基于¹⁵N 示踪法的双根大豆系统氮素吸收和分配特性研究

马春梅¹, 王 晶¹, 夏 玄¹, 王 畅¹, 吕晓晨¹, 李 莎^{1,2}, 程 娟¹, 龚振平^{1*} (1东北农业大学农学院, 哈尔滨 150030; 2东北农业大学资源与环境学院, 哈尔滨 150030)

摘要:【目的】施氮可以促进大豆生长并提高产量,同时会抑制根瘤生长和固氮。因此研究大豆对不同形态氮 素的吸收、分配及再分配特点,可以为解析大豆氮的转运特性及施氮对根瘤的系统性抑制提供参考。 【方法】利用嫁接方法,制备具有两个根部和一个地上部的双根大豆植株,在砂培条件下分别以 NO₅⁻和 NH₄⁺为 氮源设置两种试验处理。试验Ⅰ,一侧施 50 mg/L 的¹⁵NO₃⁻或¹⁵NH₄⁺(A 侧),另一侧不施氮 (B 侧);试验Ⅱ,一 侧施 50 mg/L 的¹⁵NO₃⁻ 或¹⁵NH₄⁺(A 侧),另一侧施同形态的 50 mg/L 的 NO₃⁻ 或 NH₄⁺(B 侧)。于始花期 (R1) 和始粒 期 (R5) 取样两次,将植株分为 A 根、B 根、A 侧根瘤、B 侧根瘤、茎、叶片、叶柄、荚等部位,用于测定 ¹⁵N 丰度、干重和氮含量等指标。【结果】试验Ⅰ和试验Ⅱ结果发现,大豆A和B两侧根瘤的¹⁵N 丰度均高于自 然丰度(0.365%),说明根瘤的生长发育过程中,所需要的氮不是全部来自自身固氮,还需要从根中吸取氮。与 试验 I 相比,试验 II 的根瘤固氮率明显下降,表明大豆植株优先吸收利用肥料氮。NO₁⁻与 NH₄⁺处理相比,各器 官¹⁵N 丰度均没有显著性差异,说明在 50 mg/L 的氮浓度下,NO₃⁻和 NH₄⁺对大豆的氮营养没有显著差异。试验 Ⅰ和试验Ⅱ均发现大豆B侧根及根瘤的¹⁵N丰度高于自然丰度(0.365%),且小于施加的肥料氮的¹⁵N丰度 (3.63%),表明A侧根吸收的氮会经地上部转移到B侧的根及根瘤中,即根吸收的肥料氮会以一定的比例运输 到地上部,随后会再次重新分配回根及根瘤中。本试验将双根大豆系统中地上部和 B 侧根及根瘤看成一个氮转 移系统,利用¹N 丰度的差异,构建了 R1~R5 期地上部向根及根瘤转移氮量的计算方法。经计算发现,当施氮 浓度为 50 mg/L 时,在始花期至始粒期,根来自地上部转移的氮占根部氮积累量的 28.4%~40.8%,根瘤来自地 上部转移的氮占其氮积累量的14.4%~17.2%。【结论】根瘤生长所需要的氮不是全部来源于自身固氮,有一部 分来源于根系吸收的氮。在有肥料氮存在时,大豆植株优先吸收肥料氮。根系吸收的肥料氮以及根瘤固氮被运 输到地上部后,会再次重新分配回根及根瘤中。在 50 mg/L 的氮浓度下,氮素形态 (NO₃⁻和 NH₄⁺) 不会影响大豆 植株对氮的吸收及分配。

关键词: 大豆双根系统; 氮吸收; 氮分配; NO₃⁻; NH₄⁺

Study on absorption and distribution characteristics of nitrogen in soybeans with dual root systems based on ¹⁵N tracing technique

MA Chun-mei¹, WANG Jing¹, XIA Xuan¹, WANG Chang¹, LYU Xiao-chen¹, LI Sha^{1,2}, CHENG Juan¹, GONG Zhen-ping^{1*} (1 College of Agriculture, Northeast Agricultural University, Harbin 150030, China; 2 College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China)

Abstract: [Objectives] Nitrogen application promote soybean growth and increase yields, but inhibit nodule formation and nitrogen fixation. The resource of nitrogen in root and nodules were studied, and the effect of supplying NO_3^- and NH_4^+ on the nitrogen absorption and distribution of soybeans was systematically investigated. **[Methods]** The grafting method was used to generate soybean plants with dual root systems, in which two modulated roots shared one symbiotic shoot. Two experimental treatments were conducted with NO_3^- and NH_4^+ as nitrogen sources under sand culture conditions. Experiment I, supplying one side of root with 50 mg/L of ${}^{15}NO_3^-$ or ${}^{15}NH_4^+$ (side A), and no nitrogen on the other side (side B). Experiment II, supplying one side of

收稿日期: 2018-11-22 接受日期: 2019-03-04

基金项目:国家重点研发计划(2018YFD1000905);黑龙江省应用技术研究与开发计划(GA16B401)。

联系方式: 马春梅 E-mail: chunmm1974@163.com; * 通信作者 龚振平 E-mail: gzpyx2004@163.com

root with 50 mg/L $^{15}NO_3$ or $^{15}NH_4$ (side A), and supplying the other side with 50 mg/L NO_3 or NH_4 . At R1 (initial flowering) and R5 (initial seeding) stages of soybean, the plant samples were collected and divided into separate parts for the analysis of N contents. [Results] The ¹⁵N abundance in the nodules on both the side A and side B were higher than natural (0.365%), which indicated that the nitrogen in the nodules was derived from both self-nitrogen fixation and root absorption. The rates of nodule-fixed N in both side A and B of experiment II were significantly lower than those in experiment I, indicating that the fertilizer N was preferentially absorbed and used by soybeans. No significant differences were observed in both the ¹⁵N abundance and N accumulation in all parts of soybean when supplied with NO_3^- or NH_4^+ , which indicated that soybean was not sensitive to N forms under the experimental N level of 50 mg/L. In experiment I, the ¹⁵N abundance of root and nodules on the side B was higher than the natural but lower than that in the tested fertilizers (3.63%), suggesting that the N absorbed from root of side A was transferred to the root and nodules in side B via the shoot. Considering the shoots, root and nodule in the dual root systems as a system, we proposed a method for calculating the amount of N translocation from shoots to roots and nodules during the R1–R5 stages based on the difference in the ¹⁵N abundance. When adding 50 mg/L of N, the translocated N from the shoots accounted for 28.4%–40.8% of the N accumulation in roots and 14.4%–17.2% of that in nodules of soybeans. [Conclusions] The N required for nodule growth and development is derived from both self-nitrogen fixation and root absorption. The fertilizer N will be preferentially absorbed and used by soybeans in the presence of fertilizer N. N forms, namely NO_3^- and NH_4^+ , will not affect the N absorption and distribution of soybean plants under the tested N supply concentration (50 mg/L). All the N acquired by the roots and nodules will be transported to the shoots, and a portion of them is then redistributed to the roots and nodules.

Key words: soybean dual root system; nitrogen absorption; nitrogen distribution; NO₃⁻; NH₄⁺

大豆是重要的粮油兼用作物,其根瘤中的根瘤 菌能够高效地固定空气中的氮气,且高产大豆往往 有较高的根瘤固氮量凹。而单纯依靠大豆的根瘤固氮 无法达到大豆高产的目标,许多学者研究表明,适 量的施氮能够提高大豆产量[2-6],然而施氮却会抑制 根瘤的生长及根瘤固氮[7-17]。Gan 等[18]研究发现,在 水培条件下,给大豆分别施加不同浓度的 NO₃⁻和 NH4+,施用高浓度肥料氮能明显抑制大豆根瘤数 量、干重及根瘤固氮。作物利用的氮素主要有 NO₃-和NH₄⁺, 而NO₃⁻和NH₄⁺对根瘤的抑制作用也不尽相 同,多数学者认为豆科作物根瘤生长对 NO,⁻比 NH₄⁺ 更为敏感[7-10]。而 Dazzo 等[11]分别用不同浓度的 NH4⁺和 NO3⁻处理三叶草,发现 16 mmol/L 的 NO3⁻与 1 mmol/L 的 NH₄*对结瘤的抑制相同,表明结瘤过程 对 NH₄⁺的敏感性大于对 NO₃⁻的敏感性。Fujikake 等199研究发现,在水培条件下施加 NO3-后,大豆根 瘤直径的增长完全停止,而未加 NO₅时,根瘤的生 长迅速回到原来的正常速率。由此证明 NO, 引起的 抑制根瘤的生长是可逆的。但也有少数学者认为, 施加少量氮会促进结瘤并提高根瘤固氮酶活性[18,20]。 Xia 等[21]利用大豆双根系统,在砂培条件下,一侧施 加高浓度氮,另一侧不施氮,研究发现施加高浓度

氮侧的根瘤量减少,而不施氮侧根瘤量均增加,表 明高浓度氮对根瘤的形成及生长的抑制作用有局部 接触效应。另外,在水培条件下,利用大豆分根系 统,一侧施 NO3-,另一侧不施氮,研究发现供氮侧 的根瘤生长会受到抑制,当供给高浓度的 NO3-时, 不施氮侧的根瘤数量不变但重量减小,这可以解释 为根瘤生长受到非局部性的抑制^[22-23]。Daimon 等^[16]则 认为,长期施加 NO3-,对花生结瘤和根瘤活性的抑 制作用是系统性的。施氮导致根瘤的系统性抑制的 机制有可能与氮的分配及转运有关。因此研究氮的 分配及转运可能为解析根瘤的系统性抑制提供理论 参考。Tanaka 等^[12]利用大豆分根系统,一侧施¹⁵NO₃⁻, 一侧不施氮,发现15N标记出现在不施氮侧的根及根 瘤中,说明一侧的根吸收的 NO, 会转移到另一侧的 根中。Oghoghorie等^[24]在水培条件下,将豌豆的根分 为上下两个部分并且隔开,在根的上部施加¹⁵N₂,发 现除了地上部能检测到5N标记,在根的下部及根瘤 中也检测到了¹⁵N标记;同样在根的上部施加¹⁵NO₅, 发现地上部、根的下部及根瘤中均检测到了¹⁵N标 记,表明由根吸收的氮或由根瘤固氮运输到地上部 的氮素会有一部分返回到根及根瘤中。

有许多学者认为,作物体内除了会发生碳的循

环^[25],也会发生氮的循环,即氮的分配与再分配,而 对于氮的转运量的研究较少。本试验利用嫁接方法 制备出大豆的双根系统,在砂培条件下施用¹⁵N标记 NO₃⁻和 NH₄⁺,对 R1 期 (始花期)和 R5 期 (始粒期)的 大豆植株干重、氮含量、¹⁵N 丰度进行测定与分析, 对大豆不同时期各组织的氮素来源 (肥料氮和共生固 氮)进行量化,并构建了计算大豆地上部向根及根瘤 转移氮量的方法。系统研究了大豆对不同氮形态的 吸收、分配及再分配特点,为解析肥料氮和根瘤固 氮的互作机制及大豆根瘤形成的系统性调控提供 参考。

1 材料与方法

1.1 试验设计

试验于 2016 年在东北农业大学校园内进行,在 砂培条件下,利用嫁接方法制备出双根大豆植株, 并施用¹⁵N标记的 NO₃⁻和 NH₄⁺为氮源进行研究。 ¹⁵NO₃⁻或¹⁵NH₄⁺的¹⁵N 丰度均为 3.63%。

1.1.1 双根材料制备 选用直径 0.3 m、高 0.3 m 的 塑料桶,插入与桶内部形状契合的定制 PC 塑料板, 在塑料桶中间位置用胶固定密封,形成两个相等且 独立的空间,塑料板高度低于桶沿 2 cm,在桶底分 别钻 1 cm 直径的排水孔,于桶底每个圆孔上方放入 一块纱网,防止江砂堵塞圆孔,再将洗净的江砂装 入桶中,总装砂量为 20 kg,用于培养双根大豆材料。

大豆双根植株制备方法:参考 Xia 等四的大豆双 根植株制备方法。将大豆(品种为'垦丰16')种子 播于细砂中,播深 2 cm,置于培养箱中 30℃培养 3 天,当大豆子叶着生处至根尖长约 7~10 cm 时, 用蒸馏水冲出幼苗根系,取大豆幼苗用灭菌刀片在 两株幼苗胚轴中间偏上的位置,向上或向下划 0.5~1.0 cm 长切口(不切断),一个大豆幼苗由子叶 向根部方向豁开(图 1A),另一个大豆幼苗由根部向 子叶方向豁开(图 1B),然后将两株幼苗的切口相互 插入(图 1C)后用嫁接夹夹好,再将两幼苗的根分别 栽植于桶内隔板两侧的细砂内,嫁接部位恰好处于 隔板正上方,将嫁接苗放于防雨棚中,一周后去掉 嫁接夹,剪掉图 1A 中接口以上部分,只留下接合部 位及其下部,使幼苗成为包含两个根和一个地上部 的幼苗。图 1D 是取样时的双根大豆植株。

1.1.2 试验处理 试验设置 NO₃⁻和 NH₄⁺两种氮 源,供氮浓度均为 50 mg/L。试验设置两组试验:试 验 I 中一侧施加¹⁵N 标记的氮,标记为 A 侧;另一侧 不施加氮,标记为 B 侧。试验 II 中一侧施加¹⁵N 标记 的氮,标记为 A 侧;另一侧施加相对应的¹⁴N 的氮 (A、B 两侧施相同形态氮),标记为 B 侧。每个处理 5 次重复,试验处理见表 1。

不含氮营养液的组成为: KH₂PO₄ 136 mg/L、 MgSO₄ 240 mg/L、CaCl₂ 220 mg/L、MnCl₂·4H₂O 4.9 mg/L、H₃BO₃ 2.86 mg/L、ZnSO₄·7H₂O 0.22 mg/L、 CuSO₄·5H₂O 0.08 mg/L、Na₂MoO₄·H₂O 0.03 mg/L、 FeSO₄·7H₂O 5.57 mg/L、Na₂EDTA 7.45 mg/L。营养液 参考 Hoagland 等^[26]及董守坤等^[27]的配制方法,略有 改进。含 NO₃⁻的营养液是在上述不含氮营养液的基 础上添加 KNO₃ 360.7 mg/L,含 NH₄⁺的营养液是在上 述不含氮营养液的基础上添加 (NH₄)₂SO₄ 235.7 mg/L。

自幼苗对生真叶完全展开前每日浇1次蒸馏 水,每次每侧浇250 mL。对生真叶完全展开后每日 浇1次配制的营养液,每次每侧250 mL对应营养 液,直至 R1 期(始花期); R1 期后每日浇2次配置 的营养液,早晚各1次,每次每侧250 mL对应营养 液,至 R5 期(始粒期)试验结束。当大豆对生真叶完 全展开时全部根均接种根瘤菌,其方法是将上年冷 冻保存的田间大豆根瘤,清洗研碎后加到营养液 中,每升营养液中约含5g根瘤,连续接种5天。

图 1 双根大豆植株 Fig. 1 Soybean plant with dual root systems

	Table 1	Experiment treatments			
试验 Experiment	N	O ₃ -	$\mathrm{NH_4^+}$		
	A 侧 Side A	B 侧 Side B	A 侧 Side A	B 侧 Side B	
I	¹⁵ NO ₃ ⁻	无氮 N free	¹⁵ NH ₄ ⁺	无氮 N free	
Ш	¹⁵ NO ₃ ⁻	NO ₃ -	¹⁵ NH ₄ ⁺	$\mathrm{NH_4^+}$	

表1 试验处理 Table 1 Experiment treatmen

1.2 取样方法

于始花期和始粒期取样两次,将植株分为A根、 B根、A侧根瘤、B侧根瘤、茎、叶片、叶柄、荚等 部位,105℃杀青30min之后,65℃烘干,样品用 于测定¹⁵N丰度、干重和氮含量等指标。

1.3 测定分析

植株氮含量测定:以 K₂SO₄和 CuSO₄为催化剂, 浓硫酸消煮后,采用 B324 全自动凯氏定氮仪测定。

¹⁵N 丰度测定:先用凯氏定氮法测定植株氮含量,然后将凯氏定氮滴定后的样品溶液浓缩,在冷冻真空条件下与次溴酸锂反应产生氮气,用同位素比率质谱仪 (Thermo-Fisher Delta V Advantage IRMS) 采用双路 (DI) 测量方式测定¹⁵N 丰度。

1.4 相关计算

试验采用砂培,没有土壤因素,因此植株的两 个氮素来源是源于施加¹⁵N标记的肥料氮比例,和源 于施加¹⁴N肥料氮或根瘤固氮的比例 (后者在试验 I中为源于根瘤固氮的比例,在试验 II中为源于施 加的¹⁴N 肥料氮+根瘤固氮的比例)。

样品(肥料)的原子百分超 =

样品(肥料)的¹⁵N丰度 – 自然丰度 (0.365%)^[28] (1)

源于¹⁵N标记的肥料氮的比例,即:

15
Ndff% = $\frac{样品的原子百分超}{肥料的原子百分超} \times 100^{[28]}$ (2)

由公式(1)和(2)可推导出源于"N标记的肥料氮的比例:

15
Ndff% = 样品的¹⁵N丰度-自然丰度
肥料的¹⁵N丰度-自然丰度×100 (3)

1.5 数据分析

采用 SPSS22.0 软件进行方差分析。

2 结果与分析

2.1 大豆对肥料氮与根瘤固氮的吸收及分配

2.1.1 大豆各组织中¹⁵N 丰度变化 表 2 是试验 Ⅰ和试验Ⅱ双根大豆植株中各营养器官的¹⁵N 丰度。 试验Ⅰ,大豆植株中氮来源为 A 根吸收的¹⁵NO₃-或

	T	able 2 ¹⁵ N abundanc	e of the soybean tissu	es	
	àn 12-	N	D ₃ -	NI	H_{4}^{+}
时 <i>期</i> Stage	前12 Tissue	试验 I Exp. I	试验Ⅱ Exp.Ⅱ	试验 I Exp. I	试验Ⅱ Exp.Ⅱ
始花期	A 根 Root A	2.21 ± 0.06 a	2.10 ± 0.03 a	2.30 ± 0.01 a	2.25 ± 0.05 a
Initial flowering (R1)	B根 Root B	$0.97\pm0.02~a$	$0.76\pm0.02\ b$	0.91 ± 0.01 a	$0.70\pm0.03~b$
	A 根瘤 Nodule A	$0.78\pm0.01~a$	0.74 ± 0.01 a	0.80 ± 0.01 a	0.79 ± 0.03 a
	B 根瘤 Nodule B	0.60 ± 0.01 a	$0.53\pm0.01\ b$	0.59 ± 0.01 a	0.54 ± 0.02 a
	茎 Stem	1.27 ± 0.01 a	$1.11 \pm 0.02 \text{ b}$	1.38 ± 0.06 a	1.37 ± 0.12 a
	叶片 Leaf	1.37 ± 0.05 a	$1.07\pm0.05\ b$	1.33 ± 0.05 a	1.32 ± 0.06 a
	叶柄 Petiole	1.32 ± 0.04 a	1.16 ± 0.04 a	1.36 ± 0.06 a	1.24 ± 0.04 a
始粒期	A 根 Root A	1.97 ± 0.05 a	1.87 ± 0.04 a	2.20 ± 0.01 a	2.18 ± 0.04 a
Initial seeding (R5)	B 根 Root B	0.85 ± 0.02 a	$0.73\pm0.02\ b$	$0.84 \pm 0.01 \ a$	$0.67\pm0.01~b$
	A 根瘤 Nodule A	0.70 ± 0.03 a	0.67 ± 0.01 a	0.70 ± 0.01 a	0.70 ± 0.02 a
	B 根瘤 Nodule B	0.53 ± 0.01 a	0.51 ± 0.01 a	0.53 ± 0.01 a	0.51 ± 0.01 a
	茎 Stem	1.09 ± 0.02 a	1.08 ± 0.03 a	1.18 ± 0.02 a	1.13 ± 0.04 a
	叶片 Leaf	1.20 ± 0.09 a	1.05 ± 0.03 a	$1.14 \pm 0.01 \text{ a}$	1.10 ± 0.03 a
	叶柄 Petiole	1.26 ± 0.09 a	1.13 ± 0.04 a	$1.20 \pm 0.01 \ a$	$1.14 \pm 0.04 \ a$
	荚 Pod	1.03 ± 0.08 a	0.96 ± 0.02 a	1.14 ± 0.04 a	1.08 ± 0.04 a

表 2 大豆各组织中¹⁵N 丰度 (%) Table 2 ¹⁵N abundance of the soybean tissues

注(Note):表中值代表平均数±标准误 The values are the means ± standard error (*n* = 3);同行数据后不同字母表示两个试验处理间差异 达 5% 显著水平 Values followed by different lowercase letters in a row indicate significant differences between treatments of experimental I and II at the 5% level.

 $^{15}NH_{4}^{+}$ 、A 侧根瘤固氮、B 侧根瘤固氮。试验 II,大 豆植株中氮来源为A 根吸收的 $^{15}NO_{3}^{-}$ 或 $^{15}NH_{4}^{+}$ 、B 根 吸收的 $^{14}NO_{3}^{-}$ 或 $^{14}NH_{4}^{+}$ 、A 侧根瘤固氮、B 侧根瘤 固氮。

由表 2 可知, NO₃⁻和 NH₄⁺两种氮源的试验 I 在 R1 期 A 根的¹⁵N 丰度为 2.21% 和 2.30%, 在 R5 期为 1.97% 和 2.20%; 在 R1 期 B 根的¹⁵N 丰度为 0.97% 和 0.91%, 在 R5 期为 0.85% 和 0.84%, ¹⁵N 丰 度均高于自然丰度 (0.365%), 且小于肥料的¹⁵N 丰度 (3.63%), 表明 B 根中的氮除了来自根瘤固氮外, 一 定有 A 根吸收的¹⁵N 标记的肥料氮转移到 B 根中。 在 R1 期的 A 侧根瘤的¹⁵N 丰度为 0.78% 和 0.80%, 在 R5 期为 0.70% 和 0.70%; 在 R1 期的 B 侧根瘤的 ¹⁵N 丰度为 0.60% 和 0.59%, 在 R5 期为 0.53% 和 0.53%, ¹⁵N 丰度均高于自然丰度 (0.365%), 说明根 瘤的氮除了来自根瘤固定的氮外, 一定有 A 根吸收 的¹⁵N 标记的肥料氮运输到 A 侧及 B 侧根瘤中。

在试验Ⅱ中,A根及根瘤、B根及根瘤、地上 部(茎、叶片、叶柄、荚)中的ⁱN丰度与试验Ⅰ变化 规律基本一致,说明两侧根都施氮的条件下,两侧 根吸收的肥料氮和两侧根瘤固氮仍然是可以相互转 移的。在 NO₃⁻和 NH₄⁺两种氮源的试验 Ⅱ 中, R1 期 A 根的¹⁵N 丰度为 2.10% 和 2.25%, 在 R5 期为 1.87% 和 2.18%; R1 期 B 根的¹⁵N 丰度为 0.76% 和 0.70%, R5 期为 0.73% 和 0.67%。R1 期 A 侧根瘤的 15N 丰度 为 0.74% 和 0.79%, R5 期为 0.67% 和 0.70%, R1 期 B 侧根瘤的¹⁵N 丰度为 0.53% 和 0.54%, R5 期为 0.51% 和 0.51%。R1 和 R5 期的茎、叶、叶柄的 ¹⁵N 丰度没有显著性差异,说明根系吸收的肥料氮和 根瘤固氮对茎、叶、叶柄三个部位的营养作用相 同; 地上各部分¹⁵N 丰度均高于自然丰度 (0.365%), 且小于施加的肥料氮的¹⁵N 丰度 (3.63%), 说明 A 和 B两侧根吸收的肥料氮和A和B两侧根瘤固氮都会 按一定的比例运输到地上部。试验Ⅰ、Ⅱ的 R5 期植 株各器官的¹⁵N 丰度均低于 R1 期, 说明在 R5 期根瘤 固氮对植株的贡献大于 R1 期。

2.1.2 大豆植株吸收肥料氮和根瘤固氮比例 由表 2 中的¹⁵N 丰度数据,计算出各器官的氮来源于¹⁵N 和 来源于根瘤固氮或来源于¹⁴N 与根瘤固氮的比例 (表 3 和表 4)。

	->=====================================	N	O ₃ -	NI	H_4^+
时期 Stage	部位 - Tissue	¹⁵ N	根瘤固氮 Nodule fixation	¹⁵ N	根瘤固氮 Nodule fixation
始花期	A 根 Root A	56.57 ± 1.83 a	43.43 ± 1.83 b	59.26 ± 0.21 a	40.74 ± 0.21 b
Initial flowering (R1)	B 根 Root B	$18.53\pm0.66~b$	81.47 ± 0.66 a	16.83 ± 0.38 b	83.17 ± 0.38 a
	A 根瘤 Nodule A	$12.81\pm0.41\ b$	87.19 ± 0.41 a	13.33 ± 0.09 b	86.67 ± 0.09 a
	B 根瘤 Nodule B	$7.20\pm0.23\ b$	92.80 ± 0.23 a	6.89 ± 0.32 b	93.11 ± 0.32 a
	茎 Stem	$27.85\pm0.25\ b$	72.15 ± 0.25 a	31.11 ± 1.74 b	68.89 ± 1.74 a
	叶片 Leaf	$30.69 \pm 1.58 \text{ b}$	69.31 ± 1.58 a	29.72 ± 1.60 b	70.28 ± 1.60 a
	叶柄 Petiole	$29.34\pm1.18\ b$	70.66 ± 1.18 a	30.30 ± 1.95 b	69.70 ± 1.95 a
始粒期	A 根 Root A	49.13 ± 1.65 a	50.87 ± 1.65 a	56.29 ± 0.36 a	$43.71 \pm 0.36 \text{ b}$
Initial seeding (R5)	B 根 Root B	$14.79\pm0.78\ b$	85.21 ± 0.78 a	$14.54 \pm 0.21 \text{ b}$	85.46 ± 0.21 a
	A 根瘤 Nodule A	$10.20\pm0.82\ b$	89.80 ± 0.82 a	$10.13 \pm 0.37 \text{ b}$	89.87 ± 0.37 a
	B 根瘤 Nodule B	$5.17\pm0.14\ b$	94.83 ± 0.14 a	$5.16\pm0.10\ b$	94.84 ± 0.10 a
	茎 Stem	$22.17\pm0.59~b$	77.83 ± 0.59 a	$25.07\pm0.45\ b$	74.93 ± 0.45 a
	叶片 Leaf	$25.70\pm2.94\ b$	74.30 ± 2.94 a	23.63 ± 0.29 b	76.37 ± 0.29 a
	叶柄 Petiole	27.44 ± 2.70 b	72.56 ± 2.70 a	$25.59\pm0.39~b$	74.41 ± 0.39 a
	荚 Pod	20.46 ± 2.52 b	79.54 ± 2.52 a	23.73 ± 1.24 b	76.27 ± 1.24 a

表 3 试验 I 中大豆各组织中氮来源于¹⁵N 和根瘤固氮的比例 (%) Table 3 Proportions of nitrogen from ¹⁵N fertilizer and nodule fixation of soybean tissues in experiment I

注(Note): 表中值代表平均数 ± 标准误 The values are the means ± standard error (*n* = 3); 同行数据后不同字母表示不同氮来源间差异达 5% 显著水平 Values followed by different lowercase letters in a row indicate significant difference between different N sources at the 5% level.

1 able 4	Proportions of hitro	gen from IN and	N+nodule lixation of soy	bean tissues in exp	eriment II	
- L#0	÷17/24		NO ₃ -	$\mathrm{NH_4^+}$		
时 期 Stage	前4立 Tissue	¹⁵ N	¹⁴ N+根瘤固氮 ¹⁴ N + nodule fixation	¹⁵ N	¹⁴ N + 根瘤固氮 ¹⁴ N + nodule fixation	
始花期	A 根 Root A	53.15 ± 0.99 a	46.85 ± 0.99 b	57.69 ± 1.42 a	42.31 ± 1.42 b	
Initial flowering (R1)	B根 Root B	12.21 ± 0.63 b	87.79 ± 0.63 a	10.40 ± 1.05 b	89.60 ± 1.05 a	
	A 根瘤 Nodule A	$11.64\pm0.18~b$	88.36 ± 0.18 a	13.12 ± 0.75 b	86.88 ± 0.75 a	
	B 根瘤 Nodule B	$4.99\pm0.10\ b$	95.01 ± 0.10 a	$5.30\pm0.60\ b$	94.70 ± 0.60 a	
	茎 Stem	$22.90\pm0.68\ b$	77.10 ± 0.68 a	30.63 ± 3.69 b	69.37 ± 3.69 a	
	叶片 Leaf	21.68 ± 1.45 b	78.32 ± 1.45 a	29.15 ± 1.78 b	70.85 ± 1.78 a	
	叶柄 Petiole	24.43 ± 1.35 b	75.57 ± 1.35 a	$26.59\pm1.30~b$	73.41 ± 1.30 a	
始粒期	A 根 Root A	$45.88 \pm 1.21 \text{ b}$	54.12 ± 1.21 a	55.64 ± 1.10 a	44.36 ± 1.10 b	
Initial seeding (R5)	B 根 Root B	$11.31 \pm 0.77 \text{ b}$	88.69 ± 0.77 a	$9.41\pm0.17~b$	90.59 ± 0.17 a	
	A 根瘤 Nodule A	$9.22\pm0.40\ b$	90.78 ± 0.40 a	10.22 ± 0.56 b	89.78 ± 0.56 a	
	B 根瘤 Nodule B	$4.43\pm0.32\ b$	95.57 ± 0.32 a	$4.45 \pm 0.18 \text{ b}$	95.55 ± 0.18 a	
	茎 Stem	$21.95\pm0.88\ b$	78.05 ± 0.88 a	23.29 ± 1.16 b	76.71 ± 1.16 a	
	叶片 Leaf	$21.00\pm0.96~b$	79.00 ± 0.96 a	$22.36\pm0.86~b$	77.64 ± 0.86 a	
	叶柄 Petiole	$23.48\pm1.19~b$	76.52 ± 1.19 a	23.77 ± 1.20 b	76.23 ± 1.20 a	
	荚 Pod	18.22 ± 0.74 b	81.78 ± 0.74 a	21.92 ± 1.04 b	78.08 ± 1.04 a	

表 4 试验 II 中大豆各组织中氮来源于¹⁵N 及¹⁴N+根瘤固氮的比例 (%) Fable 4 Proportions of nitrogen from ¹⁵N and ¹⁴N+nodule fixation of soybean tissues in experiment Ⅱ

注(Note):表中数值为平均数±标准误 The values are the means ± SD (*n* = 3);同行数据后不同字母表示不同氮源间差异达 5% 显著水 平 Values followed by different lowercase letters in a row indicate significant difference between different N sources at the 5% level.

由表3可知,试验I中植株有三个氮源,分别 为A根吸收的¹⁵N标记肥料氮和A侧根瘤固定的氮 及 B 侧根瘤固定的氮,但由于 A 和 B 两侧根瘤固定 的氮无法区分,所以表中列出了两个来源,分别为 A 根吸收的¹⁵N 标记的肥料氮和 A、B 两侧根瘤固定 的氮。由表3可知,NO₃⁻和NH₄⁺两种氮源的试验 I在R1期A根的氮来源于A根吸收肥料氮占56.57% 和 59.26%, 来自于 A 根和 B 根的根瘤固氮占 43.43% 和 40.74%, R5 期分别为 49.13%、56.29% 和 50.87%、43.71%;在 R1 期, B 根的氮来源于 A 根 吸收肥料氮占 18.53% 和 16.83%, 来自于 A 根和 B 根的根瘤固氮占 81.47% 和 83.17%, R5 期分别为 14.79%、14.54%和85.21%和85.46%,说明施氮的 A 根氮大部分来自 A 根吸收的肥料氮, 少部分来自 根瘤固氮;不施氮的B根氮大部分来自根瘤固氮, 少部分来自 A 根吸收的肥料氮。在 R1 期, A 侧根瘤 的氮来源于 A 根吸收肥料氮占 12.81% 和 13.33%, 来自于 A 根和 B 根的根瘤固氮为 87.19% 和 86.67%, R5 期分别为 10.20%、10.13% 和 89.80%、89.87%; 在 R1 期, B 侧根瘤的氮来源于 A 根吸收肥料氮占

7.20% 和 6.89%, 来自于 A 根和 B 根的根瘤固氮为 92.80%和 93.11%, R5 期分别为 5.17%、5.16% 和 94.83%、94.84%, 说明根瘤中的氮绝大多数来自根 瘤固氮,少部分来自根系吸收的肥料氮。在 R1 期, 茎的氮来源于 A 根吸收肥料氮占 27.85% 和 31.11%, 来自于A根和B根的根瘤固氮为72.15%和68.89%, 叶片是 30.69%、29.72% 和 69.31%、70.28%, 叶柄 是 29.34%、30.30% 和 70.66%、69.70%。在 R5 期, 茎是 22.17%、25.07% 和 77.83%、74.93%, 叶片是 25.70%、23.63%和74.30%、76.37%,叶柄是 27.44%、25.59%和72.56%、74.41%,荚是 20.46%、23.73%和79.54%、76.27%。可以看出茎、 叶片、叶柄三个部分的氮来源比例几乎相同, 说明 根部吸收的肥料氮和根瘤固氮会按一定的比例运输 到地上部分, 且对茎、叶片、叶柄三个部分几乎没 有差异。

试验Ⅱ中有4个氮来源,分别为A根吸收的 ¹⁵N标记的肥料氮、A侧根瘤固氮、B根吸收的¹⁴N肥 料氮、B侧根瘤固氮,由于A和B两侧根瘤固定的 氮和B根吸收的¹⁴N肥料氮无法区分,所以表中列出 了 2 个来源,分别为 A 根吸收的¹⁵N 标记的肥料氮 和 B 根吸收的¹⁴N 肥料氮及 A、B 两侧根瘤固定的氮 (表 4)。

由于试验 II 中 A 和 B 两侧根施加的肥料氮只有 ¹⁵N 丰度不同,其他均相同,可以认为两侧根及根瘤 所处的营养环境相同,即 A 根源于 A 侧根吸收的 ¹⁵N 标记的肥料氮等于 B 根源于 B 侧根吸收¹⁴N 的肥 料氮,B 根源于 A 侧根吸收的¹⁵N 标记的肥料氮 (¹⁵N) 等于 A 根源于 B 侧根吸收的¹⁴N 肥料氮,A 和 B 两 根源于双侧根瘤固定的氮无法区分,因此可以区分 出 A 和 B 两根的三个氮来源。即 A 根氮来源于三个 部分 (表 4):1) A 根吸收的¹⁵N 标记的肥料氮比例; 2) A 根源于 B 根吸收的¹⁴N 肥料氮比例等于 B 根源 于 A 根吸收的¹⁵N 标记分肥料氮比例等于 B 根源 于 A 和 B 两侧根瘤固氮的比例等于 1 减去上面两个比 例。B 根氮来源于三个部分 (表 4):1) 源于 A 根吸收 的¹⁵N 标记的肥料氮比例;2)B 根源于 B 根吸收的 ¹⁴N 肥料氮比例等于 A 根源于 A 根吸收的¹⁵N 标记的肥料氮比例;50 标记分 肥料氮比例; 3)B根源于A和B两侧根瘤固氮的比例等于1减去上面两个比例。同理可知根瘤的三个氮来源。

地上部的氮来源于 A 侧根吸收¹N 标记的肥料氮 等于来源于 B 侧根吸收的¹N 肥料氮,源于双侧根瘤 固定的氮无法区分,也可以区分出地上部的三个氮 来源。如以茎为例,1) 茎源于 A 根吸收的¹N 标记的 肥料氮的比例 (表 4);2) 茎源于 B 根吸收的¹⁴N 肥料 氮的比例等于茎源于 A 根吸收的¹⁵N 标记的肥料氮的 比例 (表 4);3) 茎源于 A 和 B 两侧根瘤固氮的比例 为 1 减去上面两个比例。由此可计算出 A 根、 B 根、A 侧根瘤、B 侧根瘤、茎、叶片、叶柄、荚的 三个氮素来源比例 (表 5)。

由表 5 可知, NO₃⁻和 NH₄⁺两种氮源的试验 II 在 R1 期 A 根的氮来源于 A 根吸收肥料氮为 53.15% 和 57.70%,来源于 B 根吸收的肥料氮为 12.21% 和 10.40%,来源于 A 和 B 两侧根瘤固定的氮为 34.64% 和 31.90%, R5 期分别为 45.88% 和 55.64%、 11.31% 和 9.41%、42.81% 和 34.95%。进一步证明

	六 17 (上		NO_3^-			$\mathrm{NH_4^+}$	
时 期 Stage	部红 Tissue	¹⁵ N	^{14}N	根瘤固氮 Nodule fixation	¹⁵ N	¹⁴ N	根瘤固氮 Nodule fixation
始花期 (R1)	A 根 Root A	53.15 ± 0.99 a	12.21 ± 0.63 c	34.64 ± 1.6 b	57.70 ± 1.42 a	10.40 ± 1.05 c	31.90 ± 1.66 b
Initial flowering	B 根 Root B	12.21 ± 0.63 c	53.15 ± 0.99 a	34.64 ± 1.6 b	$10.40 \pm 1.05 \text{ c}$	57.70 ± 1.42 a	31.90 ± 1.66 b
	A 根瘤 Nodule A	11.64 ± 0.18 b	$5.00\pm0.10\ c$	83.36 ± 0.29 a	13.12 ± 0.75 b	$5.30\pm0.60~c$	81.58 ± 1.22 a
	B 根瘤 Nodule B	$5.00\pm0.10~c$	11.64 ± 0.18 b	83.36 ± 0.29 a	$5.30\pm0.60~c$	$13.12\pm0.75\ b$	81.58 ± 1.22 a
	茎 Stem	$22.90\pm0.68~b$	$22.90\pm0.68~b$	54.20 ± 1.35 a	30.63 ± 3.69 a	30.63 ± 3.69 a	38.74 ± 7.39 a
	叶片 Leaf	21.68 ± 1.45 b	21.68 ± 1.45 b	56.64 ± 2.91 a	29.15 ± 1.78 b	$29.15\pm1.78~b$	41.70 ± 3.55 a
	叶柄 Petiole	24.43 ± 1.35 b	24.43 ± 1.35 b	51.14 ± 2.7 a	$26.59\pm1.30\ b$	$26.59\pm1.30\ b$	46.82 ± 2.61 a
始粒期 (R5)	A 根 Root A	45.88 ± 1.21 a	$11.31 \pm 0.77 \text{ b}$	42.81 ± 1.89 a	55.64 ± 1.10 a	9.41 ± 0.170 c	$34.95 \pm 1.12 \text{ b}$
Initial seeding	B 根 Root B	11.31 ± 0.77 b	45.88 ± 1.21 a	42.81 ± 1.89 a	9.41 ± 0.17 c	55.64 ± 1.10 a	$34.95 \pm 1.12 \text{ b}$
	A 根瘤 Nodule A	$9.22\pm0.40\ b$	$4.43\pm0.32\ c$	86.35 ± 0.53 a	10.22 ± 0.56 b	$4.45 \pm 0.180 \text{ c}$	85.33 ± 0.74 a
	B 根瘤 Nodule B	$4.43\pm0.32~c$	$9.22\pm0.40\ b$	86.35 ± 0.53 a	$4.45\pm0.18\ c$	$10.22\pm0.56~b$	85.33 ± 0.74 a
	茎 Stem	$21.95\pm0.88\ b$	$21.95\pm0.88\ b$	56.10 ± 1.76 a	23.29 ± 1.16 b	$23.29\pm1.16~b$	53.42 ± 2.31 a
	叶片 Leaf	$21.00\pm0.96~b$	$21.00\pm0.96~b$	58.00 ± 1.91 a	$22.36\pm0.86~b$	$22.36\pm0.86~b$	55.28 ± 1.72 a
	叶柄 Petiole	23.48 ± 1.19 b	23.48 ± 1.19 b	53.04 ± 2.37 a	23.77 ± 1.20 b	$23.77 \pm 1.20 \text{ b}$	52.46 ± 2.40 a
	荚 Pod	18.22 ± 0.74 b	18.22 ± 0.74 b	63.56 ± 1.47 a	21.92 ± 1.04 b	$21.92\pm1.04~b$	56.16 ± 2.08 a

表 5 试验 Ⅱ中大豆各组织中氮来源于¹⁵N、¹⁴N、根瘤固氮的比例 (%)

Table 5	Proportions of nitrogen	from ¹⁵ N,	¹⁴ N and nodule fixation	of soybean	tissues in experiment	ŧΠ
---------	-------------------------	-----------------------	-------------------------------------	------------	-----------------------	----

注(Note): ¹⁴N 代表来自 B 根吸收的肥料氮的比例, ¹⁵N 代表来自 A 根吸收的肥料氮的比例, 根瘤固氮代表来自 A 和 B 两侧根瘤固氮 的比例;表中值代表平均数 ± 标准误 (*n*=3);同行数据后不同字母表示不同氮来源间差异达 5% 显著水平。¹⁴N represents the proportion of ¹⁴N fertilizer nitrogen, ¹⁵N represents the proportion of ¹⁵N-labeled fertilizer nitrogen, nodule fixation represents the proportion of nodule-fixed nitrogen of A and B sides of nodule. The values are the means ± SD (*n* =3). Values followed by different lowercase letters in a row indicate significant difference among different N sources at the 5% level.

A 根中的氮除了来自 A 根吸收的肥料氮,还有来自 B根的肥料氮及根瘤固氮。在R1期,A侧根瘤的氮 来源于A根吸收肥料氮为11.64%和13.12%,来源 于 B 根吸收的肥料氮为 5.00% 和 5.30%, 来源于 A 根和 B 根的根瘤固氮为 83.36% 和 81.58%, R5 期 分别为9.22%和10.22%、4.43%和4.45%、 86.35% 和 85.33%。进一步证明了根瘤中的氮主要来 自根瘤固氮,有一少部分来自本根系吸收的肥料 氮。在 NO⁺和 NH⁺两种氮源条件下,在 R1 期,茎 的氮来源于A和B两根吸收肥料氮的比例为45.80% 和 61.26%, 来自于 A 和 B 两侧根瘤固氮的比例为 54.20% 和 38.74%, 叶片是 43.36%、58.30% 和 56.64%、41.70%, 叶柄是 48.86%、53.18% 和 51.14%、46.82%。在 R5 期, 茎是 43.90%、 46.58% 和 56.10%、53.42%, 叶片是 42.00%、 44.72% 和 58.00%、55.28%, 叶柄是 46.96%、 47.54%和53.04%、52.46%、荚是36.44%、 43.84%和63.56%、56.16%。

2.2 大豆始花期~始粒期地上部向根及根瘤的氮 转移量

由表3、表4可知,双根系统中两个根系吸收的 氮可通过地上部相互转移,但这种转运不是简单的 过程, 而是反映地上与根系和根瘤的相关性。试验 中大豆植株各部¹⁵N 丰度不同 (表 2),将 B 根和地上 部看做一个系统,对 B 根而言,地上部是其⁵N 供给 源, R1~R5 期, B 根增加的¹⁵N 量可以用 R5 期积累 的15N 量减去 R1 期积累的15N 量求得,其应等于 R1~R5 期由地上部转移下来的¹⁵N 量,加上 R1~R5 期 B 根自身吸收自然丰度的¹⁵N 量 (试验 I 为根瘤固 氮,试验Ⅱ为根瘤固氮和B根吸收的¹⁴N肥料氮)之 和。设定从地上部转运到 B 根的氮量为 N_{T} , 地上部 向下转移氮的¹⁵N 丰度用 R1 期和 R5 期地上部¹⁵N 丰 度的平均值来计算,则 N_T × (f_{地上部 R1}+f_{地上部 R5})/2 代表

R1 期到 R5 期从地上部转移到 B 根的¹⁵N 量; N_{R5}- N_{R1} 为 R1 期到 R5 期 B 根的氮积累量, N_{R5} - N_{R1} - N_{T} 为R1期到R5期来自B根吸收的氮积累量(包括根 瘤供给的), 其乘上¹⁵N 自然丰度 f_a, 即 (N_{R5}-N_{R1}-N_T)× f₁代表 R1 期到 R5 期 B 根吸收的及根瘤供给的 ¹⁵N 量; $N_{R5} \times f_{R5}$ 为 R5 期 B 根全部¹⁵N 量, $N_{R1} \times$ f_{R1} 为 R1 期 B 根全部¹⁵N 量。地上部转移到 B 侧根瘤 的氮量也可用此方法计算出来。对于试验Ⅱ,则N_T× $(f_{\mu} + \pi_{R1} + f_{\mu} + \pi_{R5})/2 + (N_{R5} - N_{R1} - N_T) \times f_{H} = N_{R5} \times f_{R5} - N_{R1} \times K_{R5} - N_{R1} \times K$ f_{R1}即,

$$N_{\rm T} = \frac{N_{\rm R5} \times f_{\rm R5} - N_{\rm R1} \times f_{\rm R1} - (N_{\rm R5} - N_{\rm R1}) \times f_{\rm fl}}{(f_{\rm the LR1} + f_{\rm the LR5})/2 - f_{\rm fl}} \qquad (4)$$

式中, f_{R1}、f_{R5}为B根或B侧根瘤在R1期、R5期的 ¹⁵N 丰度 (表 1), f_{#+381}、f_{#+385} 为地上部 R1 期、 R5 期的茎、叶片、叶柄、荚的¹⁵N 丰度 (表 1) 的平均 值, f₁为自然丰度 (0.365%), N_{R1}、N_{R5} 为 B 根或 B侧根瘤 R1 期、R5 期氮积累量。试验中参数取值 见表6。

由 (4) 式结合表 6 可以计算出地上部转移到 B 根 及 B 根瘤的氮量,在试验Ⅱ中,由于双侧均施加相 同浓度相同形态的氮, 仅标记不同, 认为地上部向 A 和 B 两侧的根及根瘤转移的氮量相同,试验Ⅱ在 R1~R5 期地上部向根及根瘤的氮转移量和比例见表 7。

NO3⁻和 NH4⁺两种氮源处理下,在 R1~R5 期 A 根或 B 根增加的氮积累量为 15.7 mg/株和 19.7 mg/株, R1~R5 期从地上部转移到 A 根或 B 根的氮 积累量为 6.4 mg/株和 5.6 mg/株, 占 A 根或 B 根增 加的氮积累量的 40.8% 和 28.4%。R1~R5 期 A 侧根 瘤或 B 侧根瘤增加的氮积累量为 20.3 mg/株和 18.8 mg/株, R1~R5 期从地上部转移到 A 侧根瘤或 B 侧 根瘤的氮积累量为 3.5 mg/株和 2.7 mg/株,占A 根瘤 或 B 根瘤增加的氮积累量的 17.2% 和 14.4%。

	表 6 B 根、B 根瘤及地上部始花期 (R1) 和始粒期 (R5) 的 ¹⁵ N 丰度及氮积累量
Table 6	¹⁵ N abundance and N accumulation of root B, nodule B and shoot at initial flowering (R1)
	and initial seeding (R5) stage

部位 - Tissue	NO_3^-			NH ₄ ⁺				
	f _{R1} (%)	f _{R5} (%)	N _{R1} (mg/plant)	N _{R5} (mg/plant)	f _{R1} (%)	f _{R5} (%)	N _{R1} (mg/plant)	N _{R5} (mg/plant)
B根 Root B	0.76	0.73	37.56	53.22	0.70	0.67	41.67	61.32
B 根瘤 Nodule B	0.53	0.51	19.38	39.63	0.54	0.51	15.90	34.71
地上部 Shoot	1.11	1.06			1.31	1.11		

注(Note): f_{R1}—始花期¹⁵N 丰度¹⁵N abundance at initial flowering stage; f_{R5}—始粒期¹⁵N 丰度¹⁵N abundance at initial seeding stage; N_{R1}—始花期氮积累量 N accumulation at initial flowering stage; N_{R5}—始粒期氮积累量 N accumulation at initial seeding stage.

1/1/

Ta	Table 7 Amount and proportion of N periodically transferred from shoot to root and nodule from initialflowering (R1) to initial seeding (R5) stage							
氮形态 N form	部位 Tissue	氮积累量 (mg/plant) Accumulated N	转移量 (mg/plant) Transferred N	比例 (%) Proportion				
NO ₃ ⁻	A或B根RootA or B	15.7	6.4	40.8				
	A 或 B 根瘤 Nodule A or B	20.3	3.5	17.2				
	共计 Total	36.0	9.9	27.5				
$\mathrm{NH_4^+}$	A 或 B 根 Root A or B	19.7	5.6	28.4				
	A 或 B 根瘤 Nodule A or B	18.8	2.7	14.4				
	共计 Total	38.5	8.3	21.6				

表 7 始花期 (R1) ~ 始粒期 (R5) 地上部向根及根瘤的氮转移量和比例

3 讨论

3.1 大豆各器官的氮素来源

大山卓爾等^[29]的研究发现,给大豆供给¹⁵NO₃-, 一段时间后发现1°N标记出现在根瘤中,说明硝态氮 可供大豆根瘤生长,尤其是在根瘤生长初期,其利 用率是较高的。Sato 等¹⁰⁰向培养大豆的营养液中加入 ¹³NO,⁻,发现¹³N标记的NO,⁻首先出现在大豆叶柄 中,接着是叶片中,而在根瘤中很少,说明根吸收 的 NO, 在短时间内没有转移到根瘤中。本研究中试 验Ⅰ、Ⅱ是一侧施¹⁵N标记的肥料氮,而在没有施氮 或施没有¹⁵N标记肥料氮的另一侧根瘤¹⁵N丰度高于 自然丰度,结合 Sato 等[30]的试验结果,说明一定有 ¹⁵N标记的肥料氮运输到两侧根瘤中,即根瘤中来自 根系吸收的氮素主要是由地上部转移下来的。试验 Ⅰ和试验Ⅱ中两侧根瘤的¹⁵N 丰度均高于氮的自然丰 度 (0.365%), 说明根瘤生长发育过程中所需要的氮 不是全部都来自自身固氮,也有一部分来自根系吸 收的肥料氮。且 A 侧根瘤的¹⁵N 丰度显著高于 B 侧根 瘤,说明 A 侧根吸收的¹⁵N 标记的肥料氮供应 A 侧 根瘤的量多于 B 侧根瘤。

Wery 等^[31]对苜蓿进行供硝酸铵与不施氮的试 验,发现两者在氮积累量上没有显著性差异,但是 在供氮条件下根瘤固氮率下降了, 而吸收的氮素增 加了,说明在有化合态氮和 N,同时存在的情况下, 苜蓿会优先选择化合态氮。本试验中,试验 I 为单 侧供氮,试验Ⅱ为双侧供氮,对比试验Ⅰ和试验 Ⅱ中植株各部位来源于肥料氮和根瘤固氮的比例, 发现试验Ⅱ中植株各部位来源于根瘤固氮的比例均 小于试验 I,即根瘤固氮率明显下降,这表明在适 当增加肥料氮时,大豆植株优先吸收利用肥料氮。

对于铵态氮和硝态氮两种氮素对氮的吸收及分

配的影响说法不一。一些学者在大豆和玉米的大田 试验中发现,无论是 NO3-还是 NH4+,使用单一氮源 植株的长势均不如 NH4⁺和 NO3⁻混合^[32-33]。Chaillou 等1341在水培条件下,利用大豆分根系统,一侧施加 NH⁺, 一侧施加 NO⁻, 研究发现施加 NO⁻侧的根干 重大于 NH4+侧的根干重。而 Gan 等[18]给大豆分别施 加 NH4+和 NO3-,研究发现施用 NH4+比施用 NO3-的大 豆具有更高生物积累量、根瘤干重、总氮积累量和 固氮量。本试验的试验Ⅰ、Ⅱ的 NO₃⁻或 NH₄⁺处理对 比,各器官¹⁵N 丰度均没有显著性差异,可能是由于 一些细菌的存在将 NH₄*转化为 NO₅⁻, 但从其表现来 看,施 NO₃-或 NH₄+并没有影响大豆植株对氮的吸收 及分配,说明在 50 mg/L 的氮浓度下,NO3-和 NH4*影响大豆对氮吸收和分配的作用几乎相同。

3.2 大豆地上部与根系、根瘤的氮分配与再分配

Oghoghorie 等^[24]给豌豆叶面施加¹⁵NO₃⁻,发现在 地上部、根和根瘤中均检测到了¹⁵N标记,说明叶片 中的氮会发生向下的运输,运输到了根及根瘤中。 Ito 等[35]用15NO, 或15NH4+处理向日葵叶片, 在施氮叶 片的上下节间都测到了¹⁵N,而且上节间的¹⁵N 丰度小 于下节间,表明施加在叶片上的氮可以发生向上运 输的同时也可以发生向下的运输,即地上部的氮会 转运到根及根瘤中。Reynolds 等¹³⁰在水培条件下,利 用大豆分根系统,一侧施¹³NH₄⁺,一侧不施氮,发现 ¹³N 先出现在地上部,随后出现在未供氮一侧的根 中,说明根部吸收的氮会运输到地上部分,随后再 运输回根部。本研究的试验Ⅰ和Ⅱ中地上部、A和 B两侧根、A和B两侧根瘤的¹⁵N 丰度均高于氮的自 然丰度 (0.365%), 且小于施加的肥料氮的¹⁵N 丰度 (3.63%), 表明 A 和 B 两侧根部吸收的肥料氮和 A 和 B 两侧根瘤固氮都会按一定的比例运输到地上 部;一定有 A 根吸收的'^SN 标记的肥料氮转移到 B 根 中;也一定有 A 根吸收的'^SN 标记的肥料氮运输到两 侧根瘤中,由于试验 II 中双侧根都处于 50 mg/L 的 相同氮素溶液中,且均有根瘤的存在,可以认为两 侧根及根瘤所处的营养状态相同,因此试验 II 中 A 根吸收的'^SN 标记的肥料氮会转移到 B 根中,同理 可知,B 根吸收的'^SN 标记的肥料氮也会转移到 A 根中; A 侧根吸收的'^SN 标记的肥料氮会运输到两侧根瘤 中,同理可知,B 侧根吸收的'^AN 的肥料氮也会运输 到两侧根瘤中。综上所述,根吸收的肥料氮和根瘤 固氮会以一定的比例运输到地上部,随后会再次重 新分配回根及根瘤中。

为估算地上部向根及根瘤转运的氮量及占根和 根瘤氮的比例,本试验将大豆双根系统中地上部和 未施¹⁵N标记肥料氮的一侧根及根瘤看成一个氮转移 系统,利用¹⁵N丰度的差异,构建了R1~R5期地上 部向根及根瘤转移氮量的计算方法。在试验II中, 利用公式(1)计算得出,在NO₃和NH₄+两种氮源 下,R1-R5期A根或B根来自地上部转移的氮为 5.6~6.4 mg/株,占R1~R5期A根或B根氮积累量 的28.4%~40.8%;R1~R5期A 侧根瘤或B 侧根瘤 来自地上部的氮为2.7~3.5 mg/株,占R1~R5期 A 侧根瘤或B 侧根瘤氮积累量的14.4%~17.2%。地 上部向根及根瘤中转运的氮,是以何种形态和通过 什么部位运输的,以及其生理作用如何还有待进一 步研究。

4 结论

 1)根瘤生长所需要的氮来源包括自身根瘤固氮 和根系吸收的外源氮,且大豆植株优先吸收外源 氮。不论供应 NO₃⁻还是 NH₄⁺,在 N 50 mg/L 浓度 下,大豆氮的吸收和分配不受氮形态的影响。

2) 大豆根系吸收的肥料氮以及根瘤固氮运输到 地上部后,会再次重新分配回根及根瘤中。将大豆 双根系统中地上部和施"N 肥料氮的一侧根及根瘤看 成一个氮转移系统,利用¹⁵N 丰度的差异,构建了 R1~R5 期地上部向根及根瘤转移氮量的计算方法。 经计算表明,当施氮浓度为 50 mg/L 时,R1~R5 期 (始花期~始粒期) 根来自地上部转移的氮占根部氮 素积累量的 28.4%~40.8%,根瘤来自地上部转移的 氮占其氮素积累量的 14.4%~17.2%。

参考文献:

[1] Collino D J, Salvagiotti F, Perticari A, et al. Biological nitrogen

fixation in soybean in Argentina: relationships with crop, soil, and meteorological factors[J]. Plant & Soil, 2015, 392(1–2): 1–14.

- [2] 万涛.氮素水平对大豆光合速率及产量的影响[D]. 哈尔滨: 东北农 业大学硕士学位论文, 2013.
 Wan T. Effect of nitrogen levels on photosynthesis rate and yield of soybean[D]. Harbin: MS Thesis of Northeast Agricultural University, 2013.
- [3] Taylor R S, Weaver D B, Wood C W, et al. Nitrogen application increases yield and early dry matter accumulation in late-planted soybean[J]. Crop Science, 2005, 45(3): 854–858.
- [4] Mahon J D, Child J J. Growth response of inoculated peas (*Pisum sativum*) to combined nitrogen[J]. Canadian Journal of Botany, 1979, 57(16): 1687–1693.
- [5] Randjelović V, Prodanović S, Tomić Z, et al. Genotypic response of two soybean varieties with reduced content of KTI to application of different nitrogen level[J]. Biotechnology in Animal Husbandry, 2010, 26(5/6): 403–410.
- [6] Đukić V, Đorđević V, Popović V, et al. Effect of nitrogen and nitragin application on soybean yield and protein content[J]. Ratarstvo I Povrtarstvo, 2010, 47(1): 187–192.
- [7] Darbyshire J F. Studies on the physiology of nodule formation: IX. the influence of combined nitrogen, glucose, light intensity and day length on root-hair infection in clover[J]. Annals of Botany, 1966, 30(120): 623–638.
- [8] Imsande J. Inhibition of nodule development in soybean by nitrate or reduced nitrogen[J]. Journal of Experimental Botany, 1986, 37(3): 348–355.
- [9] Svenning M M, Junttila O, Macduff J H. Differential rates of inhibition of N₂ fixation by sustained low concentrations of NH₄⁺ and NO₃⁻ in northern ecotypes of white clover (*Trifoliumrepens* L.)[J]. Journal of Experimental Botany, 1996, 47(299): 729–738.
- [10] 夏玄, 龚振平. 氮与豆科作物固氮关系研究进展[J]. 东北农业大学 学报, 2017, 48(1): 79-88.
 Xia X, Gong Z P. Research advance on the relationship between nitrogen and Leguminous nitrogen fixation[J]. Journal of Northeast Agricultural University, 2017, 48(1): 79-88.
- [11] Dazzo F B, Brill W J. Regulation by fixed nitrogen of host-symbiont recognition in the rhizobium-clover symbiosis[J]. Plant Physiology, 1978, 62(1): 18–21.
- [12] Tanaka A, Fujlta K, Terasawa H. Growth and dinitrogen fixation of soybean root system affected by partial exposure to nitrate[J]. Soil Science and Plant Nutrition, 1985, 31(4): 637–645.
- [13] Arnone J A, Kohls S J, Baker D D. Nitrate effects on nodulation and nitrogenase activity of actinorhizal *Casuarina* studied in split-root systems[J]. Soil Biology & Biochemistry, 1994, 26(5): 599–606.
- [14] Saito A, Tanabata S, Tanabata T, et al. Effect of nitrate on nodule and root growth of soybean, (*Glycine* max L. Merr.)[J]. International Journal of Molecular Sciences, 2014, 15(3): 4464–4480.
- [15] Carroll B J, Gresshoff P M. Nitrate inhibition of nodulation and nitrogen-fixation in white clover[J]. Zeitschrift Fü Pflanzenphysiologie, 1981, 110(1): 77–88.
- [16] Daimon H, Yoshioka M. Responses of root nodule formation and nitrogen fixation activity to nitrate in a split-root system in peanut

(Arachis hypogaea L.)[J]. Journal of Agronomy & Crop Science, 2010, 187(2): 89–95.

- [17] Streeter J G. Effect of nitrate on acetylene reduction activity and carbohydrate composition of *Phaseolus vulgaris* nodules[J]. Physiologia Plantarum, 1986, 68(2): 294–300.
- [18] Gan Y B, Stulen I, van Keulen H, *et al.* Low concentrations of nitrate and ammonium stimulate nodulation and N₂ fixation while inhibiting specific nodulation (nodule DW g^{-1} root dry weight) and specific N₂ fixation (N₂ fixed g^{-1} root dry weight) in soybean[J]. Plant and Soil, 2004, 258(1/2): 281–292.
- [19] Fujikake H, Yamazaki A, Ohtake N, et al. Quick and reversible inhibition of soybean root nodule growth by nitrate involves a decrease in sucrose supply to nodules[J]. Journal of Experimental Botany, 2003, 54(386): 1379–1388.
- [20] Pankhurst C E. Effect of plant nutrient supply on nodule effectiveness and rhizobium strain competition for nodulation of Lotus pedunculatus[J]. Plant & Soil, 1981, 60(3): 325–339.
- [21] Xia X, Ma C, Dong S, et al. Effects of nitrogen concentrations on nodulation and nitrogenase activity in dual root systems of soybean plants[J]. Soil Science and Plant Nutrition, 2017, 63(5): 470–482.
- [22] Hinson K. Nodulation responses from nitrogen applied to soybean half-root systems[J]. Annals of the Royal College of Surgeons of England, 1975, 80(6): 447–804.
- [23] Hinson K. Nodulation responses from nitrogen applied to soybean half-root systems[J]. Agronomy Journal, 1975, 67: 799–804.
- [24] Oghoghorie C G O, Pate J S. Exploration of the nitrogen transport system of a nodulated legume using ¹⁵N[J]. Planta, 1972, 104(1): 35–49.
- [25] Pate J S, Herridge D F. Partitioning and utilization of net photosynthate in a nodulated annual legume[J]. Journal of Experimental Botany, 1978, 29(109): 401–412.
- [26] Hoagland D R, Arnon D I. The water-culture method for growing plants without soil[J]. California Agricultural Experiment Station, 1950, 347(5406): 357–359.
- [27] 董守坤, 龚振平, 祖伟. 氮素营养水平对大豆氮素积累及产量的影响[J]. 植物营养与肥料学报, 2010, 16(1): 65-70.
 Dong S K, Gong Z P, Zu W. Effects of nitrogen nutrition levels on N-

accumulation and yields of soybean[J]. Plant Nutrition and Fertilizer Science, 2010, 16(1): 65–70.

- [28] 陈良, 池惠荣, 高占峰, 等. 主要农作物对¹⁵N标记肥料丰度的选择 Ⅱ.玉米 大豆[J]. 核农学通报, 1991, (2): 79–83.
 Chen L, Chi H R, Gao Z F, *et al.* The choice of ¹⁵N markers fertilizer abundance of main crop Ⅱ. Corn, soybean[J]. Nuclear Agriculture Bulletin, 1991, (2): 79–83.
- [29] 大山卓爾 (陈寿松 译). 关于大豆根瘤固氮动态的研究[J]. 原子能农业译丛, 1984, (3): 29–31.
 Ohyama T(Translated by Chen S S). Study on nitrogen fixation dynamics of soybean root nodules[J]. Translation of Atomic Energy Agriculture, 1984, (3): 29–31.
- [30] Sato T, Ohtake N, Ohyama T, *et al.* Analysis of nitrate absorption and transport in non-nodulated and nodulated soybean plants with NO₃⁻ and NO₃⁻[J]. Radioisotopes, 1999, 48: 450–458.
- [31] Wery J, Turc O, Salsac L. Relationship between growth, nitrogen fixation and assimilation in a legume (*Medicago sativa* L.)[J]. Plant & Soil, 1986, 96(1): 17–29.
- [32] 宋海星, 申斯乐, 闫石, 等. 硝态氮与氨态氮对大豆幼苗生长及氮素积累的影响[J]. 大豆科学, 1997, (2): 87–89.
 Song H X, Shen S L, Yan S, *et al.* Effect of NO₃⁻ and NH₄⁺ on soybean seedling and nitrogen accumulation[J]. Soybean Science, 1997, (2): 87–89.
- [33] Schortemeyer M, Feil B, Stamp P. Root morphology and nitrogen uptake of maize simultaneously supplied with ammonium and nitrate in a split-root system[J]. Annals of Botany, 1993, 72: 107–115.
- [34] Chaillou S, Rideout J W, Raper C D, et al. Responses of soybean to ammonium and nitrate supplied in combination to the whole root system or separately in a split-root system[J]. Physiologia Plantarum, 1994, 90: 260–270.
- [35] Ito O, Kumazawa K. Nitrogen assimilation in sunflower leaves and upward and downward transport of nitrogen[J]. Soil Science & Plant Nutrition, 1976, 22(2): 181–189.
- [36] Reynolds P H S, Boland M J, Mcnaughton G S, et al. Induction of ammonium assimilation: leguminous roots compared with nodules using a split root system[J]. Physiologia Plantarum, 1990, 79(2): 359–367.