = 0" and b = ey.

The verifier sends the sets N and T?, TL}’ forall ¢ € {1,...,d}, to PP.

4. Forl =1,...,d,

(a) For each Clifford gate in the ¢-th layer, perform the appropriate key update (Table .

(b) The verifier receives ¢ = {c;};cr, from PP. If it’s an X-test round and i € T?, orit’s a
Z-test round and i € T?, reject if ¢; # aj + e;, where j is the wire to which the i-th T
gate is applied.

(c) Foreachi € Ty, the verifier computes z = {z; };cr, as follows:

Computation Round z; = a; + 1yw,—f +¢; ;
X-test Round ifi € TQ,Z,- €r {0,1}; elseifi € Tél, zi = ly,=y;
Z-test Round ifi € T, z; = 1y, _y;elseifi € T}, z; € {0,1}.

(d) The verifier sends z to PP and updates keys for each T gate applied (Table |Z[)

5. The verifier receives a bit ¢ r from PP. She outputs reject if it’s a computation or X-test round
and ¢ +ay # 0, where a ¢ 1s the final X-key on the output wire; and accept otherwise.

Fig. 6: The Delegation Game: Verifier’s point of view.

Finally, we describe the sequential version of the game RIGID(X, 1) in Figure@ It
is no different than RIGID (X, m), except for the fact that certain subsets of questions
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1. For/=0,1,...,d,
(a) PV receives a string Wg € %3, for some subset S of {1,...,m}, from V.
(b) Fori € S, PV measures his half of the i-th EPR pair using the observable indicated by
W;, obtaining an outcome ¢; € {0,1}.
(c) PV returns egto V.

Fig. 7: Honest strategy for PV

1. PP receives subsets N and T¢, T} of {1,...,m}, for ¢ € {1,...,d}, from the verifier.
2. For/=1,...,d,
(a) PP does the Clifford computations in the ¢-th layer.
(b) Foreachi € T, = Tg U Tg, PP applies a CNOT from 7; into the input register corre-
sponding to the wire on which this T gate should be performed, Xj, and measures this
wire to get a value ¢;. The register 7; is relabeled X;. He sends c1, = {c;}ieT, to V.
(c) PP receives z, = {z;}icT, from V. For each i € Ty, he applies P* to the correspond-
ing ;.
3. PP performs the final computations that occur after the d-th layer of T gates, measures the
output qubit, X7, and sends the resulting bit, ¢ f.toV.

Fig. 8: Honest strategy for PP

and answers are exchanged sequentially, but the acceptance condition is the same. As
mentioned earlier, running the game sequentially only reduces the provers’ ability to
cheat. Hence the guarantees from RIGID (£, 1) hold verbatim for the sequential version.

Letm, n, and t1, ..., t; be parameters provided as input, such that m = @(n+t1 + - - - + t4).

1. The verifier selects questions W, W’ € £, for the first and second player respectively, ac-
cording to the distribution of questions in the game RIGID(Z, m). She partitions {1,...,m}
at random into subsets A and By, for £ € {1,...,d}, of size |A| = ©(n) and |B;| = O(t,),
exactly as in Step 1 of the Delegation Game.

2. The verifier sends (A, Wa), (B1, Wg, ), .., (Bz, Wg,) and (A, W}), (B1, Wg, ), .., (Ba, Wg, )
in sequence to the first and second prover respectively. They sequentially return respec-
tively eq € {0,1}14], ep, € {0,1}B1], ep, € {0,1}Bsl and ¢/, € {0,1}14], ¢} €
{0,1}/B1], . e}y € {0, 1}IBdl,

3. The verifier accepts if and only if e, e and W, W' satisfy the winning condition of
RIGID(X, m).

Fig. 9: Sequential version of RIGID (X, ).
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4.2 Completeness

Lemma 1. Suppose the verifier executes the rigidity game with probability p, and
the delegation game with probability p; = 1 — p,, on an input (Q, |x)) such that
ITToQ|x)||?> > 2/3. Then there is a strategy for the provers which is accepted with
probability at least peompl = pr(1 — e~ Q) 4 %pd.

Proof. The provers PV and PP play the rigidity game according to the honest strategy,
and the delegation game as described in Figures [/| and [8| respectively. Their success
probability in the delegation game is the same as the honest strategy in the EPR Proto-
col, which is at least % + %% = g, by Theoremand since in our protocol the verifier
chooses each of the three types of rounds uniformly.

4.3 Soundness

We divide the soundness analysis into three parts. First we analyze the case of an honest
PV, and a cheating PP (Lemma [2)). Then we show that if PV and PP pass the rigidity
game with almost optimal probability, then one can construct new provers PV’ and PP/,
with PV’ honest, such that the probability that they are accepted in the delegation game
is not changed by much (Lemma [3)). In Lemma ] we combine the previous to derive
the desired constant soundness-completeness gap, where we exclude that the acceptance
probability of the provers in the rigidity game is too low by picking a p, large enough.

Lemma 2 (Soundness against PP). Suppose the verifier executes the delegation game
on input (Q, |x)) such that | T1oQ|x)||> < 1/3 with provers (PV,PP*) such that PV
plays the honest strategy. Then the verifier accepts with probability at most 7 /9.

Proof. Let PP* be any prover. Assume that PV behaves honestly and applies the mea-
surements specified by his query W on halves of EPR pairs shared with PP*. As a result
the corresponding half-EPR pair at PP* is projected onto the post-measurement state
associated with the outcome reported by PV to V.

From PP*, we define another prover, P*, such that if P* interacts with Vgpg, the
honest verifer for the EPR Protocol (Figure [3a), then VEpg rejects with the same prob-
ability that V would reject on interaction with PP*. The main idea of the proof can be
seen by looking at Figure [5} and noticing that: (1) the combined action of V and PV
is unchanged if instead of choosing the W;-values at random and then choosing z; as a
function of these, the z; are chosen uniformly at random, and then the W; are chosen as
a function of these; and (2) with this transformation, the combined action of V and PV
is now the same as the action of Vgpg in the EPR Protocol.

We now define P*. P* acts on a system that includes n + ¢ qubits that, in an honest
run of the EPR Protocol, are halves of EPR pairs shared with Vgpg. P* receives {z;}!_,
from Vgpg. P* creates m — (n + t) half EPR pairs (i.e. single-qubit maximally mixed
states) and randomly permutes these with his 7 + ¢ unmeasured qubits, n of which
correspond to computation qubits on systems X7, ..., X, — he sets N to be the indices
of these qubits — and t of which correspond to T-auxiliary states — he sets T9 and T
to be the indices of these qubits. P* simulates PP* on these m qubits in the following
way. First, P* gives PP* the index sets N, 79, and T!. In the ¢-th iteration of the loop
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(Step 2. in Figure , PP* returns some bits {c; };c7,, and then expects inputs {z; }c7,,
which P* provides, using the bits he received from Vgpg. Finally, at the end of the
computation, PP* returns a bit c¢, and P* outputs {c; };cr and cy.

This completes the description of P*. To show the lemma we argue that for any
input (Q, |x)) the probability that V outputs accept on interaction with PV and PP* is
the same as the probability that Vg pg outputs accept on interaction with P*, which is at
most 2q; + 1q. whenever [|TToQ|x)[|2 < 1/3, by Theorem Using 6 = %, Theorem
gives g < 3 — 44, which yields

2 1 5 2 7
— — < — — < —.
3!7t+3qc_9+9l7t_9

There are two reasons that Vrpg might reject: (1) in a computation or X-test round,
the output qubit decodes to 1; or (2) in an evaluation of the gadget in Figure |3| (either
an X-test round for an even T gate, or a Z-test round for an odd T gate) the condition
Ci=a;De; fails.

We first consider case (1). This occurs exactly when crdap = 1, where a ¥ is
the final X key of the output wire, held by Vepr. We note that ay is exactly the final
X key that V would hold in the Verifier-on-a-Leash Protocol, which follows from the
fact that the update rules in both the EPR Protocol and the leash protocol are the same.
Thus, the probability that Vepg finds vf & ay = 1 on interaction with P* is exactly the
probability that V finds c; & ay = 1 in Step 5 of Figure

Next, consider case (2). The condition ¢; # a i @ e; is exactly the condition in which
a verifier interacting with P* as in Figure [f] would reject (see Step 4.(b)).

Thus, the probability that Vepg outputs reject upon interaction with P* is exactly
the probability that V outputs reject on interaction with PP*, which, as discussed above,
is at most 7/9.

The following lemma shows soundness against cheating PV*.

Lemma 3. Suppose the verifier executes the leash protocol on input (Q, |x)) such that
ITToQ|x)||? < 1/3 with provers (PV*,PP*), such that the provers are accepted with
probability 1 — ¢, for some € > 0, in the rigidity game, and with probability at least q
in the delegation game. Then there exist provers PP' and PV' such that PV' applies the
honest strategy and PP" and PV’ are accepted with probability at least q — poly (¢) in
the delegation game.

Proof. By assumption, PP* and PV* are accepted in the rigidity game with probability
atleast 1 — €. Let V4, Vp be the local isometries guaranteed to exist by Theorem[d] and
{7)} the sub-normalized densities associated with PP*’s Hilbert space (recall that play-
ing the rigidity game sequentially leaves the guarantees from Theorem [ unchanged,
since it only reduces the provers’ ability to cheat).

First define provers PV and PP” as follows. PP” and PV initially share the state

') s = @IL4[EPR)EPR|ag @ ) [A)A |y @ [A)Alg @ (Ta)ar
re{t}

with registers AA’A” in the possession of PP” and BB’ in the possession of PV".
Upon receiving a query W € £, PV” measures B’ to obtaina A € {£}. If A = +
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he proceeds honestly, measuring his half-EPR pairs exactly as instructed. If A = —
he proceeds honestly except that for every honest single-qubit observable specified by
W, he instead measures the complex conjugate observable. Note that this strategy can
be implemented irrespective of whether W is given at once, as in the game RIGID,
or sequentially, as in the Delegation Game. PP” simply acts like PP*, just with the
isometry V4 applied.

First note that by Theorem |4} the distribution of answers of PV" to the verifier,
as well as the subsequent interaction between the verifier and PP, generate (classical)
transcripts that are within statistical distance poly(e) from those generated by PV* and
PP* with the same verifier.

Next we observe that taking the complex conjugate of both provers’ actions does not
change their acceptance probability in the delegation game, since the interaction with
the verifier is completely classical. Define PP’ as follows: PP’ measures A’ to obtain
the same A as PV”, and then executes PP” or its complex conjugate depending on the
value of A. Define PV’ to execute the honest behavior (he measures to obtain A, but
then discards it and does not take any complex conjugates).

Then PV’ applies the honest strategy, and (PV’, PP’) applies either the same strat-
egy as (PV”,PP”) (if A = +) or its complex conjugate (if A = —). Therefore they are
accepted in the delegation game with exactly the same probability.

Combining Lemma [2]and Lemma 3] gives us the final soundness guarantee.

Lemma 4. (Constant soundness-completeness gap) There exist constants py, pg = 1 —
pr and A > 0 such that if the verifier executes the leash protocol with parameters
(pr, pa) on input (Q, |x)) such that |TIoQ|x)||> < 1/3, any provers (PV*,PP*) are
accepted with probability at most psound = Peompl — A.

Proof. Suppose provers PP* and PV* succeed in the delegation game with probability
Z + w for some w > 0, and the testing game with probability 1 — e, (w), where &, (w)
will be specified below. By Lemma this implies that there exist provers PP’ and PV’
such that PV’ is honest and the provers succeed in the delegation game with probability
at least % +w — g(e«(w)), where g(e) = poly(e) is the function from the guarantee of
Lemma Let e, (w) be such that g(e. (w)) < %. In particular, § +w — g(e.(w)) >
% +9 > % This contradicts Lemma

Thus if provers PP and PV succeed in the delegation game with probability g +
w they must succeed in the rigidity game with probability less than 1 — ¢, (w). This
implies that for any strategy of the provers, on any no instance, the probability that they
are accepted is at most

max{pﬁ- (1- pr)<g + 11—8>, pr<1 —s*(ll—s)) +(1—py)- 1}. 4)

Since &, (%) is a positive constant, it is clear that one can pick p, large enough so that

Pr(l—s*(ll—s))+(1—Pr)~1<Pr+(1—Pr)(g+%)- (5)
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Select the smallest such p,. Then the probability that the two provers are accepted is at
most

7 1 —Qn 8
Psound ‘= Pr + (1 - Pr) <§ + ﬁ) < Pr(l —e a +t)> + (1 - Pr)§ = Pcompl /

which gives the desired constant completeness-soundness gap A.

4.4 Blindness

We now establish blindness of the Leash Protocol. In Lemma 5] we will prove that the
protocol has the property that neither prover can learn anything about the input to the
circuit, x, aside from its length. Thus, the protocol can be turned into a blind protocol,
where Q is also hidden, by modifying any input (Q, x) where Q has g gates and acts on
1 qubits, to an input (Us,,, (Q, x)), where Uy , is a universal circuit that takes as input
a description of a g-gate circuit Q on 7 qubits, and a string x, and outputs Q|x). The
universal circuit U , can be implemented in O(glogn) gates. By Lemma [5| running
the Leash Protocol on (Uy,,, (Q, x)) reveals nothing about Q or x aside from g and .

In the form presented in Figure[6] the verifier V interacts first with PV, sending him
random questions that are independent from the input x, aside from the input length 7.
It is thus clear that the protocol is blind with respect to PV.

In contrast, the questions to PP depend on PV’s answers and on the input, so it may
a priori seem like the questions can leak information to PP. To show that the protocol is
also blind with respect to PP, we show that there is an alternative formulation, in which
the verifier first interacts with PP, sending him random messages, and then only with
PV, with whom the interaction is now adaptive. We argue that, for an arbitrary strategy
of the provers, the reduced state of all registers available to either prover, PP or PV, is
exactly the same in both formulations of the protocol — the original and the alternative
one. This establishes blindness for both provers. This technique for proving blindness
is already used in [RUV13] to establish blindness of a two-prover protocol based on
computation by teleportation.

Lemma 5 (Blindness of the Leash Protocol). For any strategy of PV* and PP*, the
reduced state of PV* (resp. PP*) at the end of the leash protocol is independent of the
input x, aside from its length.

Proof. Let PV* and PP* denote two arbitrary strategies for the provers in the leash
protocol. Each of these strategies can be modeled as a super-operator

Tev : L(H1py ® Hpy) — L(HTII)V ® Hpv),

Tepaa : L(H1pp @ Hpp) = L(Hpy, @ Hep).

Here Hr,, and HT{»V (resp. Hp, and HT}/) ,) are classical registers containing the inputs
and outputs to and from PV* (resp. PP*), and Hpy (resp. Hpp) is the private space of
PV* (resp. PP*). Note that the interaction of each prover with the verifier is sequential,
and we use Tpy and Tpp 44 to denote the combined action of the prover and the verifier
across all rounds of interaction (formally these are sequences of superoperators).



26 A. Coladangelo, A. Grilo, S. Jeffery and T. Vidick

Consider an alternative protocol, which proceeds as follows. The verifier first in-
teracts with PP. From Figure [§] we see that the inputs required for PP are subsets N
and Ty, ..., Ty, and values {z;};ct, for each £ € {1,...,d}. To select the former,
the verifier proceeds as in the first step of the Delegation Game. She selects the latter
uniformly at random. The verifier collects values {Ci}ien from PP exactly as in the
original Delegation Game.

Once the interaction with PP has been completed, the verifier interacts with PV.
First, she selects a random string Wy € >N conditioned on the event that Wy contains
at least n copies of each symbol in X, and sends it to PV, collecting answers ey. The
verifier then follows the same update rules as in the delegation game. We describe this
explicitly for computation rounds. First, the verifier sets a = ep. Depending on the
values {¢;}icr, and {z;};cr, obtained in the interaction with PP, using the equation
zj = aj+ 1w,=F + ¢; she deduces a value for 1y, for each i € Ty C Bj. She then
selects a uniformly random Wp, € ¥.B1, conditioned on the event that Wp, contains
at least t; copies of each symbol from X, and for i € Tj it holds that W; = F if
and only if z; = a; + 1 + ¢;. The important observation is that, if 77 is a uniformly
random, unknown subset, the marginal distribution on Wp, induced by the distribution
described above is independent of whether z; = a; +1+¢; orz; = a;+0+¢;:
precisely, it is uniform conditioned on the event that Wp, contains at least 1 copies
of each symbol from X. The verifier receives outcomes ep, € {0, 1}B1 from PV, and
using these outcomes performs the appropriate key update rules; she then proceeds to
the second layer of the circuit, until the end of the computation. Finally, the verifier
accepts using the same rule as in the last step of the original delegation game.

We claim that both the original and alternative protocols generate the same joint
final state:

Tep,ad © Tov (Porig) = Tev,ad © Tep(art) € Hep @ Hyy @ Hy @ Hyy @ Hpy, (6)

where we use porig and pgy; to denote the joint initial state of the provers, as well as
the verifier’s initialization of her workspace, in the original and alternative protocols
respectively, and Tpy ,4 and Tpp are the equivalent of Tpy and Tpp 44 for the reversed
protocol (in particular they correspond to the same strategies PV* and PP* used to de-
fine 7py and Tpp 44). Notice that Tpy 4 and Tpp are well-defined since neither prover
can distinguish an execution of the original from the alternative protocol[] To see that
equality holds in (6], it is possible to re-write the final state of the protocol as the result
of the following sequence of operations. First, the verifier initializes the message reg-
isters with PP* and PV* using half-EPR pairs, keeping the other halves in her private
workspace. This simulates the generation of uniform random messages to both provers.
Then, the superoperator Tpy ® Tpp is executed. Finally, the verifier post-selects by ap-
plying a projection operator on Hr,, ® HTII)V ® Hpp @ HT{, . that projects onto valid
transcripts for the original protocol (i.e. transcripts in which the adaptive questions are
chosen correctly). This projection can be implemented in two equivalent ways: either

7 One must ensure that a prover does not realize if the alternative protocol is executed instead
of the original; this is easily enforced by only interacting with any of the provers at specific,
publicly decided times.
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the verifier first measures Hr,, ® ’HT}QV, and then Hr,, ® ’HT{)P; based on the out-
comes she accepts a valid transcript for the original protocol or she rejects. Or, she first
measures ’HTPP & HTép’ and then ’HTPV & HT}”V; based on the outcomes she accepts a
valid transcript for the alternative protocol or she rejects. Using the commutation of the
provers’ actions, conditioned on the transcript being accepted, the first gives rise to the
first final state in @, and the second to the second final state. The two are equivalent
because the acceptance condition for a valid transcript is identical in the two versions
of the protocol.

Since in the first case the reduced state on HTfnv ® Hpvy is independent of the input
to the computation, x, and in the second the reduced state on Hpp ® HT{)P is indepen-
dent of x, we deduce that the protocol hides the input from each of PV* and PP*.

Remark 1. In order to make a fair comparison between previous delegated computation
protocols and ours (see Figure[I]), one must analyze their resource requirements under
the condition that they produce the correct outcome of the computation with a fixed, let
us say 99%, probability. For most protocols, this is achieved by sequentially repeating
the original version, in order to amplify the completeness-soundness gap. We refer to
the full version of the paper for a sequencial procedure that allows the verifier to obtain
the correct output with a fixed probability (or abort whenever the provers are malicious).

S Dog-Walker protocol

The Dog-Walker Protocol again involves a classical verifier V and two provers PV and
PP. As in the leash protocol presented in Section[d PP and PV take the roles of Prpr
and Vepr from [Brol8] respectively. The main difference is that the Dog-Walker Pro-
tocol gives up blindness in order to reduce the number of rounds to two (one round of
interaction with each prover, played sequentially). After one round of communication
with PP, who returns a sequence of measurement outcomes, V communicates all of
PP’s outcomes, except for the one corresponding to the output bit of the computation,
as well as the input x, to PV. With these, PV can perform the required adaptive mea-
surements without the need to interact with V. It may seem risky to communicate bits
sent by PP directly to PV — this seems to allow for communication between the two
provers! Indeed, blindness is lost. However, if PP is honest, his outcomes {c¢; }; in the
computation round are the result of measurements he performs on half-EPR pairs, and
are uniform random bits. If he is dishonest, and does not return the outcomes obtained
by performing the right measurements, he will be caught in the test rounds. It is only in
computation rounds that V sends the measurement results {c; }; to PV.

We notice that PV has a much more important role in this protocol: he decides
himself the measurements to perform according to previous measurements’ outcomes
as well as the input x. For this reason, we must augment the test discussed in Section[3]
in order to test if PV remains honest with respect to these new tasks. For this reason,
we introduce the Tomography test and prove a rigidity theorem that will allow us to
prove the soundness of the Dog-walker protocol (see Figure [10] for a glimpse of the
proof structure). Due to space limitations we refer to the full version of the paper for a
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PV PP

RIGID Test
@( = )@ @ Rigidity-Clifford

@ EPR-Computation
TOM Test L
@( @ @ Rigidity-Tomography

Fig. 10: Overview of the soundness of the Dog-Walker Protocol

presentation of the Tomography Test, a formal description of the Dog-walker protocol
and the proof for their correctness.

Finally, the Dog-Walker Protocol can be easily extended to a classical-verifier two-
prover protocol for all languages in QMA. Along the same lines of the proof that QMIP
= MIP* from [RUV13|, one of the provers plays the role of PP, running the QMA
verification circuit, while the second prover creates and teleports the corresponding
QMA witness. In our case, it is not hard to see that the second prover can be re-used as
PV in the Dog-Walker Protocol, creating the necessary gadgets for the computation and
allowing the Verifier to check the operations performed by the first prover. We describe
this approach in more details in the full version of the paper.
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