
An Information Obfuscation Calculus for Encrypted Computing

Peter T. Breuer
Hecusys LLC, Atlanta, GA, USA

Email: ptb@hecusys.com

Abstract—Relative cryptographic semantic security for en-
crypted words of user data at runtime holds in the emerging
field of encrypted computing, in conjunction with an appropriate
instruction set and compiler. An information obfuscation calculus
for program compilation in that context is introduced here that
quantifies the security exactly, improving markedly on the result.

I. INTRODUCTION

This article describes ‘obfuscating’ compilation for the emerg-
ing field of encrypted computing [1] via a calculus that quanti-
fies the obfuscation. Encrypted computing means running on a
processor that works profoundly encrypted for an unprivileged
user process, taking encrypted inputs to encrypted outputs via
encrypted intermediate values in registers and memory. Our
prototype compiler (http://sf.net/p/obfusc) is for ANSI C [2] but
the approach is generic, guided by the information principle:

Every machine code arithmetic instruction that writes
must introduce maximal possible entropy to the trace. (H̃)

A target processor works unencrypted in operator mode in the co-
nventional way, with unrestricted access to registers and
memory. User mode is restricted to certain registers and
memory. Encryption keys are not accessible to the operator
and operating system, who are the user’s (potential)
adversaries in this context. Keys are installed at manufacture,
as in Smartcards [3], or uploaded securely in public view via
a Diffie-Hellman circuit [4]. Hardware questions, such as the
real randomness of random numbers or power side-channel
information leaks, are not an issue here.

The text will use ‘the operator’ for operator mode. A
malicious operating system is the operator, as is a human
with administrative privileges, perhaps obtained by physically
interfering with the boot process. A possible context for an
attack is where user data consists of scenes from animation
cinematography being rendered in a server farm. The computer
operators at the server farm have an opportunity to pirate for
profit portions of the movie before release and they may be
tempted. Another scenario is a specialised facility processing
satellite photos of a foreign power’s military installations to
reveal changes since a previous pass. If an operator (or a
hacked operating system) can modify the data to show no
change where there has been some, then that is an opportunity
for espionage. A successful attack by the operator is one that
discovers the plaintext of user data or alters it to order.

It is shown in [5] that (i) a processor that supports encrypted
computing, (ii) an appropriate machine code instruction set
architecture, (iii) a compiler with an ‘obfuscating’ property,
jointly give cryptographic semantic security (CSS) [6] for user

data against the operator as adversary, relative to the security of
the encryption. That is, the operator cannot read any bit of user
data beneath the encryption with probability of success above
1⁄2. [5] shows that also implies data cannot be rewritten to an
independently defined value such as π, or the encryption key.

‘Obfuscating’ compilation in this context is described in
[7]. It varies object codes on recompilation so (a) they look
the same to an adversary, differing only in encrypted constants,
which the adversary cannot read. Also (b) runtime traces ‘look
the same’ too, with the same instructions in the same order
reading and writing the same registers, while data beneath the
encryption varies by an arbitrary delta different at every point
in the runtime trace and memory, with the proviso that:

Copy instructions preserve data exactly, and deltas
are equal where control paths meet. (H˜)

That is necessary in order for computation to work properly.
Loops in particular have the same delta from nominal beneath
the encryption at either end, ready for a repeat traversal.

The security proofs in [5] rely on object codes and runtime
traces varying as described above. This paper describes ‘cor-
rect by construction’ compilation for that property following
the principle (H̃). For the compiled programs, at any m
points in the trace not related as in (H˜), it is proved that
variations with 32m bits of entropy beneath the encryption
occur. That quantifies the security in encrypted computing
exactly, improving the existing CSS result.

This paper is organised as follows. Section II describes
encrypted computing platforms. Section III resumes a con-
crete, modified OpenRISC (http://openrisc.io) machine code
instruction set for encrypted computing first described in [7]
and satisfying the properties required (Box 1). The obfuscating
compiler technology of [7] is resumed in IV-A and IV-B.
A pre-/post-condition Hoare program logic [8] for the offset
calculus that the compiler uses to keep track of its code
variations is introduced in IV-C, and in IV-D it is modified
to an obfuscation calculus for compiler-induced entropy.

NOTATION

Encryption is denoted byxE=E [x] of plaintext valuex. The op-
eration on the ciphertext domain corresponding to o on the plain-
text domain is written [o], where E [x] [o] E [y]=E [x o y]. Encrypt-
ionxE appears many-valued, due to unobservable padding along-
side x, so ‘=’ above means equivalence modulo those variations.

II. BACKGROUND

Several fast processors for encrypted computing are described
in [9]. Those include the KPU [10], which runs encrypted on

Box 1: Machine code instruction set axioms. Instructions . . .

(1) are a black box from the perspective of the programming
interface, with no internal states visible;

(2) take encrypted inputs to encrypted outputs;
(3) are adjustable via (encrypted) embedded constants to any

offsets in decrypted inputs and outputs;
(4) are such that there are no collisions between encrypted

constants and runtime encrypted values.

a 1 GHz clock with AES-128 [11] at the benchmark speed of a
433 MHz classic Pentium, and the slightly older HEROIC [12]
which runs like a 25 KHz Pentium, embedding Paillier-2048
[13], as well as the recently announced CryptoBlaze [14], also
using Paillier-2048 but 10× faster than HEROIC (it is not clear
how many of those have working compilers).

The machine code instruction set defining the programming in-
terface is important because a conventional instruction set is inse-
cure against powerful insiders who may steal an (encrypted) user
datumx and put it through the machine’s division instruction to
getx/x encrypted, an encrypted 1. Then any desired encrypted
ymay be constructed by applying the machine’s addition instruc-
tion to get 1+ . . .+1 encrypted. Via the order comparator instr-
uctions (testing 231≤z, 230≤z, . . .) on an encrypted z and subtr-
acting on branch, zmay be obtained bitwise. That is a chosen ins-
truction attack [5], [15]. An instruction set for encrypted
computing must resist algebraic attacks like that, but the
compiler must also be involved, else there would still be
known plaintext attacks [16] based on the idea that human
programmers intrinsically use values like 0, 1 more often than
others. The compiler’s job is to even out the statistics.

Necessary conditions on the machine code instruction set,
first described in [7], are shown in Box 1. Instructions must
(1) execute atomically, or recent attacks such as Meltdown
[17] and Spectre [18] against Intel are feasible, (2) work with
encrypted values or an adversary could read them, and (3)
be adjustable via onboard (encrypted) constants to offset by
arbitrary deltas the runtime values beneath the encryption. The
condition (4) is for the security proofs in [7], and amounts
to having different padding or blinding factors for encrypted
program constants and encrypted runtime values.

The compiler’s job is to vary the encrypted constants (3)
embedded in the machine code instructions so all feasible trace
variations are exercised equiprobably. ‘How’ is summarised
in Box 2: a new obfuscation scheme is generated at each
recompilation. That is a set of vectors of planned offsets from
nominal for the data beneath the encryption per memory and
register location, one vector at each machine code instruction.

A formal outline is as follows. The compiler C[−] translates
an expression e that is to end up in register r at runtime to
machine code mc and plans a 32-bit offset ∆e in r:

C[e]r = (mc,∆e) (5)

Let s(r) be the value in register r in state s of the processor at
runtime. The machine code mc changes state s to s′ that holds
a ciphertext in r whose plaintext value differs by ∆e from the

Box 2: What the compiler does:

(A) change only encrypted program constants, generating an arrange-
ment of planned offsets from nominal values for instruction in-
puts and outputs beneath the encryption (an obfuscation scheme);

(B) leave runtime traces unchanged, apart from differences in the
encrypted program constants (A) and runtime data;

(C) equiprobably generate all arrangements satisfying (A), (B).

TABLE I
FXA INSTRUCTION SET FOR ENCRYPTED WORK.

op. fields mnem. semantics

add r0 r1 r2 k
E add r0←r1 [+] r2 [+] kE

sub r0 r1 r2 k
E subtract r0←r1 [−] r2 [+] kE

mul r0 r1 r2 k
E
0 k

E
1 k

E
2 multiply r0←(r1 [−] kE1) [∗](r2 [−] kE2) [+] kE0

div r0 r1 r2 k
E
0 k

E
1 k

E
2 divide r0←(r1 [−] kE1) [÷](r2 [−] kE2) [+] kE0

. . .
mov r0 r1 move r0←r1
beq i r1 r2 k

E branch if b then pc←pc+i, b⇔ r1 [=] r2 [+] kE

bne i r1 r2 k
E branch if b then pc←pc+i, b⇔ r1 [6=] r2 [+] kE

blt i r1 r2 k
E branch if b then pc←pc+i, b⇔ r1 [<] r2 [+] kE

bgt i r1 r2 k
E branch if b then pc←pc+i, b⇔ r1 [>] r2 [+] kE

ble i r1 r2 k
E branch if b then pc←pc+i, b⇔ r1 [≤] r2 [+] kE

bge i r1 r2 k
E branch if b then pc←pc+i, b⇔ r1 [≥] r2 [+] kE

. . .
b i branch pc ← pc + i

sw (kE0)r0 r1 store memJr0 [+] kE0 K← r1
lw r0 (kE1)r1 load r0 ← memJr1 [+] kE1 K
jr r jump pc ← r
jal j jump ra ← pc + 4; pc ← j
j j jump pc ← j
nop no-op

LEGEND
r – register index k – 32-bit integer pc – prog. count reg.
j – prog. count ‘←’ – assignment ra – return addr. reg.
E[] – encryption i – prog. incr. r – register content
kE – encrypted val. E[k] xE [o] yE = E[x o y] xE [R] yE ⇔ xR y

nominal value e (bitwise exclusive-or or the binary operation
of a mathematical group are alternatives for ‘+’ here). That is:

s
mc
 s′ where s′(r) = E [e+ ∆e] (6)

The encryption E is shared with the user and the processor, but
not operator and operating system. The randomly generated
compiler offsets ∆e are known to the user, but not the pro-
cessor nor operator and operating system. The user compiles
the program and sends it to the processor to be executed and
knows the obfuscation scheme, so can create the right inputs
and interpret the outputs received.

III. FXA INSTRUCTIONS

A ‘fused anything and add’ (FxA) [7] instruction set architec-
ture (ISA) will be the compilation target here, satisfying (1-4)
above. The integer portion is shown in Table I. The whole
is adapted from the OpenRISC ISA v1.1 (http://openrisc.
io/or1k.html), which has about 200 instructions. There are
instructions for single and double precision integer operations,
single and double floating point, and vector operations, all
32 bits long. Following OpenRISC, instructions access up to
three 32 general purpose registers (GPRs), but one register
operand may be replaced by a (‘immediate’) constant. Four 32-
bit ‘prefixes’ precede a 32-bit instruction with 16 bits of room
to provide 128=4×28+16 bits for one encrypted constant.

IV. OBFUSCATING COMPILATION

A compiler works with a database D : Loc→Off containing
(here 32-bit) integer ‘offset deltas’ ∆l for data, indexed per
register or memory location l (type Loc). It is varied by the
compiler as it makes its pass through the source code. A
delta defines by how much the runtime data underneath the
encryption is to differ from nominal in l, and the database D
at each point constitutes an obfuscation scheme of offsets.

A database L : Var→Loc conventionally maps source code
variables to registers and memory and will not be treated here.

In [7], an expression compiler that places the encrypted
result value in target register r is described, of type:

CL[_ : _]r : DB× Expr→ MC× Off (7)

where MC stands for machine code, a sequence of FxA in-
structions mc. The compiler aims to vary the ∆l equiprobably
across recompilations. The next section resumes how it does it.

A. Expressions

To translate x + y where x, y are signed 32-bit integer
variables, the compiler first emits machine code mc0 as in
(8a). At runtime that will put x in register r0 with offset delta
∆x (a pair in DB×Expr is written D : x for readability):

(mc0,∆x) = CL[D : x]r0 (8a)

s0
mc0 s1 : s1(r0) = E [s0(Lx) + ∆x] (8b)

The semantics for (8b) is from Table I with s(r) in register r.
The compiler next emits machine code mc1 (9a). At runtime

that will put y in register r1 with offset delta ∆y:

(mc1,∆y) = CL[D : y]r1 (9a)

s1
mc1 s2 : s2(r1) = E [s1(Ly) + ∆y] (9b)

An offset ∆e is randomly generated and the compiler emits
the FxA integer add instruction that at runtime adds the sum
from r0 and r1 in r0, modified by a delta k:

CL[D : x+ y]r0 = (mce,∆e) (10a)

mce = mc0; mc1;add r0 r0 r1 k
E

Choosing k=∆e−∆x−∆y, the expression gets offset ∆e:

s0
mce s2 : s2(r0) = E [s0(Lx) + s1(Ly) + ∆e] (10b)

Any ∆e may be set, no matter what ∆x, ∆y were chosen.

B. Statements

Let Stat be the type of statements, then compiling a statement
produces a new obfuscation scheme:

CL[_ : _] : DB× Stat→ DB×MC (11)

Consider an assignment z=x+y of expression x+y to a source
code variable z, which the location database L binds in register
rz=Lz. Let x+y be called e here. The compiler emits code
mce that evaluates expression e in register t0 with randomly
generated offset ∆e as described in (10a) with t0 = r0. A
short-form add instruction with semantics rz ← t0 [+] kE is

emitted to change ∆e to ∆z:

CL[D0 : z=e] = D1 : mce;add rz t0 kE (12a)

The compiler sets k=∆z−∆e to choose ∆z for z in rz = Lz:

s0
mce s2

add
 s3 : s3(rz) = E [s0(Lx) + s1(Ly) + ∆z] (12b)

The database of offsets is updated from D0rz to D1rz=∆z.

C. Offset Calculus

A classical pre-/post-condition calculus [8] is given below that
captures the compiler’s changes above to the obfuscation scheme.

1) Assignment: Generalising the x+y above to expression e
with intermediates in registers ρ={r0, . . . , rn}, and result z in
r0, the offsets before and after the assignment are generically:

{∆r0 = Y0, . . . , ∆rn = Yn}
z = e

{∆′r0= Z0, . . . , ∆′rn= Zn}
(13)

By the example (10b,12b), the ∆′, ∆ are independently chosen
as the compiler modifies (post-) scheme ∆′ to (pre-) scheme ∆:

{∆} z = e {∆′} (13a)
where ∆ ⊇ ∆′|ρ̄ (13b)

and ∆, ∆′ are identical on the complement ρ̄ of ρ.
2) Conditionals: Source code conditionals are compiled to

machine code branch instructions, but which branch is for true
and which for false from expression e is determined by an encry-
pted bit in the machine code, so it cannot be read by an adver-
sary and the pre-/post- logic is that of classic nondeterministic
choice. Let ρ be the registers written in e. The deduction is:

{∆1} s1 {∆′} {∆2} s2 {∆′}
{∆} if (e) s1 else s2 {∆′}

(14a)

∆ ⊇ ∆1|ρ̄ ∪∆2|ρ̄ (14b)

and ∆, ∆1, ∆2 are identical on ρ̄, otherwise independent. The
final offsets ∆′ set by the compiler are equal in both branches,
as following code must be parameterised on specific offsets.

3) Loops: The compiler implements do while loops as
body plus conditional branch back to the start. Let ρ be the
registers written in e. The other registers must be offset equally
at loop start and end, i.e., ∆1|ρ̄=∆2|ρ̄=∆′|ρ̄ in (14a),(14b):

{∆} s {∆′}
{∆} do s while e {∆′}

(15a)

∆ ⊇ ∆′|ρ̄ (15b)

The compiler is free to set offsets ∆|ρ and ∆′|ρ independently.

D. Obfuscation Calculus

Let fr be the probability distribution of offset ∆r from a nomin-
al value v beneath the encryption in register r, so prob(s(r) =
E [v+d])=prob(∆r=d)=fr(d), where s is the processor state.

Each ∆r, ∆′r is a random variable with a probability

distribution, giving the stochastic analogue of (13) below:

{∆rx = X , ∆ry = Y, ∆rz = Z}
z = x+ y

{∆′rx = X , ∆′ry = Y, ∆′rz = Z ′}

In particular, ∆rz and ∆′rz are independent random variables.
Let T be the runtime trace of a program. It is a linear listing

of each instruction executed and values it read and wrote. After
an assignment the trace is longer by one: T ′ = T_〈z = e〉.

The entropy H(T) of the random variable T distributed
as fT is the expectation E[− log2 fT], and the increase in
entropy from T to T ′ (it cannot decrease as T lengthens)
is the number of bits of unpredictable information added. The
flat distribution fT=k has maximal entropy H(T)= log2(1/k).
Adding a maximal entropy signal to any random variable on a n-
bit space gives another maximal entropy, i.e., flat, distribution.

1) Assignment: As in (13a), for pre-/post-condition:

{∆} z = e {∆′} (16a)

but the bindings ∆, ∆′ are of offsets ∆r, ∆′r that are random
variables. Let ρ={r0, . . . , rn} be the registers written in e or in
writing to z. For r/∈ ρ, ∆′r=∆r, because they are equal values
by (13b), so the precondition is also ∆|ρ̄=∆′|ρ̄ here. I.e.:

∆ ⊇ ∆′|ρ̄ (16b)

but there is more, because (H̃) means each new random variable
is independent with maximal entropy. Each represents the com-
piler’s free choice of (encrypted) constant in ‘an arithmetic in-
struction that writes’, as remarked following (13),(14b),(15b).

Let the trace entropy up to the assignment be H(T)=h.
Writing with offset a new independent r.v. U increases it
to H(T ′)=h+H(U). The offset is 32-bit, chosen with flat dist-
ribution by the compiler for (H̃), so H(U)=32, andn+1 regis-
ters r0, . . . , rn are written so entropy increases by 32(n+1) bits:

{H(T) + 32(n+1) = h} z = e {H(T ′) = h} (16c)

But where the instruction has already appeared in the trace,
the offset is pre-known, and the increment is zero:

{H(T) = h} z = e {H(T ′) = h} (16c0)

2) Conditionals: As in (13b),(14b) but with random variables:

{∆1} s1 {∆′} {∆2} s2 {∆′}
{∆} if (e) s1 else s2 {∆′}

(17a)

∆ ⊇ ∆1|ρ̄ ∪∆2|ρ̄ (17b)

The ∆r=∆1r=∆2r for r/∈ρ, because they are equal values
according to (14b). The entropy added to the trace T is from
the trace of e, plus that from the trace through a branch:

{H(T)=h+32n} s1 {Q} {H(T)=h+32n} s2 {Q}
{H(T) = h} if (e) s1 else s2 {Q}

(17c)

To make that deduction valid, the compiler must even up the
arithmetic writes between the two branches so the entropy
increase is the same. It can do it, because, even for loops, the
entropy increase is finite and bounded, as discussed below.

A second time the conditional appears in the trace, if it
branches the same way again then it contributes zero entropy
as all the offset deltas are already known:

{H(T) = h} if (e) s1 else s2 {H(T ′) = h} (17c0)

If it branches a different way, the branch (but not the test)
contributes entropy, as the offsets in that branch are yet
unknown. But the, say m, instructions that align final register
offsets are constrained in (14b). So those m do not count:

{H(T)=h} s1 {Q} {H(T)=h} s2 {Q}
{H(T)+32m = h} if (e) s1 else s2 {Q}

(17c1)

Definition 1: An instruction emitted to adjust the final
offset to a common value with the other branch is a trailer
instruction. Each is last to write to a register in the branch.

3) Loops: Let ρ={r1, . . . , rn} be the registers written in e.
Then, per (15a), (15b), but with random variables:

{∆} s {∆′}
{∆} do s while (e) {∆′}

(18a)

∆ ⊇ ∆′|ρ̄ (18b)

That means ∆r=∆′r for r/∈ρ. The distributions are equal
because the values are equal for r/∈ρ, by (16b).

A trace over the loop is always the same length, because
the compiler varies data values, not semantics. Say the loop
repeats N≥1 times for a particular set of input values. Then
it could be unrolled to N instances of the loop body and N
instances of the loop test. The variation in the trace is only
that of (a) the test repeated once, because the same offsets are
applied to the n registers that are written in e at each repeat,
plus (b) that of the body repeated once, for the same reason.
The entropy calculation is (a) plus (b), no matter what N is:

{H(T)+32m = h} s {H(T ′) = h}
{H(T)+32(n+m)=h} do swhile e {H(T ′)=h}

(18c)

The abstraction of a do while loop here is that it lengthens
the trace arbitrarily but adds entropy like a conditional.

On a second time through the loop, zero entropy is added,
because the offsets are the same as the last time:

{H(T) = h} do s while e {H(T) = h} (18c0)

The (red) equations are an obfuscation calculus for trace entropy
when compilation follows the principle (H̃). In summary:

Lemma 1: The entropy of a trace is 32(n+i) bits;n is the nu-
mber in it of distinct arithmetic instructions that write (a pair of tr-
ailer instructions count as the same) and i is the number of inputs.

Inputs may be counted as those instructions that read first
time a location that has not been yet been written in the trace.

The compiler must recruit every arithmetic instruction that
writes to the task of freely varying the offsets in data beneath the
encryption in register and memory locations. The sole restric-
tion is that two final writes in different control paths must set
up the same offsets, and that is for correct program working.
Conditionals, loops and gotos could go wrong otherwise.

Proposition 1: The entropy of a program trace is maximal

w.r.t. varying the constant parameters in the compiled machine
code, while it still works correctly in any context.
Observing data at a point in the trace that has been written by
a program instruction (or read from a location in memory that
has not yet been written) sees variation across recompilations.
‘Any context’ allows that data written may always be read so
synchronising final offsets between branches is necessary. If
the data is never read, synchronising could be done without, as
nothing depends on it. The proposition incidentally implies a
full 32 bits of entropy per datum are provided by the compiler:

Corollary 1: The probability across different compilations
that any particular 32-bit value has encryption E [x] in a given
register or memory location at any given point in the program
at runtime is uniformly 1/232.
That result was obtained by structural induction in [7].

Definition 2: Two data observations in the trace are (obfus-
cation) dependent if they are of the same register at the same
point, are input and output of a copy instruction, or are of the
same register near a join of two control paths after the last
write to it in each and before the next write.
If the trace is observed at two (in general, m) independent
points, the variation is maximal:

Theorem 1: The probability across different compilations that
any m particular 32-bit values have encryptions E [xi] in given
register or memory location at given points in the program at
runtime, provided they are pairwise independent, is 1/232m.
Each dependent pair reduces the entropy by 32 bits. That
provides a proof for the result in [5] as every write or read
taken in isolation injects or inherits 32 bits of variability:

Corollary 2: Runtime user data beneath the encryption is
cryptographically semantically secure [6] against the operator
for code compiled by the obfuscating compiler.
That property means any attack is ‘no better than guessing’ for
any one bit in isolation. Theorem 1 asserts the stronger result
that as many trace data words under the encryption as one
cares to look at simultaneously are maximally unpredictable
across recompilations, as far as is possible.

V. IMPLEMENTATION

Our own prototype compiler http://sf.net/p/obfusc following
IV-D is for ANSI C [2], where pointers and arrays present par-
ticular difficulties. Currently, the compiler has near total cov-
erage of ANSI C and GNU C extensions, including statements-
as-expressions and expressions-as-statements, gotos, arrays,
pointers, structs, unions, floating point, double integer and
floating point data. Pointers are obligatorily declared via ANSI
restrict to point into arrays. It is missing longjmp and efficient
strings (char and short are same as int), and global data
shared across code units (a linker issue). The largest C source
compiled (correctly) so far is 22,000 lines for the IEEE floating
point test suite at http://jhauser.us/arithmetic/TestFloat.html. A
trace1 of the Ackermann function2 [19] is shown in Table II.

1For readability here, the final offset delta for register v0 is set to zero.
2Ackermann C code: int A(int m,int n) { if (m == 0) return n+1; if (n

== 0) return A(m-1, 1); return A(m-1, A(m, n-1)); }.

TABLE II
TRACE FOR ACKERMANN(3,1), RESULT 13.

PC instruction update trace
...
35 add t0 a0 zer E[-86921031] t0 = E[-86921028]
36 add t1 zer zer E[-327157853] t1 = E[-327157853]
37 beq t0 t1 2 E[240236822]
38 add t0 zer zer E[-1242455113] t0 = E[-1242455113]
39 b 1
41 add t1 zer zer E[-1902505258] t1 = E[-1902505258]
42 xor t0 t0 t1 E[-1734761313] E[1242455113] E[1902505258]

t0 = E[-17347613130]
43 beq t0 zer 9 E[-1734761313]
53 add sp sp zer E[800875856] sp = E[1687471183]
54 add t0 a1 zer E[-915514235] t0 = E[-915514234]
55 add t1 zer zer E[-1175411995] t1 = E[-1175411995]
56 beq t0 t1 2 E[259897760]
57 add t0 zer zer E[11161509] t0 = E[11161509]
...
143 add v0 t0 zer E[42611675] v0 = E[13]
...
147 jr ra # (return E[13] in v0)

Legend: (registers) a0 = function argument; sp = stack pointer; t0,
t1 = temporaries; v0 = return value; zer = null placeholder.

VI. CONCLUSION

A formal obfuscation calculus for programs has been set out
that calculates the entropy in the data beneath the encryption
in a runtime trace on an encrypted computing platfrom, where
compilation follows the principle that every arithmetic instruc-
tion that writes is varied maximally across recompilations.

A stronger, quantified, cryptographic semantic security prope-
rty follows for encrypted computing: no attack has better than pr-
obability 1/232m of success on a trace that containsm ‘independ-
ent’ words of user data, relative to the security of the encryption.

REFERENCES

[1] P. Breuer and J. Bowen, “A fully homomorphic crypto-processor design:
Correctness of a secret computer,” in Proc. Int. Symp. Eng. Sec. Softw.
Sys. (ESSoS’13), ser. LNCS. Springer, 2013, no. 7781, pp. 123–38.

[2] ISO/IEC, “Programming languages – C,” Int. Org. for Standardization,
9899:201x Tech. Rep. n1570, Aug. 2011, JTC 1, SC 22, WG 14.

[3] O. Kömmerling and M. G. Kuhn, “Design principles for tamper-
resistant smartcard processors,” in Proc. USENIX Work. Smartcard Tech.
USENIX, 1999, pp. 9–20.

[4] M. Buer, “CMOS-based stateless hardware security module,” Apr. 2006,
US Pat. App. 11/159,669.

[5] P. Breuer, J. Bowen, E. Palomar, and Z. Liu, “On security in encrypted
computing,” in Proc. 20th Int. Conf. Info. Comm. Sec. (ICICS’18), ser. L-
NCS, D. Naccache et al., Eds. Springer, 2018, no. 11149, pp. 192–211.

[6] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play
mental poker keeping secret all partial information,” in Proc. 14th Ann.
ACM Symp. Th. Comp., ser. (STOC’82). ACM, 1982, pp. 365–77.

[7] P. Breuer, J. Bowen, E. Palomar, and Z. Liu, “On obfuscating compilat-
ion for encrypted computing,” in Proc. 14th Int. Conf. Sec. Crypto. (SE-
CRYPT’17), P. Samarati et al., Eds. SCITEPRESS, 2017, pp. 247–54.

[8] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, pp. 576–80, 1969.

[9] P. Breuer, J. Bowen, E. Palomar, and Z. Liu, “Superscalar encrypted
RISC: The measure of a secret computer,” in Proc. 17th Int. Conf. Trust,
Sec. & Priv. in Comp. & Comms. (TrustCom’18). IEEE Comp. Soc.,
2018, pp. 1336–41.

[10] ——, “A practical encrypted microprocessor,” in Proc. 13th Int.
Conf. Sec. Crypto. (SECRYPT’16), C. Callegari et al., Eds., vol. 4.
SCITEPRESS, 2016, pp. 239–50.

[11] J. Daemen and V. Rijmen, The Design of Rijndael: AES – The Advanced
Encryption Standard. Berlin, Ger.: Springer, 2002.

[12] N. G. Tsoutsos and M. Maniatakos, “The HEROIC framework: En-
crypted computation without shared keys,” IEEE TCAD IC Sys., vol. 34,
no. 6, pp. 875–88, 2015.

[13] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Th. Appl. Crypto. Tech. (EUROCRY-
PT’99), ser. LNCS, J. Stern, Ed., no. 1592. Springer, 1999, pp. 223–38.

[14] F. Irena, D. Murphy, and S. Parameswaran, “Cryptoblaze: A partially
homomorphic processor with multiple instructions and non-deterministic
encryption support,” in Proc. 23rd Asia S. Pac. Des. Autom. Conf. (ASP-
DAC’18). IEEE, 2018, pp. 702–8.

[15] S. Rass and P. Schartner, “On the security of a universal cryptocomputer:
The chosen instruction attack,” IEEE Access, vol. 4, pp. 7874–82, 2016.

[16] A. Biryukov, “Known plaintext attack,” in Ency. Cryptog. & Security,
H. C. A. van Tilborg and S. Jajodia, Eds. Springer, 2011, pp. 704–5.

[17] M. Lipp et al., “Meltdown,” ArXiv e-prints, Jan. 2018.
[18] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,”

ArXiv e-prints, Jan. 2018.
[19] Y. Sundblad, “The Ackermann function: a theoretical, computational, and

formula manipulative study,” BIT Num. Math., vol. 11, no. 1, pp. 107–19,
1971.

