
2016-12-08

1

SOUTH CHINA UNIVERSITY OF TECHNOLOGY
FALL 2016

SOUTH CHINA UNIVERSITY OF TECHNOLOGY
FALL 2016

DR. MAO Aihua
ahmao@scut.edu.cn

DR. MAO Aihua
ahmao@scut.edu.cn

Topics

Micro-Operations

C l f h P Control of the Processor

Hardwire Implementation

2

2016-12-08

2

Specify the functions of processor

 Operations (opcodes)

 Addressing modes
Instruction set

 Addressing modes

 User visible registers

 I/O module interface

 Memory module interface

 Interrupt processing structure

System bus

OS

3

OS

How these functions are performed and controlled?

Review: Micro-Operations

 A computer executes a program consists of a
sequence of instruction cyclessequence of instruction cycles

 Each instruction cycle has a number of subcycles

 see pipelining

4

2016-12-08

3

Review: Micro-Operations

 In the small subcycles of the instruction cycle,
Fetch/execute cycles always occur Fetch/execute cycles always occur

 Each of the small subcycles involves a series of
steps, called micro-operations

 Each step does very little

5

Constituent Elements of Program Execution

6

Micro-operations

2016-12-08

4

Fetch - 4 Registers

 Memory Address Register (MAR)
 Connected to address bus Connected to address bus

 Specifies address for read or write op

 Memory Buffer Register (MBR)
 Connected to data bus

 Holds data to write or last data read

 Program Counter (PC)

7

g ()
 Holds address of next instruction to be fetched

 Instruction Register (IR)
 Holds last instruction fetched

Review: Data Flow (Fetch Diagram)

1 2 3

Address put on the address bus

4

5

6

Request a
memory read

8

2016-12-08

5

Fetch Sequence

 Address of next instruction is in PC
Add (MAR) i l d dd b Address (MAR) is placed on address bus

 Control unit issues READ command
 Result (data from memory) appears on data bus
 Data from data bus copied into MBR
 PC incremented by 1 (in parallel with data fetch

from memory)

9

from memory)
 Data (instruction) moved from MBR to IR
 MBR is now free for further data fetches

Fetch Sequence

10

2016-12-08

6

Fetch Sequence (symbolic)

 t1: MAR ← (PC)

 t2 MBR ← memory t2: MBR ← memory

 PC ← (PC) +I

 t3: IR ← (MBR)

 Each micro-operation can be performed within a single
time unit

11

Fetch Sequence

 The simple fetch cycle

Consists of three steps

Four micro-operations

Each involve data movement in or out of a
register

 If these movement do not interface with one

12

 If these movement do not interface with one
another, several of them can take place during one
time step, saving time

2016-12-08

7

Fetch Sequence (symbolic)

 t1: MAR ← (PC)

 t2 MBR ← memory  t2: MBR ← memory

 PC ← (PC) +I

 t3: IR ← (MBR)

 Each micro-operation can be performed within a single
time unit

13

Fetch Sequence (symbolic)

 The third micro-operation could have grouped with
the forth without affecting the fetch operationthe forth without affecting the fetch operation

 t1: MAR ← (PC)

 t2: MBR ← memory

 t3: PC ← (PC) +1

 IR ← (MBR)

14

 IR ← (MBR)

2016-12-08

8

Rules for Clock Cycle Grouping

 Proper sequence must be followed

MAR ← (PC) must precede MBR ← (memory)

 Conflicts must be avoided

Must not read & write same register at same time

MBR ← (memory) & IR ← (MBR) must not be in
l

15

same cycle

 Also: PC ← (PC) +1 involves addition

Use ALU to avoid duplication of circuitry

Review: Data Flow (Indirect Diagram)

1 2

3

16

3

2016-12-08

9

Indirect Cycle (Fetch Operand)

 If the instruction specifies an indirect address

 MAR ← (IR(address)) - address portion of IR

 MBR ← Memory

 IR(address) ← (MBR(address))

 Finally, IR is updated from MBR, and contains an
direct address

17

 IR is now in same state as if direct addressing had
been used

Indirect Cycle (Fetch Operand)

 t1: MAR ← (IR(address))

 t2: MBR ← Memory

 t3: IR(address) ← (MBR(address))

18

2016-12-08

10

Review: Data Flow (Interrupt Diagram)
Special memory location

1

2

3

4

5

Address of interrupt routine

19

Interrupt Cycle

 t1: MBR ←(PC)

 t2: MAR ← save address t2: MAR ← save_address

 PC ← routine_address

 t3: Memory ← (MBR)

 This is a minimum

May be additional micro‐ops to get addresses

20

(multiple levels of interrupts)

2016-12-08

11

Execute Cycle (ADD)

 Different for each instruction, with N different opcodes,
there are N different sequence of micro-operationsq p

 e.g. ADD R1,X : add the contents of location X to Register
1 , result in R1

 t1: MAR ← (IR(address)) (the address of add instruction)

 t2: MBR ←memory

 t3: R1 ← R1 + (MBR)

21

()

 Additional micro-operations may be required to extract the
register reference from IR

Execute Cycle (ISZ)

 ISZ X - increment and skip if zero

 t1: MAR ← (IR(address)) (address to save MBR) t1: MAR ← (IR(address)) (address to save MBR)

 t2: MBR ← memory

 t3: MBR ← (MBR) + 1

 t4: memory ← (MBR) (store back the MBR to memory)

if (MBR) == 0 then PC ← (PC) + 1 (one miro‐operation)

22

These Micro-operations can be done during t4

2016-12-08

12

Instruction Cycle

 Fetch, indirect, and interrupt cycle, each decomposed into
a sequence of elementar micro operationsa sequence of elementary micro-operations

 Execute cycle

 each opcode consists of a sequence of micro-operations

 Need to tie these sequences together

23

Instruction Cycle

 Assume new 2-bit register, called Instruction cycle code
(ICC) (ICC)

designates which portion of cycle the processor is in

00: Fetch

01: Indirect

10: Execute

11: Interrupt

24

11: Interrupt

2016-12-08

13

Flowchart for Instruction Cycle

01

25

Functional Requirements

 With the decomposition, the steps to characterize the
control units: those functions must performcontrol units: those functions must perform

Define basic elements of processor

Describe micro‐operations processor performs

Determine functions control unit must perform

26

2016-12-08

14

Basic Elements of Processor

 ALU
 functional essence of the computer

 Registers
 Store data internal to the processor

 Internal data paths
 Move data between registers and ALU

 External data paths

27

 Link registers to memory and I/O modules

 Control Unit
 Cause operations to happen within the processor

Types of Micro-operation

 All micro-operations involved in these operations fall
into one of these categories:into one of these categories:

 Transfer data between registers

 Transfer data from register to external interface

 Transfer data from external to register

Perform arithmetic or logical ops

28

2016-12-08

15

Functions of Control Unit

 The control units performs two basic tasks :
 Sequencing Sequencing

Causing the CPU to step through a series of micro‐
operations in the proper sequence, based on
program execution

 Execution

h b f d

29

Causing each micro‐operation to be performed

 This is done using Control Signals

Control Signals

 It is the engine that runs the entire computer

Th l d d  The control unit reads its input and emits
control signals to cause micro-operations

 uses the clock pulse to stabilize the time
sequence of events

30

2016-12-08

16

Control Signals

 For the control units

 External specifications: External specifications:

inputs that allow it to determine the state of the
system

output that allow it to control the behaviours of the
system

 Internal logic

31

 Internal logic

the control unit must have the logic to perform its
sequencing and execution functions

Model of Control Unit (Inputs and Outputs)

opcode move data opcode move data
between
registers

32

2016-12-08

17

Control Signals - Inputs

 Clock: how the control unit keeps time
One micro instruction (or set of parallel microOne micro‐instruction (or set of parallel micro‐
instructions) per clock cycle

 Instruction register
Op‐code for current instruction, determines which
micro‐instructions are performed

 Flags
f

33

 State of CPU
Results of previous ALU operations

 Control signal from control bus
 Interrupts and acknowledgements

Control Signals - Output

 Control signal within CPU

Cause data movement between registersCause data movement between registers

Activate specific ALU functions

 Control signal to control bus

 To memory

 To I/O modules

34

 All of these signals are ultimately applied directly as
binary inputs to logic gates

2016-12-08

18

A Control Signals Example

 A simple processor with a single accumulator
 The terminations of control signals are label Cig
 The control unit receives inputs from the clock, the

instruction register and flag
 It emits a set of control signals, which go to three separate

destinations:
Data path: control the internal flow of data through

35

opening the gate

ALU: control the operation of the ALU

 System bus: control signals onto the system bus

Example Control Signal Sequence

Fetch cycle: see how the control unit maintains the control

 First step: MAR ← (PC) First step: MAR ← (PC)

Control unit activates signal to open gates between PC
and MAR

36

2016-12-08

19

Example Control Signal Sequence

 Next step: MBR ←memory & increment the PC

Open gates allowing the content of MAR onto the
address bus

37

Example Control Signal Sequence

 Next step: MBR ←memory & increment the PC

Memory read control signal on the control bus

38

2016-12-08

20

Example Control Signal Sequence

 Next step: MBR ←memory & increment the PC

Open gates allowing the content of the data bus to be
stored in the MBR

39

Example Control Signal Sequence

 Next step: MBR ←memory & increment the PC

Control signal to the logic incrementing the PC

40

2016-12-08

21

Example Control Signal Sequence

 Next step: MBR ←memory & increment the PC

 Following that, control unit opens gates between the
MBR and IR

41

Internal Organization

 Usually, CPU uses a single internal bus

G d d l h f d  Gates provided control the movement of data
onto and off the bus

 Control signals control data transfer to and
from external systems bus

 Temporary registers needed for proper

42

 Temporary registers needed for proper
operation of ALU

2016-12-08

22

CPU Internal Structure
Transfer data between
the various registers
and the ALU

43

CPU with Internal Bus

 Two new register Y and Z are addedo e eg e a d a e added

 An operation involving two operands
 One can be obtained from the internal bus

 The other input must come to the other source,
Y can be used as this temporary storage

 ALU has no internal storage, output can

44

g , p
not connected to the bus and will feed
back to the input
 Z is used as this temporary output

2016-12-08

23

CPU with Internal Bus

 With this arrangement, the micro-
operation for addition become:operation for addition become:
 t1:MAR ← (IRaddress)

 t2:MBR ← Memory

 t3: Y ← (MBR)

 t4:Z ← (AC) + Y

 t5: AC ← (Z)

45

()

Intel 8085 CPU Block Diagram

46

2016-12-08

24

Hardwired Implementation

 Control unit implementation

 A wide variety of techniques have been used,
and can be categorized:
Hardwired implementation

Microprogrammed implementation

47

Hardwired Implementation

 Control unit inputs:

Flags each bit has some meaning such as overflowFlags, each bit has some meaning, such as overflow

 Instruction register (key input)
Op-code causes different control signals for each different

instruction

For simplification, unique logic for each op-code

Decoder takes encoded input and produces single output

48

Decoder takes encoded input and produces single output

Has n binary inputs and 2n outputs

2016-12-08

25

Hardwired Implementation

Clock
 Issue repetitive sequence of pulses Issue repetitive sequence of pulses

Useful for measuring duration of micro-ops

Must be long enough to allow signal propagation along
data path

Different control signals at different times within instruction
cycle

49

Need a counter with different control signals for t1, t2 etc.

Hardwired Implementation

50

2016-12-08

26

Control Unit with Decoded Inputs

51

Problems With Hard Wired Designs

 Complex sequencing & micro-operation logicp q p

Difficult to design and test

 Inflexible design

Difficult to add new instructions

52

2016-12-08

27

Homework

 Review Questions: 16.6

P bl  Problems 16.2

Hand in 27th May

53

In-Class Execise

Describe the micro-operations of the instruction
 Mov R1 X ; move the contents of location X to Register 1  Mov R1,X ; move the contents of location X to Register 1 ,

result in R1

 Jmp X ; jump to the address stored in X

54

2016-12-08

28

In-Class Execise

Describe the micro-operations of the instruction
 Mov R1 X ; move the contents of location X to Register 1  Mov R1,X ; move the contents of location X to Register 1 ,

result in R1

 t1: MAR ← (IR(address))

 t2: MBR ← (memory)

 t3: R1 ← (MBR)

55

t3: R1 (MBR)

In-Class Execise

Describe the micro-operations of the instruction

J X j t th dd t d i X Jmp X ; jump to the address stored in X
 t1: MAR ← (IR(address))

 t2: MBR ← memory

 t3: PC ← (MBR)

56

