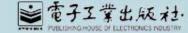
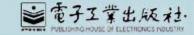

第9章 气压传动基础知识


- 9.2 空气的物理性质
- 9.3 理想气体状态方程
- 9.4 气体的流动规律

第9章 气压传动基础知识

➤气动(Pneumatic)是气压传动与 控制的简称。


➤现在气压传动技术一词的词根,就是来源于古代希腊的"风吹"的意思。 "风吹"—(Pneuma)

第9章 气压传动基础知识

▶气压传动技术是以空气压缩机为动力源,以压缩空气为工作介质,进行能量传递或信号传递的工程技术。

▶气压传动技术是实现各种生产控制、自动控制 的重要手段之一。

第9章 气压传动基础知识

9.1.1 气压传动的特点

1.各种传动与控制方式的比较

表9-1 各种传动与控制方式的比较

主要方式 项目	气压方式	液压方式	机械方式	电气方式	电子方式
驱动力	较大(可达数十kN)	大(可达数百kN以上)	不太大	不太大	小
驱动速度	大	小	小	大	大
响应速度	稍大	大	中	大	大
受外负载影响	大	较小	几乎没有	几乎没有	几乎没有
构造	简单	稍复杂	普通	稍复杂 较简单	复杂
配线,配管	稍复杂	复杂	无		复杂
温度影响	小于100℃普通	小于70℃普通	普通	大	大
防潮性	排放冷凝水	普通	普通	差	差
防腐蚀性	普通	普通	普通	差	差
防振性	普通	普通	普通	差	特差
定位精度	稍不良	稍良好	良好	良好	良好

第9章 气压传动基础知识

9.1.1 气压传动的特点

1.各种传动与控制方式的比较

表9-1 各种传动与控制方式的比较(续)

主要方式项目	气压方式	液压方式	机械方式	电气方式	电子方式 技术要求高	
维护	简单	简单	简单	有技术要求		
危险性	几乎没有问题	注意防火	没有特别问题 注意漏电		没有特别问题	
信号转换	较难	难	难	易	易很好	
远程操作	良好	较良好	难	很好		
动力源出现故障	力源出现故障 有一定应付能力		不动作	不动作	不动作	
安装自由度	有	有	小	有	有	
承受过载能力	好	尚可	较难	不行	不行	
无级变速	速度调整 稍困难		稍困难	稍困难	良好	
速度调整			稍困难	容易	容易	
价格			普通	稍高	高	

第9章 气压传动基础知识

9.1.1 气压传动的特点

- 2. 气压传动的优点
- 3. 气压传动的缺点
- 4. 气动元件的发展趋势
 - (1) 高质量。(2) 高精度。(3) 高速度。(4) 低功耗。(5) 小型化。

- (6) 轻量化。 (7) 无给油化。(8) 复合集成化。(9) 机电一体化。
- 5. 气压传动的应用领域
 - (1) 汽车制造行业。
- (2) 生产自动化。(3)机械设备。
- (4) 电子半导体家电制造行业。(5) 包装自动化。(6) 生命科学领域。

第9章 气压传动基础知识

9.1.2 气压传动系统的组成

1. 气压传动系统的基本构成

一个典型的气气压传动系统是由各种控制阀、气动执行元件、各种 气动辅助元件及气源净化元件所组成。

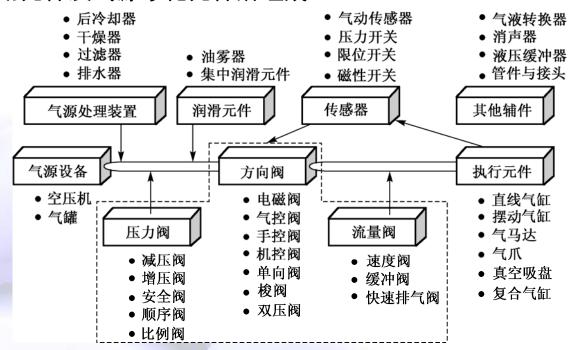
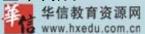



图9-1 气压传动系统的基本构成

第9章 气压传动基础知识

9.1.2 气压传动系统的组成

2.气动元件的基本品种

气动元件的基本品种包括: (详见表9-2)

- ★气源设备
- ★气源处理元件
- ★气动执行元件
- ★气动控制元件
- ★气动辅助元件
- ★真空元件

第9章 气压传动基础知识

9.2.1 空气的性质

1.空气的组成

表9-3 干空气的组成

成分 比值	氦(N ₂)	氧 (O ₂)	氩 (Ar)	二氧化碳(CO ₂)	其他气体
体积分数 (%)	78.03	20.93	0.93	0.03	0.08
质量分数 (%)	75.50	23.10	1.28	0.045	0.075

第9章 气压传动基础知识

9.2.1 空气的性质

2.空气的基本状态参数

- (1) 密度(p)
- (2) 压力(p)
 - ①绝对压力
 - ②相对压力
 - ③真空度
 - ④真空压力
- (3) 温度(T)

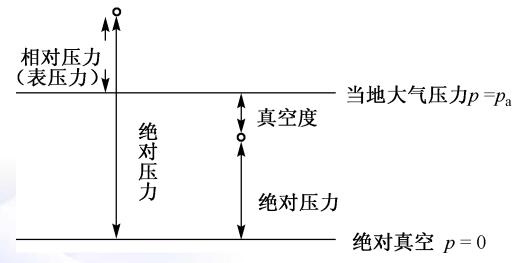
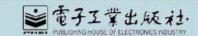


图9-2 绝对压力、表压力和真空度的相互关系


第9章 气压传动基础知识

9.2.1 空气的性质

3.黏度

表9-4 空气的运动黏度与温度的关系(压力为0.1Mpa)

t/°C	0	5	10	20	30	40	60	80	100
v/(10 ⁻⁴ m ² ·s ⁻¹)	0.133	0.142	0.147	0.157	0.166	0.176	0.196	0.21	0.238

第9章 气压传动基础知识

9.2.1 空气的性质

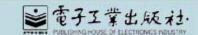
4.可压缩性

5. 标准状态、基准状态、理想气体和完全气体

- (1) 标准状态
- (2) 基准状态
- (3) 理想气体
- (4) 完全气体

第9章 气压传动基础知识

9.2.2 湿度和含湿量


1. 湿度

- (1) 绝对湿度
- (2) 饱和绝对湿度
- (3) 相对湿度

2. 含湿量

3. 露点

第9章 气压传动基础知识

9.3.1 理想气体状态方程

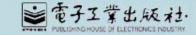
pv = RT

pV = mRT

式中:

p 为气体的绝对压力(N/m²);

ν为气体的质量体积(m³/kg);


R 为气体常数,干空气R = 287.1 N·m (kg·K);

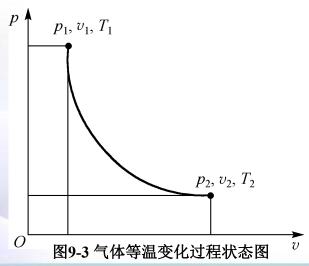
T 为气体热力学温度(K);

m为气体的质量(kg);

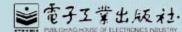
♡为气体的体积(m³)。

第9章 气压传动基础知识

9.3.2 气体状态变化过程


1. 等温变化过程(波意尔法则)

在气体温度保持不变(**T=常数**)的条件下,一定质量 气体所进行的状态变化过程,称为等温过程。当气体状态 变化很慢时,可视为等温变化过程,如气动系统中的气缸 慢速运动、管道送气过程等。


等温过程状态方程为:

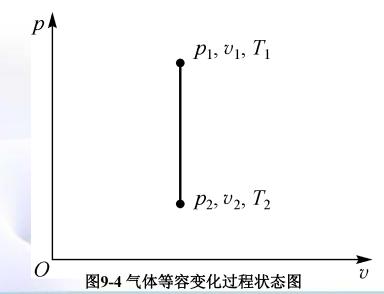
或

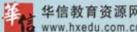
$$p_1 v_1 = p_2 v_2$$

第9章 气压传动基础知识

9.3.2 气体状态变化过程

2. 等容状态过程(查理法则)


在气体的质量、体积保持不变(v=常数)的条件下,所进行的状态变化过程,称为等容过程。等容过程状态方程为:


等容过程状态方程为:

$$\frac{p}{T}$$
=常数

或

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$

第9章 气压传动基础知识

9.3.2 气体状态变化过程

3. 等压状态过程(盖—吕萨克法则)

在气体压力保持不变(p=常数)的条件下,一定质量 气体所进行的状态变化过程,称为等压过程。

等压过程状态方程为:

$$\frac{v}{T} = 常数$$

或

$$\frac{v_1}{T_1} = \frac{v_2}{T_2}$$

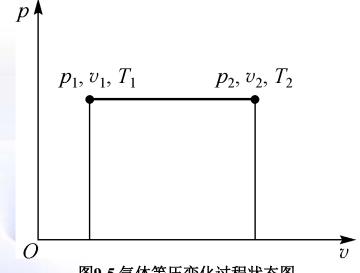
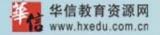
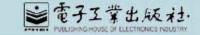
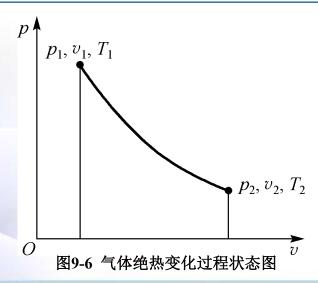




图9-5 气体等压变化过程状态图

第9章 气压传动基础知识

9.3.2 气体状态变化过程


4. 绝热变化过程(查理法则)

在气体与外界无热量交换条件下,一定质量气体所进行的状态变化过程,称为绝热过程。

当气体状态变化很快,可视为绝热变化过程,如气动系统的快速充、排气过程。

绝热过程状态方程为:

$$p_1 v_1^{\kappa} = p_2 v_2^{\kappa}$$

第9章 气压传动基础知识

9.3.2 气体状态变化过程

5. 多变变化过程

在没有任何制约条件下,一定质量气体所进行的状态变化过程,称为多变过程。严格地讲,气体状态变化过程大多属于多变过程;等容、等压、等温、绝热这四种变化过程不过是多变过程的特例而已。

pvⁿ=常数

或

 $p_1 v_1^n = p_2 v_2^n$

第9章 气压传动基础知识

9.4.1 气体流动的基本方程

1.连续性方程

根据质量守恒定律,当气体在管道中做稳定流动时,同一时间流过每一通流断面的质量为一定值,即为连续性方程。

$$q_m = \rho A v$$

$$\frac{dA}{A} + \frac{dv}{v} + \frac{d\rho}{\rho} = 0$$


海海 第9章 气压传动基础知识

9.4.1 气体流动的基本方程

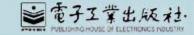
2.运动方程

$$vdv + \frac{dp}{\rho} = 0$$

9.4

海馬 第9章 气压传动基础知识

9.4.1 气体流动的基本方程


3.状态方程

$$\frac{dp}{p} = \frac{d\rho}{\rho} + \frac{dT}{T}$$

9.4

气体

的

第9章 气压传动基础知识

9.4.1 气体流动的基本方程

4.伯努利方程(能量方程)

$$\frac{v^2}{2} + gH + \oint_{\rho}^{tp} + gh_f = \mathring{\mathbb{R}} \mathring{\mathfrak{D}}$$

律

第9章 气压传动基础知识

9.4.2 气动元件的通流能力

1.有效截面积S

$$S = \alpha \frac{\pi d^2}{4}$$

图9-7 节流阀的有效截面积

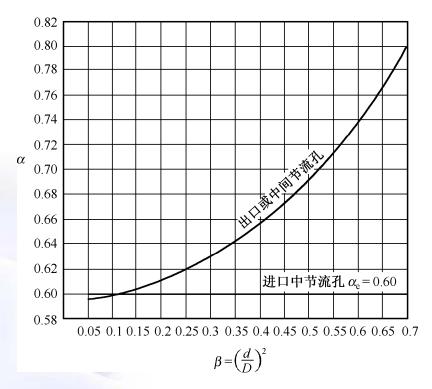
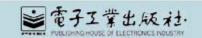



图9-8 节流孔的收缩系数

第9章 气压传动基础知识

9.4.2 气动元件的通流能力

2.流量q

如果当气流压力之比p1/p2 > 1.893时,其流量公式为:

$$q = 11.3 Sp_1 \sqrt{\frac{273}{T}}$$

如果当气流压力之比p1/p2 < 1.893时,其流量公式为:

$$q = 22.7S_1\sqrt{p_1(p_1 - p_2)}$$

第9章 气压传动基础知识

9.4.3 充放气时间的计算

1. 充气温度与时间的计算

2. 放气温度与时间的计算

第9章 气压传动基础知识

- 1. 理解气压传动的基本概念、气压传动系统的基本组成,了解空气的物理性质。
- 2. 掌握理想气体的状态方程,掌握气体状态变化过程及其对应方程,掌握气体流动的基本方程及其应用。