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The spontaneous generation of charge-density-wave order in a Dirac fermion system via the natural
mechanism of electron-phonon coupling is studied in the framework of the Holstein model on the
honeycomb lattice. Using two independent and unbiased quantum Monte Carlo methods, the phase
diagram as a function of temperature and coupling strength is determined. It features a quantum critical
point as well as a line of thermal critical points. Finite-size scaling appears consistent with fermionic Gross-
Neveu-Ising universality for the quantum phase transition and bosonic Ising universality for the thermal
phase transition. The critical temperature has a maximum at intermediate couplings. Our findings motivate
experimental efforts to identify or engineer Dirac systems with sufficiently strong and tunable electron-
phonon coupling.
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The experimental advances in preparing single-layer
graphene [1] have put Dirac fermions at the focus of
condensed matter physics. While the single-electron prop-
erties are relatively well understood, correlation effects
remain a highly active area of research [2]. Because of the
two-dimensional (2D) nature of the problem, theoretical
models can be analyzed by powerful theoretical and
numerical methods, offering the prospect of a comprehen-
sive understanding. The field has recently received another
boost by the remarkable properties of other honeycomb
systems, in particular, quantum-spin-Hall physics in bis-
muthene [3] and unconventional superconductivity in
twisted bilayer graphene [4]. Finally, massive Dirac phases
such as charge-density-wave (CDW) insulators in transi-
tion-metal dichalcogenides [5] promise future applications
in optoelectronics.
Theoretical studies of massive Dirac fermions in 2þ 1

dimensions were pioneered by Semenoff [6], who consid-
ered a staggered fermion density or CDW, and Haldane [7],
who introduced a topological mass that produces an integer
quantum Hall state in the absence of a magnetic field. Such
problems become even richer if the masses arise from
spontaneous symmetry breaking at interaction-driven phase
transitions. Particularly remarkable aspects of Dirac sys-
tems are that (i) phase transitions occur at nonzero critical
values and (ii) the gapless fermionic excitations can
strongly modify the critical behavior, giving rise to fer-
mionic quantum critical points [8–17]. The interplay of

different order parameters provides a route to deconfined
quantum critical points [18] and emergent symmetries
[19,20] (see Ref. [21] for a review).
Numerous interactions have been explored numerically

in the framework of honeycomb lattice models. A suffi-
ciently strong on site Hubbard repulsion yields an anti-
ferromagnetic Mott insulator [22–24]. The same holds for a
more realistic 1=r Coulomb repulsion, although the non-
local part of the interaction—relevant for graphene where
screening is absent—enhances CDW fluctuations [25]. A
dominant nearest-neighbor repulsion favors a CDW state
[26–30] but is rather unrealistic; for spinful fermions,
quantum Monte Carlo (QMC) simulations are hampered
by the sign problem. Mean-field predictions of interaction-
generated topological states in extended Hubbard models
[26] inspired significant efforts to address fluctuation
effects. For spinless fermions, unbiased numerical methods
reveal the absence of topological phases but support CDW,
valence bond solid, and charge-modulated ground states
(see Ref. [31] for a review). Similar conclusions were
recently reached for the spinful problem [32,33]. Finally,
bond-bond interactions were found to produce valence
bond, antiferromagnetic, quantum-spin-Hall, and CDW
states [12,14,34].
Here, we consider electron-phonon coupling as the

mechanism for CDW order. QMC investigations along
these lines have so far been restricted by the challenges in
simulating electron-phonon models, as addressed by
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several recent methodological advances [35–38]. We car-
ried out large-scale QMC simulations of the fundamental
Holstein molecular-crystal model [39] to determine the
phase diagram as a function of coupling strength and
temperature. Moreover, we investigate the nature of the
observed quantum and thermal phase transitions.
Model.—Within the Holstein model, electrons coupled

to quantum phonons on the honeycomb lattice are
described by the Hamiltonian

Ĥ¼−t
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ĉ†iσ ĉjσþ

X

i

�
1

2M
P̂2
i þ

κ

2
Q̂2

i

�
−g

X

i

Q̂iρ̂i: ð1Þ

The first term represents nearest-neighbor electronic hop-
ping, the second term describes independent Einstein
phonons at each lattice site, and the third term is a coupling
between fluctuations of the local electron number ρ̂i ¼
n̂i − 1 and the lattice displacement Q̂i. Here,
n̂i ¼

P
σ ĉ

†
iσ ĉiσ, the phonon frequency ω0 ¼

ffiffiffiffiffiffiffiffiffiffi
κ=M

p
, and

we introduce the dimensionless coupling λ ¼ g2=ðκWÞ
with the free bandwidth W ¼ 6t. We consider half-filling
and work in units where kB, ℏ, and the lattice constant are
equal to 1.
For λ ¼ 0, Eq. (1) gives the well-known semimetallic

band structure ϵðkÞ with linear excitations at the Dirac
points K, K0 [1]. An expansion around these points yields a
Dirac equation in terms of eight-component spinor fields
corresponding to N ¼ 2 (spin ↑;↓) Dirac fermions with
two flavors (valleys K, K0) and two pseudospin directions
(sublattices A, B) [1].
Methods.—We used the determinant QMC (DQMC)

[40] and the continuous-time interaction expansion (CT-
INT) QMC methods [41]. In the former, the electrons are
integrated out and the phonons are sampled using local and
block updates [42,43], as well as global moves based on an
effective bosonic model determined by a self-learning
scheme [36,44–47] (see Supplemental Material [48]). In
CT-INT, the phonons are integrated out and the resulting
electronic model with a retarded interaction is sampled
[59]. While CT-INTworks in continuous imaginary time, a
Trotter discretization Δτ ¼ 0.1 was used for DQMC
calculations. Although both methods are, in principle,
capable of simulating any parameters, CT-INT is most
efficient at weak coupling and less problematic with respect
to autocorrelations [35]. The DQMC method requires more
care regarding the sampling but—especially in combina-
tion with self-learning—can access stronger couplings and
larger system sizes. We used lattices with L × L unit cells
(2L2 sites) and L ¼ 3n (n ¼ 1; 2;…) whose reciprocal
lattice contains the Dirac points that determine the low-
energy physics.
Phase diagram.—The existence of CDW order at suffi-

ciently strong coupling can be inferred from two opposite
limits. For classical phonons (ω0 ¼ 0), we can make a

mean-field ansatz Q̂i ↦ ð−1ÞiQ̄, corresponding to a stag-
gered chemical potential or Semenoff mass that breaks
the sublattice and chiral symmetry [6]. The lattice displace-
ments are accompanied by a density imbalance δ ¼
jhn̂Ai − hn̂Bij (see inset of Fig. 1). The band structure
acquires a gap at the Fermi level, EðkÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ðkÞ þ Δ2

p
.

Spontaneous mass generation is described by a gap
equation identical to that for the Mott transition of the
Hubbard model upon identifying Q̄ ¼ m=2 (Δ ¼ gQ̄),
λW ¼ U. The mean-field critical value is Uc ¼ 2.23t or
λc ¼ 0.37 [22], which may be compared to Uc ≈ 3.8t or
λc ≈ 0.63 from QMC simulations [23,24,60]. The nonzero
critical value reflects the stability of the semimetal at weak
coupling [8], the origin of which is the linearly vanishing
density of states, NðωÞ ∼ jωj [1].
In the opposite, antiadiabatic limit ω0 → ∞, integrating

out the phonons in the path-integral representation yields an
attractive Hubbard model with U ¼ λW [61]. By symmetry
[62], Uc has the same magnitude as for the Mott transition
of the repulsive Hubbard model, namely, 3.8t [23,24,60].
Under the Lieb-Mattis particle-hole transformation that
yields U → −U, the order parameters for CDW and super-
conductivity of the attractive Hubbard model combine into
a 3D vector that maps to the magnetization of the repulsive
model [62]. This implies (i) coexistence of CDWorder and
superconductivity for U > Uc [63] and (ii) long-range
order that spontaneously breaks the SO(3) symmetry only
at T ¼ 0 [64]. An expansion in 1=ω0 in the path-integral
representation of the Holstein model produces terms that
violate the SO(3) symmetry [61]. A mean-field decoupling
with an Ising CDW order parameter—reflecting the two
possible choices for the sign of the excess charge δ in
Fig. 1—gives again Uc ¼ 2.23t or λc ¼ 0.37. However,
while Ising-like CDW order in the square-lattice Holstein

FIG. 1. Phase diagram of the Holstein model (1) for ω0 ¼ 0.5t.
CDWorder with a staggered charge disproportionation�δ (inset)
exists beyond a quantum critical point at λ0c ≈ 0.2375 and below a
critical temperature TcðλÞ. Critical values were obtained from the
crossings of the correlation ratio Rc for different system sizes L as
a function of λ (filled symbols) or T (open symbols), respectively.
Data obtained from CT-INT (T ≤ 0.05t) and DQMC (T > 0.05t)
simulations, respectively. The line is a guide to the eye.

PHYSICAL REVIEW LETTERS 122, 077601 (2019)

077601-2



model is strongly suggested by the nesting-related, stronger
divergence of the CDW susceptibility compared to pairing
[65], we are not aware of such an argument for the
honeycomb Holstein model considered here.
For quantitative insights into the experimentally relevant

case of finite ω0, we turn to QMC simulations. We focus on
ω0 ¼ 0.5t, for which both quantum fluctuations and retar-
dation effects are significant. We determined critical values
either at fixed coupling or at fixed temperature. The values
reported in Fig. 1 are based on the renormalization-group
(RG)-invariant correlation ratio Rc¼1−ScðQþδqÞ=ScðQÞ
[66] calculated from the charge structure factor ScðqÞ ¼
L−2P

ije
−iq·ðri−rjÞhðn̂Ai − n̂Bi Þðn̂Aj − n̂Bj Þi. The CDWorder is

within the unit cell, so the ordering wave vector
Q ¼ Γ ¼ ð0; 0Þ. If Qþ δq is a neighboring point in the
Brillouin zone, long-range order and hence a divergence of
ScðΓÞ impliesRc → 1 forL → ∞, otherwiseRc → 0. At the
critical point, Rc is independent of L up to scaling correc-
tions, so that the critical value can be estimated from
intersections of Rc for different L. Crucially, the scaling
holds independent of any critical exponents and Rc usually
has smaller scaling corrections than ScðΓÞ [66,67].
Near the quantum critical point, the RG-invariant corre-

lation ratio Rc depends on ðλ − λcÞL1=ν and Lz=β. For the
finite-size scaling analysis, we took βt ¼ L (i.e., z ¼ 1)
based on the expected emergent Lorentz symmetry [68].
Figure 2(a) suggests a critical value λ0c ≈ 0.2375. Similar
analysis for other parameters yields the phase boundary in
Fig. 1, shown in terms of the intersections of L ¼ 6, 9 and
L ¼ 9, 12, respectively. Apart from the absence of long-
range order at λ < λ0c [Fig. 2(a)], the CDW transition is also
apparent in the single-particle spectral function Aðk;ωÞ
(see Supplemental Material [48]). We find gapless excita-
tions at the Dirac point for λ ¼ 0.1 [Fig. 2(b)] and a gap
at the Fermi level for λ ¼ 0.4 [Fig. 2(c)]. We found no
evidence of long-range superconducting order for the
parameters considered [48].

In Fig. 1, CDWorder persists up to a critical temperature
Tc. After an initial increase, asymptotically determined by
the quantum critical point via Tc ∼ jλ − λ0cjzν [30], Tc takes
on a maximum before decreasing at even stronger cou-
plings [69]. This can be understood within an effective t-V
model of singlet bipolarons (hardcore bosons) [61]. The
binding energy of the latter continues to grow with λ, but
their exchange interaction V that sets the temperature for
CDWorder in this regime decreases (cf. Tc ∼ J for the Ising
model). An expression for V in the Holstein model is given
in Ref. [61] and simplifies to V ∼ t=λ for ω0 ≫ t. The
observed decrease of Tc with increasing electron-phonon
coupling λ contrasts the linear increase of Tc with increas-
ing electron-electron repulsion in models for CDW order
from Coulomb repulsion [30,70,71]. Finally, the phase
boundary is expected to shift to stronger couplings at larger
ω0 due to enhanced lattice fluctuations, reaching λ0c ≈ 0.63
[23,24,60] in the Hubbard limit ω0 → ∞, where Tc ≡ 0 for
any λ > λ0c due to the continuous SO(3) symmetry.
Quantum phase transition.—In Dirac systems, the

Yukawa coupling between the gapless fermions and order
parameter fluctuations described by Gross-Neveu field
theories gives rise to fermionic critical points rather than
Wilson-Fisher bosonic critical points [8,9]. Gross-Neveu-
Ising universality for CDW transitions was previously
observed for N ¼ 1 Dirac fermions with nearest-neighbor
Coulomb repulsion [27–30] and N ¼ 2 Dirac fermions
with bond interactions [14,34]. For the Holstein model,
Gross-Neveu-Heisenberg universality is well established
[24,60,72] for ω0 → ∞, where it maps to the attractive
Hubbard model. The 3þ 1 dimensional Gross-Neveu
theory for the adiabatic limit ω0 → 0 should have a
correlation length exponent ν ¼ 1=2 [24]. For general
ω0, 2þ 1 dimensional, N ¼ 2 Gross-Neveu-Ising univer-
sality is expected.
For a preliminary analysis, we use λ0c ¼ 0.2375 from

Fig. 2(a) and available estimates for the exponent ν from
QMC simulations [1=ν ¼ 1.2ð1Þ [34] ] and the ϵ expansion
(1=ν ¼ 0.931 [73]), respectively. The rescaled correlation
ratio for L ¼ 9, 12, 15 in Fig. 3 appears more consistent
with 1=ν¼1.2 [Fig. 3(a)] than with 1=ν¼0.931 [Fig. 3(b)].
As a further consistency check, we determined λ0c from
the best scaling collapse [74] on the interval ½−1; 1�.
The exponent 1=ν ¼ 0.931 yields λ0c ≈ 0.239ð2Þ, whereas
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FIG. 2. (a) Estimation of the critical value λ0c ≈ 0.2375 for the
quantum critical point from the intersections of the correlation
ratio Rc. Here, βt ¼ L, ω0 ¼ 0.5t. Single-particle spectral func-
tion Aðk;ωÞ in (b) the semimetallic phase (λ ¼ 0.1) and (c) the
CDW phase (λ ¼ 0.4) for βt ¼ L ¼ 9. Results were obtained
with the CT-INT method.
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FIG. 3. Scaling collapse of the correlation ratio Rc using λ0c ¼
0.2375 and (a) 1=ν ¼ 1.2, (b) 1=ν ¼ 0.931.
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1=ν ¼ 1.2 yields λ0c ≈ 0.238ð1Þ, slightly closer to the value
obtained in Fig. 2(a) without any assumption about the
value of ν.
A direct estimate of ν based on an improved dataset

appears feasible and is motivated by the rather different
existing results [73]. At the same time, a potential addi-
tional complication—absent in purely fermionic
models—is that the phonon frequency interpolates between
three different fixed points, namely, mean-field scaling
(ν ¼ 1=2 [24]) at ω0 ¼ 0, Gross-Neveu-Ising scaling for
ω0 > 0, and Gross-Neveu-Heisenberg scaling for ω0 ¼ ∞.
For ω0 ¼ 0.5t, the proximity to the adiabatic fixed point
may give rise to crossover effects in the exponents. Another
interesting possibility that has to be ruled out is the
formation of singlet pairs—triggered by the attractive
component of the frequency-dependent fermion-fermion
interaction—prior to the CDW transition, as in the 1D
Holstein model [75]. In the absence of gapless fermion
excitations at λc, Wilson-Fisher theory suggests 2þ 1 ¼ 3
dimensional Ising universality. Both the expected ω0 ¼ 0
value (1=ν ¼ 2 [24]) and the 3D Ising value (1=ν ≈ 1.59
[76]) are larger than predicted for the N ¼ 2 Gross-Neveu-
Ising universality class [73].
Thermal phase transition.—Starting from the CDW

ground state at λ > λ0c, long-range order is destroyed by
thermal fluctuations at Tc. The phase transition is expected
to exhibit 2D Ising universality with critical exponents β ¼
1=8 and ν ¼ 1. Figure 4(a) shows that, for ω0 ¼ 0.5t and
λ ¼ 1=3, the rescaled charge structure factor has a crossing
of different system sizes compatible with Tc ¼ 0.159ð2Þ in
Fig. 1. The best scaling collapse on the interval ½−2; 2�
produces Tc ¼ 0.1648ð5Þt and is shown in Fig. 4(b).
Discussion.—Our investigation of spontaneously gen-

erated CDW order from electron-phonon coupling on the
honeycomb lattice reveals several differences to previous
work. Perhaps most importantly, the Dirac band structure
gives rise to a quantum critical point with expected Gross-
Neveu-Ising universality at nonzero coupling. In contrast,
the Fermi liquid of the square lattice is expected to have a
weak-coupling instability due to perfect nesting and a van

Hove singularity [35,65]. The thermal CDW transition
appears to have the same Ising universality as for the square
lattice [35–37,77]. Such a transition is absent in the
antiadiabatic limit, corresponding to the attractive
Hubbard model. While the latter is useful to describe
superconductivity away from half-filling, it supports long-
range CDW order only at T ¼ 0 [64]. Models with
dominant nearest-neighbor repulsion capture the finite-
temperature CDW transition [30,70,71] but not the sup-
pression of Tc at strong coupling. Finally, we showed that,
similar to the square lattice, CDW order prevails over
superconductivity at half-filling.
Outlook.—There are several interesting future directions.

The fermionic quantum criticality requires additional
efforts. Superconductivity at nonzero doping and the
competition between CDW order and antiferromagnetism
in a Holstein-Hubbard model should be investigated. Our
Letter may also provide a starting point for more realistic
modeling of twisted bilayer graphene [4] or transition-
metal dichalcogenides [5]. On the experimental side, a key
question is if CDW order from electron-phonon coupling
can be realized in one of the many Dirac systems currently
being investigated.
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Note added in proof.—Recently, we became aware of a
closely related study of the same model whose results are
fully consistent with ours [79].
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