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Abstract: This paper is concerned with a partially observed nonzero-sum stochastic differential game system under

g-expectation, where the state is governed by a Itd6-Lévy process and the cost functionals are described by g-expectations.

Based on Girsanov’s theorem and convex variation techniques, we derive a maximum principle and a verification theorem.

An asset-liability management game problem is discussed to illustrate the results.
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1 Introduction

With the increasing demand of researchers in to-
day’s technological revolution, stochastic differential
game (SDGQG) theory has emerged to better grasp of the
real world and played a distinguished role in many fiel-
ds, especially in economics, finance, control theory and
behavioral science. The pioneering work of SDGs was
established by Ho!!!. Over recent years, SDG theory has
became a very active area of research, such as An and
(@ksendal?!, Wang and Yul®!, Zhu and Zhang[‘”, and Wu
and Liub!.

Because of the continuing global financial crisis
in recent years, some investigators have questioned
whether current theories of risk management are appro-
priate and paid more attention to develop prudent meth-
ods of assessing risks. The theory of g-expectations is a
fairly new research topic to avoid risks in mathematical
finance and was first introduced by Peng!® as particular
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nonlinear expectations depending on backward stochas-
tic differential equations. As an application, the model
of risk minimizing portfolios was studied by @ksendal
and Sulem!”!, where the risk is represented in terms of
g-expectations. For a comprehensive survey of theories
on g-expectations and relevant applications, one can re-
fer to the paper by Peng!®. In fact, combining SDG sys-
tems with cost functionals defined by g-expectations,
one can naturally obtain forward-backward stochastic
differential games (FBSDGs).

The theory of FBSDGs has got a rapid development
of late years due to its widely applications in risk mea-
sures, for example, the optimal portfolio-consumption
problem under model uncertainty!®!. The FBSDG sys-
tems are given by forward-backward stochastic dif-
ferential equations (FBSDEs), which include stochas-
tic differential equations (SDEs) as a special case.
Yu!'”! dealt with a linear-quadratic nonzero-sum FBS-
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DG problem and derived an explicit form of the unique
Nash equilibrium point. Hui and Xiaol'!! considered
both zero-sum and nonzero-sum FBSDGs and obtained
the maximum principles and the verification theorems.
An and @ksendal!'?! discussed the sufficient maximum
principles for both zero-sum and nonzero-sum SDGs of
[t6-Lévy processes with g-expectations and partial in-
formation.

In practice, the controllers generally can not ob-
serve complete information, but they are able to get
the related information, which is called the correlated
noise, for instance, the recursive utility optimization
problem!3!. Inspired by this phenomenon, many inves-
tigators have set out to study partially observed systems.
Wul'¥! first devoted to the maximum principle for par-
tially observed forward-backward stochastic control
systems. As a generalization of results of [14], Xiaol!>!
considered a partially observed forward-backward sto-
chastic optimal control system with jumps and obtained
the necessary maximum principle and the sufficient ver-
ification theorem. Xiong et al.l'® analyzed a necessary
and sufficient maximum principle for partially observed
nonzero-sum differential game system of FBSDEs.

To the best of our knowledge, the maximum princi-
ple and the verification theorem for a partially observed
nonzero-sum SDG system with g-expectation have not
been established in earlier work, and are entirely new.
The main contributions are described as follows. On
the one hand, our work extends the results of [12]
to a partially observed nonzero-sum differential game,
where the state is described by a Itd6-Lévy process and
the cost functionals are defined by g-expectations, i.e.,
FBSDEs. On the other hand, for the partially observed
game system, we suppose that each player has his own
observation process to serve as the available informa-
tion, which is distinguished from the model of partial
information in [12]. What’s more, we solve a partially
observed asset-liability management game problem,
where the information filtration can be generated by ob-
servable stock price processes.

The rest of this paper is organized as follows: In
Section 2, we introduce some notions and formulate the
game system; In Sections 3 and 4, we establish a maxi-
mum principle and a verification theorem for the game
system, respectively; Section 5 provides an example of
the partially observed asset-liability management game
model; Some conclusions are drawn in Section 6.

2 Statement of the game problem

Let T > 0 be a finite time duration and (2, F,
{Fi}t=0, P) be a complete filtered probability space
equipped with three mutually independent 1-dimensi-
onal standard Brownian motions W (), ¥;(+) and Y>5(-)

defined on [0, 7] and an independent Poisson random
measure N (dt,dn) defined on [0,7] x Ry, where

Ry := R\ {0}. Denote the compensated Poisson ran-
dom measure by N (d¢, dn) := N(dt,dn) — v(dn)dt,
where v is the Lévy measure of IV satisfying IR (1IN
In|*)v(dn) < oo. In addition, let V', F}, F? and
FY be the P-completed natural filtration generated by
W(-), Yi(+), Y2(-) and N(-,-), respectively. We as-
sume that 7, := FV VFVFEVFN VN, F = Fr,
where A denotes the totality of P-null sets.

Let R be the 1-dimensional Euclidean space, |- | the
Euclidean norm. In the sequel, we denote by L?(Fr;
R) the space of R-valued Fr-measurable random vari-
ables & such that E[|€]?] < oo, by L%(sy, s2; R) the
space of R-valued F;-adapted processes (I(t))ics;,ss]
such that E[I ’ |I(t)|*dt] < oo, by L?(v) the space of
integrable functions k : Ro—R with norm ||k(n)]|2 :=
IR |k(n)|*v(dn)<oo, and by F2(s;, so; R) the space

0
of R-valued F;-predictable processes (I(t,7))ic(s,,ss]

h that B[ [ 2 .

such that [L jRn 11(t, )2 (n)d] < oo

Suppose that the state of a stochastic game system
is described by the following jump-diffusion SDE:

dz(t) =b(t, z(t), v, (t), va(t))dt+
o(t,x(t),v1(t), va(t))dW (t)+
Jo, (8 2(0), 00 (0), w2 (6), ) N (),
t €10,T],
z(0) =z € R,
(D
where vy : 2% [0,T] — Uy, and vy : 2% [0,T] — U,

are control processes of Player 1 and Player 2, respec-
tively. Here, U; and U, are nonempty convex subsets
of R. b, 0 : 2 x[0,T] xR x Uy x Uy — R, and
v 2 x[0,T] xR x Uy x Uy x Ry — R are given
mappings, which satisfy

Al) The functions b, o and < are continuously
differentiable with respect to (z, vy, v2); b and o have
a linear growth in (z, vy, v2), and their partial derivati-
ves are uniformly bounded and Lipschitz continuous;

there exists a constant C' > 0 such that (fR |y (t, z,
1 0
vy, U2, M) (n ))E is bounded by C(1 + |z| + |U1|+

andj \— (t,z,v1,v9,0)|?v(n andj

(t,z,v1, vV, 77)\21/(77) (¢ = 1,2) are uniformly bound-
ed and Lipschitz continuous; for any (z, vy, v5) € R X
Uy X Uy, b(+, 2,01, 02), (-, 2,01, 02) € L%(0,T; R),
and v(-, x,v1,09,) € F2(0,T;R).

We suppose that the state 2(-) can not be observed
directly, but Player ¢ can observe his own related pro-
cess Y;(+), which is governed by:
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dY;(t) = o0i(t, x(t), v1(t), va(t))dt + AW, 2 (1),
Y:(0)=0,i=1,2,

2
where W"2(-), W52 (-) are R-valued stochastic
processes depending on vy (+) and v (+). g; : 2% [0,T]
X R x U; x Uy — R is a continuous function, which
satisfies

A2) The function p; is continuously differentiable
with respect to (x,v1,v;), and its partial derivatives
and p; are all uniformly bounded.

The admissible control sets for each player are giv-
en by:

A; ={v;(+) € U; | v;(-) is an F/-adapted process and

satisfies sup Elv;(t)]> < oo}, i=1,2.

0<t<T
Every element of 4; is called an admissible control for
Player i(i = 1,2). A; X A; is said to be the set of
admissible controls for the players.

For any (vi(-),v2(-)) € A; x As, Al) implies
that (1) admits a unique strong solution z(-) € L%(0,
T;R) (see Tang and Li"""). Now, we define a new

dpvi:
dP ‘]:t:Z " Q(t)’

probability measure P"*"2 by
where
dZvev2(t) =
o1(t,z(t),v1(t), vy
02(t, x(t),v1(t), Vo
Zvv2(0) =1,
that is
20(1) =
exp( Z f om(s,2(s), v1(s),

m=1

5,,;1L 0 (5,2(s),v1(s), v2(s))ds).

Based on Girsanov’s theorem and A2), (W(.),
Wy (o), Wyt (-)) is a 3-dimensional standard
Brownian motion and N(-,-) is still a compensated
Poisson random measure defined on (£2, F,{F;}i>o0,
Pvl’UQ).

The cost functional of Player ¢ is defined by

Ji(vi(),v2(+) =
o[ it n(t), 0n(8), va()1dt + 6, (a(T)
i=1.2, @)

where EY1-¥2 is the expectation with respect to PV*"2,
fi: 2%[0, T|xRxU; xUs +— R,and ¢; : 2XR — R
satisfy

(1)) 2> (t)dYa () +

D)z (aY(e), O

Ua(5)) - dYn(s) —

A3) The functions f; and v); are continuously dif-
ferentiable with respect to (z, vy, v3) and x, respective-
ly, and partial derivatives of f; and derivative of v); have

a linear growth in (x, vy, v2) and x, respectively; f; and
1; are uniformly Lipschitz with respect to (z, v, vs)
and x, respectively; for any (z,v1,v2) € R x Uy x Uy
and x € R, fi(-,z, vi,v9) € L%(0,T;R), and
i(x) € L*(Fr;R).

It is well known that the linear expectation £V "2
in (4) does not express investors’ performances (see
Chen and Epstein!'®!). In what follows, we introduce
a nonlinear expectation (i.e., a g-expectation) to replace
Erovz,

We consider the following backward SDEs with
random jumps under §; € L?(Fr; R):

—dy;(t) = gz(t yz(t) z(t) kit ))dt—
f k;(t,n)N(dt,dn),
te [O,T],
yi(T) =0;, i =1,2,
&)

where g; : 2 x [0, 7] x Rx R x L*(v) — Risagiven
mapping, which satisfies

A4) The function g; is continuously differentiable
with respect to (y;, z;, k;), and the partial derivatives
of g; are uniformly bounded and Lipschitz continuous;
9:(-,0,0,0) € L%(0, T; R).

From Theorem 2.1 in [19] and A4), we know that
(5) exists a unique strong solution (y;(+), z;(+), ki (-, -))
€ L%(0,T;R) x L%(0,T;R) x F?(0,T;R). If g;(-,
Y:,0,0)
expectation &2 of §; related to g; by

£02(6,) = yi(0), i = 1,2.

= 0 for any y; € R, then we define the g-

With the g-expectations, we introduce the new cost
functionals J,, (i = 1, 2) as follows:

‘]gz‘ (Ul(')a U2(')) =
Egi [foT filt,2(t), 01 (t), va ()t + ¥ (x(T))].

Thus, the partially observed nonzero-sum differen-
tial game problem with g-expectation is to find (u4(+),
us(+)) € Ay x Aj such that

o (ua(),u2() = min, Jy, (1), ua (),
J. Y, us()) = J, ,0a()).
o (u () uz(1)) = min Jg, (ua('), v2('))
The pair of admissible controls (uy(+), us(+)) is called
a Nash equilibrium point of the game system.

From the theory of backward SDEs and the defi-
nition of g-expectations, we can reformulate the par-
tially observed game problem as follows: let (5;(-),
ti(+),i(+,-)) be the adapted solution of the following

backward SDE:
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—dgi(t )— () i(t), <t ))dt— We denote by (&(-), §1(-), 21(-), k() 92(-), 22(-),
W(t) f o(t, m N (dt, dn), ka(-,-)) and Z(-) the corresponding state processes a-
0T Ro ' long with the optimal controls (u;(-), ua(-)).
te , . . .
B.(T) = bi( [ ]) 3 Maximum principle
;s Z, V1,0V
b In this section, we prove a maximum principle for
where
- the game system expressed by Theorem 1.
0;(z,v1,v2) :L fi(t,xz(t), vi(t), va(t))dt + For any (e,v1(),v2(+)) € [0,1] x A; x Ay, we
take the perturbations uj{(:) = wuq(-) + evi(:) and
Ui (2(T)). p () 1(+) 1(+)

For any ¢ € [0, T], we define

t

yi(t) = Bit) = |, fils,a(s), va(s), va(9))ds,
Zl(t) = Li(t)v ki(ta 77) = gi(ta 77)

It is easy to obtain that (y;(-), z;(+), k;i(+,-)) is the uni-

que solution of the following backward SDE:

—dyi(t) = [9:(t, y:(t), 2i(t), ki(t, )+
filt, x(t), vi(t), v2(t))]di—
(AW (1) = [ kit m)N (dt, dn),
t €[0,7],

yi(T) = ¥i(2(T)).

Hence, the state equations can be rewritten by the
following FBSDE:s:

da(t) =b(t, z(t),vi(t), ve
o(t, x(t),vi(t),
f ~v(t, z(t),v

(1)) dt+

vo(t))dW (t)+
1(1), 0s(8), )N (dt, dn),
(t)> kl(t7 ))+
t

—dy,(t) = [gz(t yi(t), i
filt,z(t),v1(2), v2(t))]dt—
(AW (1) = [ k(e m)N (dt, dn),
t€10,77,
2(0) = mo, yi(T) = hi(x(T)), i = 1,2,
(6)

and observation processes Y;(-) (i = 1,2) satisfy (2).
The cost functionals .J,, (i = 1,2) are given by:

g (01(4),v2(+)) =
e [ (1 (0), 01 0), val0) +

9i(t, yi(t), zi(t), ki, -)))dt + i (x(T))] =
j 2o () (filt, 2 (t), o (1), va(1)) +
9i(t, yi(t), zi(t), ki, -)))dt + 20 (T)y (x(T) ).
The game problem is to find (uy(+), us(+)) € A; X Ay
such that
Jou (ua(-), uz()) = i, Jy L (v1(), ua()),
Jon(Ur(), u2() = min, Ty, (un (), va()).

(7

u§(+) = ua(+) + eva(-). Since both U; and U, are con-
$(+),u§(+)) is an element of A; x Ay. Sup-
pose that the processes (= (), yst () 25 (), kst (44 0))
(2 (), 52 (), 282(), K () (i = 1,2) and 24 (.
(Z<(-)) are the solutions of (6) and (3) along with
(45 (), () (12 (), w5())), respectively:

For simplicity, we employ some notations as fol-

vex sets, (u

lows:

X = b70-7fi79i’

dzi(t) = [%(t)xi (t) gf,-, (t)

870 . do

%

20+ S )

i (8)]dt+

(B)v: ()W (t)+

=
e

N(dt, dn),

() = (5200050 + G240+

dvkjgj i
Jo, T @ kit myw () +
of; of; B
aﬂj( Jo(6) + S (OBt
f Ki(t,m)N(dt, dn),
te [O,T],
2'(0) = 0, y5(T) = ¢j(&(T))="(T),
/[:7j = 1’ 2?
(8)
ijgj . . ..
where ——>=(t, 1) is the Radom-Nikodym derivative

of V,g;(t,n) with respect to v(n). Here, Vi, g;(t,n)
stands for the Fréchet derivative of g; with respect to
k; € L*(v), and we assume that V,, g;(¢,7) as a
random measure is absolutely continuous with respect
to v.
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4Z4(t) = 3 125 om(t) + 2(1) (22

2 D (t)x"(t)+

900 (), ()Y, (0, ¢ € [0,7],
ZY0)=0,i=1,2.
9)
Since (8) and (9) are a linear FBSDE with random
jumps and a linear SDE, we can easily derive that both
of them exist a unique adapted solution, respectively,
under A1)-A4) and for any (v (+), v2(+)) € A; X Ay
(see Wul'! and @ksendal?").
Similarly to Lemmas 1-3 in [15], we can obtain the
following Lemmas 1-2. Thus, we omit the details for
simplicity.

Lemma 1 Under Al)-A4), fori,j = 1,2, we
have
z¢ (t) — &(t
lim sup E| () = &) —z'(t)]* =0,
=0 0t<T
yi (t) —9;(t)
lim sup E Yi W ZIRY t 0,
H00<th | € yj( )
S(t) — 2 (¢t
lim E \zﬂ() %0 ()Pt =0
e—0 €
: ki(tm)
llngf J
kj(t,m)Pv(dn)dt = 0,
Z5(t) — Z(t 4
lim sup E|M —Z'(t)|* = 0.
=00t €

Since (u1(+),uz(+)) is a Nash equilibrium point of

the game problem (7), it is clear that
{elwm (uy (), () = Ty (), ua(-))]
€ gy (ua (), u5(+) = Jg (ua (+), ua ()]

I

VoWV

0
0.
(10)

Besides, let Zi(-) = Z~'(:)Z(-) (i = 1,2). For

the optimal controls (u;(+), uz(-)), we have

20 00m ,,\ 0om

122 02t (0) + 222 0]

dWrr2(t), t € [0,T],

Z'(0)=0,i=1,2.

dZi(t) =

According to the inequality (10), and by Lemma 1
and Taloy’s expansion, we derive the following inequal-
ities.

Lemma 2 Suppose that A2)-A4) hold and
(u1(+),u(+)) is a Nash equilibrium point. Then, it
yields the variational inequalities as follows:

e [0 + g0 20 + 2

L 1yt 0) +
U0 + GO0 + 52 (0

ZH(t) +

[ Ik )iy n))at 4 (3(T) -

Z1(T) + (1)) (T)] > 0, i = 1,2.
(11)

The Hamiltonian functions H; : 2 x [0, 7] x R X
RxRXL*(v)x U x Uy X RXRXRX L? (1) x RXR —
R (i = 1, 2) are defined by

Hi(t, @, yi, zi ki, U1, 025 Dis G, i iy Bris B2i) =
(9i(ts yis zis ki) + fi(t, 2, 01,02)) (1 — pi) +
b(t,z,v1,v2)q; + o (t, 2,01, 02)8; +

fRO Y(t, z,v1,v2, ) pi(n)v(dn) +

01(t, @, v1,02) B1i + 02(t, T, V1, V2) Ba;.

To establish the maximum principle, we introduce
the adjoint equations as follows:

AL (1) = l90) + SOt = 3 Balt)
dW2(1), t € [0, T, (12)
L(T) = 6i(a(T)), i=1,2,
1) =~ G (Bt = S AW (1)~
., S 1, ) N at, an),
g ()= S e s a0
f i (t, )N (dt, dn), t € [0,T7,
pi(0) =0,
¢:(T) = (1 = pi(T))¥i(&(T)), i = 1,2,

where
OH; .

G 0,200,010 B, ), (), ),

pi(t), qi(t), si(t), mi(t, ), Bri(t), Bai(t))]yi=s:(t)-

If A1)-A4) hold, then (12) and (13) admit a uni-
que adapted solution, respectively (see Wu '), Note
that 1 — p;() is a geometric Lévy process with initial
value 1l —p;(0) =1 (i = 1,2).

We state the maximum principle for the game sys-
tem.

Theorem 1 Suppose that Al)-A4) hold and
(ui(+),uz(+)) is a Nash equilibrium point of the non-
zero-sum game problem (7) with the corresponding
SAtate process (A() gl() 2 (')7]{:1("')7.@2(')’ 22(')7
ka(;-)). Let (Li(+), ri(), Bai(-)) and (pi(-), 4i(-),
si(+), i(+, ) (2 = 1,2) be the solutions of (12) and
(13), respectively. Then we have
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Ju-uz [%H 1 ) (v1 — ui (1) F] =0 spectively, and the following conditions hold:
o E[H,(t)|F,] = min E[H" ()| 7],
2o 202 4y 0, )72 > 0 oy GG
o = E[H, ()| 77] = min E[H3(6)72],
for any (v1,vq) € Uy X Uy, ae. t € [0,T], P*"2 — where
a.s.. . . o .
Proof We only consider the case ¢ = 1. Applying Hit) = (g’ x((t)), ?J;(( )) ((3" k;( 7 )( t), B(t)( 1§§(t),
1t0’s formula to Z*(¢) L1 (t) + 2 (t)q1 (t) + yi (t)p1 (1), i 1’ q2l T ) B 2
we get ~ HE (1) = Hy 0 (1), 5 (1), 247 (1), K (),
B b (8(1) 2 (1) +4] (4(1)2" (7)) = R
B 11 A (052 (D0r()-20) ). )
ng( ) HQ( UZ(t)aySQ(t ( ) ng( ,‘),

OG0+ (t) 5 (0)

O+ )5 )

(1) + (1) -
w51 () 97 (1)

1

afl 891 1 .
vi(O)v(dn) =2 (6) 5 - () = (0) 5= 1(lf) z (1)
99 dg1
9. O [ Mg em@ld. a4
Substituting (14) into (11), we derive that
wrs (T 0H,
E 0 Do, (t)v,(t)dt > 0, (15)

for any vy () such that u; (-) +v,(+) € A;. Letmi(-) =
u1(+) + v1(+). From (15), it implies that

Jot w[%ﬁl (i) — ()] > 0,26 (16)

Moreover, for any v; € U;, A € F}, we sup-
pose that x(t) = vi14 + uy(t)I4¢. It is obvious that
X1(+) € A;. Thus, inserting x; into (16) yields

0H,

Ane
s 0)(0n (0L
for any A € F}. Therefore, we have

08y 4 0 — un(8))| 7] > 0

U1
ae., P"" —as.. QED.
4 Verification theorem

In this section, we build a sufficient verification the-
orem for the game problem under some convexity con-
ditions.

Theorem 2 Let Al)-A4) hold. Let (uy(-),

us () € ArxAs,and (2(), 91.(-), 21(), k(-5 ), (),
Z5(+), ko(+, -)) be the corresponding trajectory. Suppose

that( i(+), Bi(+), Bai(+)) and (pi(-), ai(-), si(-), pal,
) (i = 1,2) satisfy (12) and (13), respectively. Fur-
thermore, suppose that for all ¢ € [0,T], H;(t,-, -,

S Pilt), qi(t), si(t), i, -), Bri(t), Bai(t)) and i(:)

are convex respect to the corresponding variables, re-

Eu1 ,uU2 [

t)(vy — uy 0,ae.,

Eul,uz[

t,x ), z
u(t), v (t),pz(t%%( ); 8
512 t), B22(1))
and (" (+), 7' (+), 27" (+), k" (-, +)) is the correspond-
ing solution of (6) along with (v1(+), u2(+)) and simi-
larly with (V2 (-), y52(+), 252 (-), k32 (+, ).
Then, (u;(-), uz(+)) is a Nash equilibrium point for
the nonzero-sum game system.

( )’:UJZ( ) ')a

Proof We only consider the case ©+ = 1. Let
0" (t) = o(t,z (), v1(t), ua(t)), foro=b,0, fi

and similarly with v (t), ¢ (t), oo (t) (m = 1,2).
By the definition of J;,, we deduce that

Jo (V1(); u2(+)) = Jg, (ua (), ua(+)) =
R, + Ry + Rs,

where

Ry =E"" [ (2" (T)) — 1 (&(T))],

Ro=E [ (01(t) + A2 (1) — Z(1))dt +
B (#(1)(2%(T) — Z(T)),

Ry= B [ (g () = gu0) + £ (1) — fi(0)dt
From (13), we have
Ry =E"" [ (2"(T)) — ¢ (2(1))] —

£ [pa(0) (91" (0) = 92(0))]-
Using It6’s formula to p; (¢)(yy* (¢) — 91 (¢)), and by the
convexity of ¢); with noticing that 1 — p,(T') > 0, we
get

Ry 2 B [y (2(T)) (1 = pu(T)) (2(T)) —

#(T))] — R, (18)
where

R4 =

o [T pu e () - 9a(0) + £ (1) -

T OH,
1)dt + B
fl( )) + 0 8@/1

(@) (1" (8) — 92 ())dt +
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vV1,U2 T aHl v1 - Z
s [0 ) ) - s+
T dV 1H vl
EUI’UQ \J‘O IRO (;V : (t7 n)(kl (t7 n) B
o (¢, 7)) (dn)dt. (19)

A~

Applying Ité’s formula to ¢ (¢)(x"*(t) — &(t))
leads to

B[ (2(T)(1 = po(1)) (2" (T) — 2(T))] =
v J"OT @ (D) (6" (£) — b(t))dt +
Jooe jOT s1() (0¥ (1) — o(£))dt +

o [ ) (3 (b n) =t n)(dn)di—

T OH,

FUsue
o Oz

() (@™ (t) — 2(2))dt.
(20)
Using It6’s formula to L, (t)(Zv*2 (t) — Z(t)), we ob-
tain
2 T
Ry= 33 B [ 5a(t)(6hi (1) — on(t)dt.
21
By the definition and convexity of H;, we derive that
R3 >

o LT[‘B’(;Z L)t () — (1)) +

1 (O 0)+ 5O (=50 +

@O -u(0)+ [, T ()

0H;
oy

(t) -

(ks (1)~ o 1, ) )+ 22 [ (6)-
(95 (1) =g () + £ (1)~ u() ~ () (0" (1)

b(t)) =s1(t)(o™ () —o (1)) = |, pult,n)-

(0 (6 )= ()= 32 s ()2 1) -

om(t))]dt. (22)
Combining (18)—(22), we have

T (0 s()) — Ty (12 () s())
"R 4 ()~ (£)) e =

0o Ou;

o0H,
ov,
From (17), we deduce that
0H,
vy

E"Ul yU2

B[ 7o) B[S (0w (#) — w()IFdr

E[——(t)(vi(t) —wi (1)) F/] > 0.

Since Z¥+*2(-) > 0, we conclude that
Ty (w1 ()yua()) = min Ty, (01(), ().
In the same way, we obtain

Joo (Wi (), u2(-)) = min ~Jg, (ua (), v2(-))-

va(-) €A
Hence, (uy(-), uz(+)) is a Nash equilibrium point.
QED.
5 Application to finance

Motivated by Huang et al.?!!, Xiong and Zhou!®?),
we consider a partially observed game problem about
the asset-liability management of a firm. Suppose that
the liability process F'(-) of the firm is described by

—dF(t) = [by ()01 () + ba(t)va(t) — b(E)]dt +
o(D)AW (1) + [ 5(t.m)N (dt, d),

where v (t) and wvo(t) are the rates of capital injec-
tion or withdrawal, and serve as the control strategies of
two policymakers; b(t) > 0 is the expected liability
rate; o(t) > 0 and y(¢,77) > 0 are the liability risks;
b1(t) > 0 and by(t) > 0 are bounded coefficients.

We introduce the cash balance process x(-) deduced
from the liability process F'(-) as follows:

t t s
x(t) = elo bO(S)dS(xO — fo e o bO(T)deF(s)).

It can be written in the following form:

da(t) = [bo(t)x(t) + by (t)v1(t) + ba(t)va(t)—
b(t)|dt + o(t)dW (t)+
Jo, vt m)N (. ),
te[0,T7],

z(0) = xy,

where x is the initial investment of the firm in a money
account, and by (t) > 0 is the compounded interest rate.
Then, the observation equations are governed by
dYi(t) = ¢;(t)b(t)dt + dW, "> (), (23)
Y;(0)=1,:=1,2,
where ¢;(t) is a bounded and deterministic function.
We define a new probability measure P""* by
dpvrv2 |
dpP '

477 (1) = 35 2 (e (Db(D)AVi(0),
Zvv(0) = 1.

Hence, (W(-), W{*2(-), W3*"*(+)) is a 3-dimensi-
onal standard Brownian motion and N(-,-) is a com-
pensated Poisson random measure defined on (Q F,
{Filezo, P2).

Assume that the two policymakers can only observe
the related stock price processes by their own:

= ZV2(t), where
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dS;(t) = Si(t)[(cici (£)b(t) +
adW; (1],
S:(0)=1,i=1,2,

—a?)dt+

where a;c; (t)b(t) + 5%2 is an appreciation rate of the

stock, and o; > 0 is a volatility coefficient of the stock.
Thus, 0{Si(s);0 < s < t} is the information fil-
tration for policymaker i(¢ = 1,2) at time ¢. Since

1
dY;(t) = a—dlog S;(t), we get

Fl=0o{Yi(s);0< s <t} =0c{Si(s);0< s <t}
The cost functionals .J,, (i = 1, 2) are defined by
Jo.(01(), va2()) =
U1,V T
Exl] filtva(t),va(t))dt — ()

Now, we suppose that g; is independent of ;. That
is to say, g; = ¢:(t, z;, k;). By the similar method in
Section 2, we can rewrite the cost functional J,, as fol-
lows:

Jg (1(+), v2(1)) =

B[ (o (0), 0a(0) +
gi(t7 Zi(t>v ki(tv )))dt - .%'(T)], 1=1,2
with the corresponding state equations
da(t) = [bo(t)x(t) + by (t)v1(t) + ba(t)ve
b(t )]dt+a( )dW (t)+
f ()N (dt, dn),

(t)—

—dy;(t) = [gl(t, zi(t), ki(t,-)) + fi(t,vi(2),
oa(1)]dt — 2 (1)AW (1)
k()N (dt, ),
teo,7),
z(0) =z, yi(T) = —x(T), i =1,2,

where g; : 2 x[0,T] xR x L*(v) — Ris convex with
%(t,n) > -1
forallt, nas; f; : 2 x[0,T] x Uy x Uy — Ris
convex and quadratic differentiable with respect to v,
and vs.

Our aim is to find a pair of F} V F}-adapted and
square integrable processes (u1 (-), u2(+)) such that

T (), ua()) = iy, (01, ua(-),

S (ur (), ua(+)) = I(H)H}A Jg, (ur(+), va2(0)).
(24)

respect to z; and k;, and satisfies

The Hamiltonian functions H,(i =
by

1,2) are given

Hi(t7xvyi>ziaki>vlaU2§pi7Qi>3i7Mi751i>Bm‘) =
(9i(t, zis ki) + fi(t,v1,02)) (1 = pi) + (bo(t)x
by(t)vyr + ba(t)vs — b(t))gs + o (t)si + fRO A(t,m) -
pi(n)v(dn) + 1 (t)b(t) Brs + ca(t)b(t) B

8i(+), i(+,+)) satis-

The adjoint process (p;(-),q:(+),
fies:

(s~ DI W (1)+

[ TV ar ),
=bo(t)q:(t)dt — s;(t)dW (t)—

f i (t, )N (dt, dn), t € [0,T],
p:i(0) =0, ¢;(T) =p;(T) — 1, i =1,2.

dpi(t) =

—dg;(t)

(25)

Since 1 — p;(t) is a geometric Lévy process, we
derive the solution of the forward equation in (25):

dvkigl t
s, )]u(dn)ds—i—fo . In(1+
dvd’;g’( )N (ds,dn)}, i = 1,2
Suppose

:(t) = Xi(t)(pi(t) = 1),
where \;(t) is deterministic, and A\;(7") = 1. Then,

applying Itd’s formula to g; (), we derive

dau(t) = N iH) ~ )it + X O0i(0) — 1)
G waw + [, S )
N(dt,dn)).

(26)
Comparing (26) with the backward equation in (25) by
equating the dt coefficient, we have

N (t) + bo(£)As(£) = 0,
{Ai(T) =1.
The above equation admits the following solution:
Ai(t) = eftT bo(s)ds

The solution of the backward equation in (25) is given
by

gi(t) = el W (1) — 1), i =1,2.

From Theorem 1, if (u(-),u2(+)) is a Nash equi-
librium point, then for 7 = 1, 2, we get
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Ofi

Fp. (B —bit)els PO F]=0.

27)

B [(1=pi(t))(

Since
O*H, 0 f
t)=(1—-pi(2 t) >0,
o7 (1) = (1= () 57 (1)
based on Theorem 2, we conclude that (u;(+), ua(+)) is
indeed a Nash equilibrium point for the game problem.
Proposition1 For the partially observed asset-
liability management game problem (24), a Nash equi-
librium point (u (+), uz(-)) satisfies (27).
Remark 1
FBSDEs with jumps, and the generators (i.e., f and g) are non-

There is few general filtering results for

linear functions, so we only study the case that the observation
processes are independent of the state in (23).

6 Conclusions

This paper discussed the maximum principle and
the verification theorem for a partially observed
nonzero-sum SDG with g-expectation. Owing to the
complexity of computing the optimal filtering of adjoint
processes, we solved a special case for the asset-liability
management game problem. It would be desirable to
research the general filtering theory for FBSDEs with
jumps in future work.
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