文章编号:1000-0615(2018)04-0522-12

DOI: 10.11964/jfc.20170410795

黄茅海五种常见海洋生物的热耐受性

崔雯婷^{1,3}, 宋骏杰^{1,3}, 田洪林^{1,3}, 窦硕增^{1,2,3}, 赵 博^{1,2}, 曹 亮^{1,2*}

(1. 中国科学院海洋研究所,中国科学院海洋生态与环境科学重点实验室,山东青岛 266071;

2. 海洋国家实验室海洋生态与环境科学功能实验室,山东青岛 266071;

3. 中国科学院大学,北京 100049)

摘要:为研究黄茅海常见经济物种的热耐受性,采用动态实验法和静态实验法,研究了 褐篮子鱼、褐菖鲉、褐石斑鱼、口虾蛄和日本蟳在不同基础水温(即驯化温度,14.0、 18.0、24.0和30.8°C)和温升速率(0.5、1.0、2.0、3.0、4.0、6.0、9.0、12.0和15.0°C/h)条件 下的热耐受能力[最大临界温度(CTM)和24 h高起始致死温度(24 h UILT₅₀)]。动态实验结 果表明,基础水温和温升速率显著影响实验动物的热耐受能力,即实验动物的耐热性与 基础水温呈正相关。温升速率对其热耐受性的影响受基础水温的制约:在4个基础水温 条件下,随着温升速率的升高,实验动物的CTM总体呈上升趋势。静态实验结果表明, 实验动物的24 h UILT₅₀受物种差异和基础水温的影响显著。随着基础水温从14.0°C 升高至30.8°C,褐篮子鱼、褐菖鲉、褐石斑鱼、口虾蛄和日本蟳的24 h UILT₅₀分别从 28.1、28.9、30.3、28.4和36.3°C显著上升至34.6、36.1、36.6、35.1和38.2°C。动态实验 法和静态实验法分析发现,5种实验动物的热耐受能力依次为日本蟳>褐石斑鱼>褐菖鲉> 口虾蛄>褐篮子鱼。

关键词:海洋生物;热耐受性;驯化温度;温升速率;最大临界温度;24h高起始致死温度;黄茅海

中图分类号: S 917.4

文献标志码:A

近年来,中国在河口或海湾兴建了大量大型火电厂和核电厂,电厂循环冷却水即温排水 直接排入沿岸水域,有些情况下可导致排水口 的水温升高8~12°C^[1],造成受纳水体即混合区的 热污染,对海洋生态系统造成较大影响^[2]。温度 剧烈变化会直接或间接影响海洋生物体内一系 列的生理、生化过程,进而影响其繁殖发育、 生长存活、免疫和摄食等重要生命活动过程, 甚至改变其迁移分布范围^[3]。例如,温度升高会 使得海洋生物体内酶活性改变,引起相应生命 过程的变化;若温度高于其最适温度,鱼类的 孵化率会降低,摄食能力和生长受到抑制^[4-5] 等。因此,开展海洋生物的热耐受能力研究对 科学认识海洋生物的温度适应能力、了解温排 水对近海生物和生态环境的热效应具有重要 意义。

目前国内外已有一些关于海洋生物的热耐 受性及其适温能力方面的研究^[6-7],涉及的问题 包括海洋生物的耐温阈值^[8-9]、不同物种的热耐 受性特异性^[10]、各生活阶段的适温能力、不同基 础水温下温升速率对其耐热性的影响^[11-12]、生物 的温度适应能力与其种群的地理分布关系^[13],以 及水生生态系统对于热冲击的承受能力等^[14-15]。 相关的实验方法一般有动态实验法和静态实验 法两种,前者研究特定基础水温下温升速率对 实验动物的热耐受性参数如临界温度和半致死 温度的作用^[11, 16],后者则将实验动物暴露于一 系列温度梯度下,研究它们的24 h高起始致死温

收稿日期: 2017-04-16 修回日期: 2017-08-14

资助项目:国家基金委-山东省联合基金(U1606404);国家科技重大专项(2013ZX06002001);鳌山科技创新计划(2015ASKJ02-04) 通信作者:曹亮,E-mail: caoliang@qdio.ac.cn

度^[11,17]。动态实验法因为设计简单、结果更有 生物学和生态学意义而被广泛应用于热耐受性 研究中,但是实验中对温升速率的设置却未标 准化。

黄茅海是位于珠江八大尾闾的崖门水道和 虎跳门水道出海之间的喇叭状海湾(图1),周年 月平均表层水温为13.5~31.6°C,底层水温为 14.2~28.4°C。黄茅海周围有已运营或在建的大 型电厂,每年会有大量电厂温排水排入黄茅海内, 其中某在建大型核电厂运营后的预测温排水可 导致电厂排水口附近局部水域升温4~10°C,对 海洋生物和环境产生高风险热胁迫。

图 1 黄茅海的地理位置

Fig. 1 The location of the Huangmao Sea

本研究以常年栖息于该海域的5种重要经济 动物[褐篮子鱼(Siganus fuscessens)、褐菖鲉(Sebastiscus marmoratus)、褐石斑鱼(Epinephelus bruneus)、口虾蛄(Oratosquilla oratoria)和日本蟳 (Charybdis japonica)]为对象,参照黄茅海各季节 的背景水温,采用动态实验法和静态实验法研 究不同基础水温和温升速率对它们的热耐受性 的影响,获得不同季节、基础水温和温升速率 下5种实验动物耐热性指标的变化特征,解析实 验动物的耐热能力,以期为认识海洋生物的热 耐受能力和温排水对海洋生态环境的热效应等 提供基础数据和科学依据。

1 材料与方法

1.1 实验材料

依据实验动物的地域性、可比性、可获性 和实验的可行性等原则,选择褐篮子鱼、褐菖 鲉、褐石斑鱼、口虾蛄和日本蟳的幼体作为研 究对象,实验动物均取自黄茅海自然水域(表1)。 实验开始前,实验动物在基础水温下驯化4~5d, 然后选取大小均匀、活动能力强的个体开展实 验。实验动物在取自黄茅海的自然海水中进行 驯化,驯化期间定期投喂小型鱼虾。

表1 五种实验动物的个体大小

Tab. 1 The individual size of the five experimental species

物种 species	基础水温/°C acclimation temperature	体长或头胸甲长/mm body/carapace length	体质量/g body weight
褐篮子鱼	14.0	126.1±17.4	23.5±3.8
S. fuscescens	18.0	126.1±17.4	23.5±3.8
	24.0	135.4±14.6	27.2±4.1
	30.8	133.3±6.8	29.3±2.5
褐菖鲉 S marmoratus	14.0	122.5±9.2	41.4±5.6
S. marmoratus	18.0	122.5±9.2	41.4±5.6
	24.0	129.3±6.1	43.7±4.9
	30.8	132.6±9.2	48.3±9.0
褐石斑鱼	14.0	124.6±10.6	33.8±6.3
E. Drunneus	18.0	124.6±10.6	33.8±6.3
	24.0	131.0±12.4	41.2±3.5
	30.8	135.1±12.3	46.9±13.1
口虾蛄 O anatonia	14.0	131.2±18.9	18.2±3.2
O. oraioria	18.0	131.2±18.9	18.2±3.2
	24.0	144.7±21.2	19.6±5.8
	30.8	154.5±9.1	22.1±2.1
日本蟳 C. japonica	14.0	10.1±1.9	4.6±1.3
	18.0	10.1±1.9	4.6±1.3
	24.0	10.3±2.3	4.7±0.8
	30.8	9.3±1.4	3.7±0.9

1.2 实验方法

实验条件 实验在150 L水体的水槽内进行,实验用水取自黄茅海自然海水,盐度22.9~26.5,pH 8.05~8.10。实验开始后在每个水槽内移入4~8尾(每种)驯化后的生物个体,采用多物种混合实验方式。实验过程中适量充气,自然光照条件。各水槽水温由精密控温仪(温控范围:0~90°C,感温灵敏度:0.1°C,韩国A-MI 211H; 钛加热棒100~2 000 W,德国Armaturenbau)控制。实验期间定时用精密水银温度计测定、核 对水槽内水温。

动态实验 本实验在持续升温条件下研 究实验动物的热耐受性特征。基础水温参照各 实验季节自然海水的平均水温状况设置为14.0 °C (冬季)、18.0 °C(春季)、24.0 °C(秋季)和30.8 °C (夏季)。各基础水温下均设置9个温升速率梯 度:0.5、1.0、2.0、3.0、4.0、6.0、9.0、12.0和 15.0 °C/h,每个温升速率梯度设3个平行,共 27个水槽进行实验。以基础水温为起始温度,按 照设定温升速率对水体进行持续升温。实验过 程中以生物出现运动紊乱,行为异常、失去平 衡、身体翻转等作为临界点,此时的水温为实 验动物的最大临界温度(critical thermal maximum, CTM)^[18]。

静态实验 本实验研究实验动物对高温 的忍耐程度。分别在14.0、24.0和30.8°C的基础 水温下,按照1~2°C温差设置温度梯度,褐篮子 鱼、褐菖鲉、褐石斑鱼和口虾蛄的温度范围为 25.0~39.0°C, 日本蟳的温度范围为32.0~42.0°C (表2),每个温度组设3个平行,每个温度处理组 的水温保持恒定。将实验动物从驯化水槽直接 转移暴露于一系列不同处理温度的实验水槽(共 24个)中,观察它们在24h内的死亡或存活情况。 以鳃盖(鱼类)停止运动、对碰触无反应等行为定 义为生物个体死亡^[18]。实验过程中及时捞出死亡 个体,并在实验结束后记录每个温度组中各种 实验动物的死亡个体数,以此计算各物种的24 h高起始致死温度(24 h upper incipient lethal temperature, 24 h UILT₅₀)

在各温度暴露实验中,在基础水温至表2中 相应的最低暴露温度之间按2~3°C间隔设置暴露 温度开展实验。在此暴露温度区间内实验动物 均为零死亡,因此在表2中略去这些暴露温度。

1.3 数据处理

动态实验中,采用双因素方差分析(Two-Way ANOVA)检验基础水温和温升速率对实验动 物CTM的影响是否显著,并对组间差异进行多 重比较分析(Dunnett's T₃处理)。

静态实验中,计算各温度组的死亡率,利 用直线内插法求得各基础水温下各物种的24 h UILT₅₀;采用双因素方差分析(Two-Way ANOVA) 检验物种和基础水温对实验动物24 h UILT₅₀影响 的显著性。

表 2	静态实验中五种实验动物的泰蕗温度	

 Tab. 2
 The exposed temperatures of the five species in

the static experiment							
物种	基础水温	暴霰温度					
species	acclimation	exposed temperature					
	temperature	-					-
褐篮子鱼	14.0	25.0	27.0	29.0	30.0	31.0	33.0
S. fuscescens	18.0	25.0	27.0	29.0	30.0	31.0	33.0
	24.0	28.0	30.0	32.0	34.0	36.0	38.0
	30.8	34.0	35.0	36.0	37.0	38.0	39.0
褐菖鲉 S marmoratus	14.0	25.0	27.0	29.0	30.0	31.0	33.0
5. marmoratas	18.0	25.0	27.0	29.0	30.0	31.0	33.0
	24.0	28.0	30.0	32.0	34.0	36.0	38.0
	30.8	34.0	35.0	36.0	37.0	38.0	39.0
褐石斑鱼 E. brunneus	14.0	25.0	27.0	29.0	30.0	31.0	33.0
	18.0	25.0	27.0	29.0	30.0	31.0	33.0
	24.0	28.0	30.0	32.0	34.0	36.0	38.0
	30.8	34.0	35.0	36.0	37.0	38.0	39.0
口虲蛄	14.0	25.0	27.0	29.0	30.0	31.0	33.0
O. oratoria	18.0	25.0	27.0	29.0	30.0	31.0	33.0
	24.0	28.0	30.0	32.0	34.0	36.0	38.0
	30.8	34.0	35.0	36.0	37.0	38.0	39.0
日本蟳 C iaponica	14.0	33.0	35.0	36.0	37.0	38.0	39.0
C. juponicu	18.0	33.0	35.0	36.0	37.0	38.0	39.0
	24.0	32.0	34.0	36.0	38.0	40.0	42.0
	30.8	35.0	36.0	37.0	38.0	40.0	42.0

相关统计分析在Excel 2015和SPSS 22.0软件 上进行,显著性水平设为*P*=0.05。

2 结果

2.1 实验物种的CTM

双因素方差分析结果表明,基础水温和温 升速率显著影响5种实验动物的CTM (P<0.05; 表3)。

基础水温和温升速率均显著影响褐篮子鱼的CTM (P<0.05; 图2,表3)。CTM随着基础水温的升高呈显著升高趋势,且在同一温升速率下各基础水温间的CTM存在显著差异(P<0.05)。在各基础水温下,CTM随温升速率的增大总体上呈逐渐升高的趋势。在14.0°C基础水温下,CTM

表 3 基础水温和温升速率对五种实验动物CTM的影响

ANOVA results of the interaction of acclimation to	emperature and temperature-rising rate on
--	---

the CTM of the five experimental species

物种 species		影响因素 factor	SS	df	MS	F	Sig.
褐篮子鱼 S. fuscescens	基础水温	acclimation temperature	995.036	3	331.679	1 161.520	0.000
	温升速率	temperature-rising rate	173.303	8	21.663	75.862	0.000
	交互作用	interaction	18.448	24	0.769	2.692	0.001
褐菖鲉 S. marmoratus	基础水温	acclimation temperature	1 002.245	3	334.082	2 725.139	0.000
	温升速率	temperature-rising rate	64.540	8	8.067	65.807	0.000
	交互作用	interaction	33.414	24	1.392	11.357	0.000
褐石斑鱼 E. brunneus	基础水温	acclimation temperature	772.220	3	257.407	2 133.532	0.000
	温升速率	temperature-rising rate	53.993	8	6.749	55.941	0.000
	交互作用	interaction	12.287	24	0.512	4.243	0.000
口虾蛄 O. oratoria	基础水温	acclimation temperature	800.822	3	266.941	2 066.637	0.000
	温升速率	temperature-rising rate	102.263	8	12.783	98.964	0.000
	交互作用	interaction	28.494	24	1.187	9.192	0.000
日本蟳 C. japonica	基础水温	acclimation temperature	73.230	3	24.410	319.161	0.000
	温升速率	temperature-rising rate	20.864	8	2.608	34.099	0.000
	交互作用	interaction	8.939	24	0.372	4.870	0.000

在 ≤ 6.0 °C/h (27.8~29.1 °C)或>6.0 °C/h (30.6~31.4 °C) 的温升速率组之间无显著差异(P>0.05);在24.0 °C 基础水温下,CTM在 ≥ 4.0 °C/h (36.3~36.7 °C)的 温升速率组之间无显著差异(P>0.05),但显著高 于 <4.0 °C/h (32.8~35.3 °C)的温升速率组的CTM (P<0.05);在30.8 °C基础水温下,CTM在>4.0 °C/h (37.4~38.1 °C)的温升速率组之间无显著差异 (P>0.05),但显著高于<4.0 °C/h (34.5~36.4 °C)的 温升速率组的CTM (P<0.05)。

褐菖鲉的CTM受到基础水温和温升速率变 化的显著影响(P<0.05;图3,表3)。CTM随基础 水温的升高呈显著升高趋势(P<0.05)。总体上, 在各基础水温下的CTM随温升速率的增大呈逐 渐升高的趋势。基础水温为14.0 ℃时,CTM在≤ 3.0 °C/h (29.2~29.7 °C)的温升速率组之间的差异 不显著(2.0 °C/h除外)(P>0.05),但显著低于> 3.0 °C/h (30.3~32.0 °C)的温升速率组的CTM (P<0.05);基础水温为24.0 °C时,CTM随温升速 率的增大先升高再下降,在2.0~9.0 °C/h (36.9~ 37.3 °C)温升速率组之间的差异不显著(P>0.05), 但显著高于其他温升速率组的CTM (P<0.05);基 础水温为18.0和30.8 °C时,CTM在>2.0 °C/h (32.3~33.1°C, 37.6~38.1°C)的温升速率组之间差 异不显著(P>0.05),但显著高于<2.0°C/h (29.6~29.8°C, 36.1~36.5°C)温升速率组的CTM (P<0.05)。

基础水温和温升速率对褐石斑鱼CTM的影 响显著(P<0.05; 图4, 表3), CTM随基础水温的 升高而显著升高(P<0.05)。总体上,在各基础水 温下的CTM随温升速率的增大呈逐渐升高的趋 势。基础水温为14.0°C时, CTM在≤3.0°C/h (30.7~31.2°C)的温升速率组之间的差异不显著 (2.0°C/h除外)(P>0.05),但显著低于>3.0°C/h (31.5~33.0°C)的温升速率组的CTM (P<0.05);基 础水温为18.0°C时, CTM总体上在≥2.0°C/h (33.6~34.5°C)的温升速率组之间差异不显著 (P>0.05), 但显著高于<2.0 °C/h (31.4~32.1 °C)温 升速率组的CTM (P<0.05);基础水温为24.0°C和 30.8 °C时, CTM在>2.0 °C/h (37.5~38.5 °C, 37.8~38.6°C)的温升速率组之间差异不显著(P> 0.05), 但显著高于<2.0 °C/h (36.5~36.6 °C, 36.7~ 37.1 °C) 温升速率组的CTM (P<0.05)。

口虾蛄的CTM受基础水温和温升速率的影响显著(P<0.05;图5,表3)。CTM随基础水温的

Tab. 3

图 2 不同基础水温和温升速率下褐篮子鱼的CTM

(a) 14.0 ℃, (b) 18.0 ℃, (c) 24.0 ℃, (d) 30.8 ℃, 同一柱状图中不同小写字母表示各温升速率之间具有显著差异, 下同

Fig. 2 CTM of S. fuscessens at different acclimation temperatures and temperature-rising rates

(a) 14.0 °C, (b) 18.0 °C, (c) 24.0 °C, (d) 30.8 °C. Different lower cases indicate significant differences between temperature-rising rates, the same below

升高而显著升高(P<0.05)。在各基础水温下, CTM总体上随温升速率的增大呈逐渐升高的趋 势。基础水温为14.0°C时, CTM在<6.0°C/h (28.5~29.8°C)或>6.0°C/h (30.6~31.4°C)的温升速 率组之间的差异不显著(P>0.05),但前者显著低 于后者(P<0.05); 基础水温为18.0°C时, CTM在≥3.0 °C/h (32.3~32.8 °C)的温升速率组之 间差异不显著(P>0.05), 但显著高于<3.0°C/h (28.3~31.6°C)温升速率组的CTM (P<0.05);基础 水温为24.0 °C时, CTM在>3.0 °C/h (36.1~36.7 °C) 的温升速率组之间的差异不显著(P>0.05),但显 著高于<3.0 °C/h (34.2~35.2 °C)的温升速率组的 CTM (P<0.05); 基础水温为30.8 °C时, CTM在> 6.0 °C/h (37.0~37.5 °C)的温升速率组之间的差异 不显著(P>0.05), 但显著高于<4.0 ℃/h (34.6~36.3 ℃) 的温升速率组的CTM (P<0.05)。

日本蟳的CTM受基础水温和温升速率的变 化影响显著(P<0.05;图6,表3),随着基础水温 的升高而显著升高(P<0.05)。在各基础水温下, CTM总体上随温升速率的增大呈逐渐升高的趋势。基础水温为14.0°C时,CTM在<9.0°C/h (38.8~39.6°C)或>9.0°C/h (40.0~40.3°C)的温升速 率组之间的差异不显著(P>0.05),但前者显著低 于后者(P<0.05);基础水温为24.0°C时,在 1.0~4.0°C/h (40.2~40.6°C)或>4.0°C/h (41.3~41.5°C) 温升速率组之间的CTM的差异均不显著(P>0.05), 但均显著高于<1.0°C/h (39.8°C)的温升速率组的 CTM (P<0.05);基础水温为30.8°C时,CTM (40.7~42.5°C)基本呈现随温升速率增大而逐渐显 著升高趋势(P<0.05);基础水温为18.0°C时, CTM (39.4~40.6°C)总体上在各温升速率组之间 差异不显著。

2.2 实验物种的24 h UILT₅₀

5种实验动物的24 h UILT₅₀受物种和基础水 温的影响显著(P<0.05; 表4)。

Fig. 3 CTM of S. marmoratus at different acclimation temperatures and temperature-rising rates

图 4 不同基础水温和温升速率下褐石斑鱼的CTM

Fig. 4 CTM of *E. bruneus* at different acclimation temperatures and temperature-rising rates

Fig. 5 CTM of O. oratoria at different acclimation temperatures and temperature-rising rates

图 6 不同基础水温和温升速率下日本蟳的CTM

随着基础水温从14.0°C升高至30.8°C,褐 篮子鱼、褐菖鲉、褐石斑鱼、口虾蛄和日本蟳 的24 h UILT₅₀分别从28.1、28.9、30.3、28.4和 36.3°C显著上升至34.6、36.1、36.6、35.1和38.2°C (图7,表4)。

表 4 物种和基础水温对24 h高起始致死温度的影响

Tab. 4	ANOVA res	ults of the i	interaction	of species	and
a	cclimation ter	nperature	on the 24 h	UILT 50	

影响因素 factor	SS	df	MS	F	Sig.
物种	220.289	4	55.072	708.071	0.000
species 基础水温	247.948	2	123.974	1 593.951	0.000
acclimation temperature 交互效应 interaction	30.330	8	3.791	48.744	0.000

Fig. 7 24 h UILT₅₀ of the five experimental species at different acclimation temperatures

1. S. fuscessens, 2. O. oratoria, 3. S. marmoratus, 4. E. bruneus, 5. C. japonica

在3个基础水温下,5种实验动物的24 h UILT₅₀均表现为日本蟳>褐石斑鱼>褐菖鲉>口虾 蛄>褐篮子鱼(图7,表4)。

3 讨论

3.1 水生动物耐热性的物种差异性

水生动物的热耐受性是其长期适应环境的 演化结果,具有明显的种间差异性,且受物种 自身的遗传特征、发育阶段、个体大小和生活 史对策等影响^[10,19]。例如,有研究表明,在同 一水域的甲壳类动物中的短尾类(蟹类)的耐热性 通常高于长尾类(虾类)和鱼类^[20]。在20°C基础水 温、6.0°C/h的温升速率下,短吻鲟(Acipenser brevirostrum)(10~35 g和35~320 g之间)的CTM与体 质量呈正相关[21]。另外,物种的分布特征也会影 响其耐热性^[22]。一般而言,暖水性动物比冷水性 动物具有更强的耐热性,但耐受低温的能力却 低于冷水性动物[8]。例如,在分布纬度各异的各 种鳗鲡中, 广泛分布于欧洲(高纬度)水域的欧洲 鳗鲡(Anguilla anguilla)的耐高温能力最弱,但耐 低温的能力强;分布于印度尼西亚和菲律宾(低 纬度)热带水域的花鳗鲡(A. marmorata)耐高温能 力强但耐低温能力较弱;广泛分布于亚洲的日 本鳗鲡(A. japonica)和分布于美洲(中纬度地区)温 带水域的美洲鳗鲡(A. rostrata)为广温性种类,其 耐高温和低温的能力都较强^[10]。对于同一物种, 早期生活阶段对外界环境温度的变化通常最为 敏感,因此,相关耐热性研究的实验动物多选 择幼体,这样得到的实验结果更有生物学和生 态学意义,在温排水热效应评估方面也更有应 用价值。类似地,本研究中的各实验动物的耐 热性也表现出明显的种间差异: 日本蟳的耐热 性最强,其次为褐石斑鱼、褐菖鲉和口虾蛄, 褐篮子鱼最低。日本蟳是广温性种,广泛分布 于中国近海,具有高耐热性特征。口虾蛄与日 本蟳同样属于分布广泛的广温性甲壳动物,但 其耐热能力低于褐石斑鱼和褐菖鲉等暖水鱼 类。虽然生物的地理分布和适宜温度等是影响 其耐热性的重要生态因素,但其生理以及遗传 性质等生物因素的不同也可能是造成耐热性种 间差异的重要原因。

3.2 基础水温对水生动物热耐受能力的影响

水生动物对温度的耐受性与物种生活的环 境温度密切相关^[12, 23-24],因此,基础水温通常是 热耐受实验研究的重要胁迫因子之一。研究表明, 许多鱼类如鳑鲏(*Rhodeus ocellatus*) (15~25 °C)^[25]、 点篮子鱼(*S. guttatus*) (19~31 °C)^[12]和南方鲇(*Silurus meridionalis*) (10~30 °C)^[26]的CTM均随基础水温 的升高而升高^[27]。类似地,鳄雀鳝(*Atractosteus spatula*)的耐热性与基础水温(25~35 °C)呈线性关 系,基础水温每升高1 °C,其CTM升高0.44 °C^[28]; 对于斑点叉尾鲫(*Ictalurus punctatus*)、大口黑鲈 (*Micropterus salmoides*)、短吻鲟和真鰶(*Dorosoma petenense*),基础水温每升高1 °C,其CTM分别升 高0.40、0.32、0.52和0.60~0.67 °C^[21, 29-30]。高基础

水温可以增强动物在热胁迫下合成蛋白质的能 力,从而减轻高温胁迫中热休克蛋白受到的抑 制作用,使得生物的耐热性升高^[29]。类似地,本 研究中的5种实验动物在4个基础水温下的CTM 和24 h UILT 50均随基础水温的升高而升高。另一 方面,尽管实验动物在较高的基础水温下驯化 后会对相对高的温度产生适应,对高温的耐受 能力也随之加强,但当基础水温升高到一定温 度时,CTM和24hUILT50通常趋于稳定状态,不 再随基础水温的上升而升高。虽然5种实验动物 在基础水温为30.8 ℃(夏季)的耐热性最强,但是 到达CTM和24hUILT50时升温幅度却低于在其他 基础水温的升温幅度。核电厂温排水可导致排 水口附近局部水域升温4~10°C,在夏季高背景 水温下, 4~10°C的升温会使得某些生物到达其 临界温度,所以在评估温排水热影响效应时要 重点考虑夏季情景。

3.3 温升速率对热耐受能力的影响

温升速率是影响水生动物的热耐受能力的 另一个重要因素。温升速率对CTM的影响显著, 且具有种间差异性。例如,在28°C的基础水温 下,斑马鱼(Danio rerio)和孔雀花鳉(Poecilia reticulata)的CTM随温升速率(0.03、0.1、0.3、1和 3°C/min)的升高而升高^[31];而在24°C基础水温 下,汉氏棘胎鳚(Acanthemblemaria hancocki)的热 耐受能力在温升速率为1°C/h时最强,低于或高 于1°C/h时其热耐受能力均呈下降趋势^[11]。类似地, 在15和20°C基础水温下,大西洋鲑(Salmo salar)的热耐受能力在低温升速率下(<1°C/h)随温 升速率的增大而增强,在达到1~2°C/h后趋于 稳定^[32]。

即使对于同一物种,基础水温、实验物种的个体大小或年龄、发育阶段以及其他生理因素均会影响温升速率对其耐热性的作用^[18]。就基础水温而言,在较低基础水温(5.0~13.0°C)下,许氏平鲉(Sebastes schlegeli)和大泷六线鱼(Hexagrammos otakii)的CTM随温升速率的增大(0.5~ 15.0°C/h)总体呈下降趋势;而在较高基础水温 (17.0和26.0°C)下,其CTM随着温升速率的增大 (0.5~15.0°C/h)总体呈上升趋势^[33]。在低基础水 温条件下,若升温过快,生物难以适应温度的迅速变化,生命活动受到影响,易达到临界高 温致死状态,导致其CTM随温升速率的升高而 降低。本研究中的5种实验动物在4种基础水温下的热耐受能力总体均随着温升速率的增大而升高,这可能与黄茅海的周年背景水温(表层月平均水温为13.5~31.6°C,底层水温为14.2~28.4°C)较高有关。一般而言,在高背景水温下,温升速率的增大可能减少了实验物种暴露于致死温度的时间^[18];另一方面,温度的快速变化诱导生物体内热休克蛋白的产生^[34-35],使得物种的CTM升高;低温升速率可能由于实验动物暴露于较高温度的时间过长,造成生物的体内储能下降,导致其CTM降低^[32]。

由于温升速率对水生动物耐热性的影响受 多种因素制约,目前相关研究中对温升速率的 设置没有统一标准。据统计,在对600余个物种 的耐热性的研究中,采用的温升速率一般为1.0℃/ 3.5 d~10.0 °C/min^[35],其中在对80余种北美地区的鱼 类的耐热性研究中,温升速率为0.027~60°C/h^[36]。 温升速率过快可能导致实验动物的体温长期滞 后于实验水温,从而过高估计其热耐受温度^[35]。 如果温升速率过慢,实验动物在高水温下暴露 时间过长,需要更多的能量来抵御热胁迫和维 持机体功能,易达到自身的临界耐温状态,测 得的热耐受温度就会偏低[29]。因此,在热耐受性 实验中,不仅要从实验生态学上考虑温度的变 化梯度,还要充分考虑物种、基础水温以及自 然水体中温升速率变化的实际情况等,设置合 理的温升速率开展研究,以获取具有生态学意 义的生物学耐热性参数。

参考文献:

- Bamber R N. The influence of rising background temperature on the effects of marine thermal effluents[J]. Journal of Thermal Biology, 1995, 20(1-2): 105-110.
- [2] 刘永叶, 刘森林, 陈晓秋. 核电站温排水的热污染控制 对策[J]. 原子能科学技术, 2009, 43(S1): 191-196.
 Liu Y Y, Liu S L, Chen X Q. Control countermeasures about thermal pollution of thermal discharge from nuclear power plants[J]. Atomic Energy Science and Technology, 2009, 43(S1): 191-196(in Chinese).
- [3] August S M, Hicks B J. Water temperature and upstream migration of glass eels in New Zealand: implications of climate change[J]. Environmental Biology of Fishes, 2008, 81(2): 195-205.
- [4] 陈昆慈,朱新平,杜合军,等.温度和盐度对宝石鲈胚胎

发育的影响[J]. 中国水产科学, 2007, 14(6): 1032-1037. Chen K C, Zhu X P, Du H J, *et al.* Effects of temperature and salinity on the embryonic development of jade perch *Scortum barcoo*[J]. Journal of Fishery Sciences of China, 2007, 14(6): 1032-1037(in Chinese).

[5] 白海文,张颖,李雪,等. 温度对施氏鲟幼鱼摄食、生长和肠道消化酶活性的影响[J]. 中国水产科学, 2012, 19(5): 799-805.

Bai H W, Zhang Y, Li X, *et al.* Effects of water temperature on feeding, growth and activities of digestive enzymes of juvenile *Acipenser schrenckii*[J]. Journal of Fishery Sciences of China, 2012, 19(5): 799-805(in Chinese).

- [6] Selong J H, McMahon T E, Zale A V, et al. Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishes[J]. Transactions of the American Fisheries Society, 2001, 130(6): 1026-1037.
- [7] Cook A M, Duston J, Bradford R G. Thermal tolerance of a northern population of striped bass *Morone saxatilis*[J]. Journal of Fish Biology, 2006, 69(5): 1482-1490.
- [8] 蔡泽平,陈浩如,金启增,等. 热废水对大亚湾三种经济鱼类热效应的研究[J]. 热带海洋, 1999, 18(2): 11-19.
 Cai Z P, Chen H R, Jin Q Z, *et al.* Influence of thermal power effluent on three species of fishes in Daya Bay[J].
 Tropic Oceanology, 1999, 18(2): 11-19(in Chinese).
- [9] 廖一波, 陈全震, 曾江宁, 等. 我国4种重要海水经济鱼 类热忍受研究[J]. 海洋环境科学, 2007, 26(5): 458-460.
 Liao Y B, Chen Q Z, Zeng J N, *et al.* Study on thermal tolerance of four commercial important fishes[J]. Marine Environmental Science, 2007, 26(5): 458-460(in Chinese).
- [10] 吴宁,李文静,黎中宝,等. 5种鳗鲡幼鳗极限温度的耐受性初步研究[J].南方水产科学,2010,6(6):14-19.
 Wu N, Li W J, Li Z B, *et al.* Preliminary study on tolerance of elver of 5 *Anguilla* species to ultimate water temperature[J]. South China Fisheries Science, 2010, 6(6): 14-19(in Chinese).
- [11] Mora C, Maya M F. Effect of the rate of temperature increase of the dynamic method on the heat tolerance of fishes[J]. Journal of Thermal Biology, 2006, 31(4): 337-341.
- [12] 王妤, 宋志明, 刘鉴毅, 等. 点篮子鱼幼鱼的热耐受特征[J]. 海洋渔业, 2015, 37(3): 253-258.
 Wang Y, Song Z M, Liu J Y, *et al.* Thermal tolerance of

juvenile *Siganus guttatas*[J]. Marine Fisheries, 2015, 37(3): 253-258(in Chinese).

- [13] 蒋朝鹏, 徐兆礼, 陈佳杰, 等. 秦山核电温排水对鱼类 分布的影响[J]. 中国水产科学, 2016, 23(2): 478-488. Jiang C P, Xu Z L, Chen J J, *et al.* Effects of the thermal discharge from Qinshan Nuclear Plant on the distribution pattern of fish[J]. Journal of Fishery Sciences of China, 2016, 23(2): 478-488(in Chinese).
- [14] Hernández R M, Bückle R L F. Temperature tolerance polygon of *Poecilia sphenops* Valenciennes (Pisces: Poeciliidae)[J]. Journal of Thermal Biology, 2002, 27(1): 1-5.
- [15] 於凡,张永兴. 滨海核电站温排水对海洋生态系统影响的研究[J]. 辐射防护通讯, 2008, 28(1): 1-7.
 Yu F, Zhang Y X. The review on the effects of thermal effluent from nuclear plants on the marine ecosystem[J].
 Radiation Protection Bulletin, 2008, 28(1): 1-7(in Chinese).
- [16] Galbreath P F, Adams N D, Martin T H. Influence of heating rate on measurement of time to thermal maximum in trout[J]. Aquaculture, 2004, 241(1-4): 587-599.
- [17] Brett J R. Some principles in the thermal requirements of fishes[J]. The Quarterly Review of Biology, 1956, 31(2): 75-87.
- [18] Becker C D, Genoway R G. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish[J]. Environmental Biology of Fishes, 1979, 4(3): 245-256.
- [19] Brett J R. Temperature tolerance in young Pacific salmon, genus Oncorhynchus[J]. Journal of the Fisheries Research Board of Canada, 1952, 9(6): 265-323.
- [20] Vinagre C, Leal I, Mendonça V, *et al.* Effect of warming rate on the critical thermal maxima of crabs, shrimp and fish[J]. Journal of Thermal Biology, 2015, 47: 19-25.
- [21] Zhang Y Y, Kieffer J D. Critical thermal maximum (CTmax) and hematology of shortnose sturgeons (*Acipenser brevirostrum*) acclimated to three temperatures[J]. Canadian Journal of Zoology, 2014, 92(3): 215-221.
- [22] 陈全震,曾江宁,高爱根,等.鱼类热忍耐温度研究进展[J].水产学报,2004,28(5):562-567.
 Chen Q Z, Zeng J N, Gao A G, *et al.* Advances in study of temperature of thermal tolerance of fishes[J]. Journal of Fisheries of China, 2004, 28(5): 562-567(in Chinese).
- [23] Chung K S. Critical thermal maxima and acclimation

rate of the tropical guppy *Poecilla reticulata*[J]. Hydrobiologia, 2001, 462(1-3): 253-257.

- [24] Chatterjee N, Pal A K, Manush S M, et al. Thermal tolerance and oxygen consumption of *Labeo rohita* and *Cyprinus carpio* early fingerlings acclimated to three different temperatures[J]. Journal of Thermal Biology, 2004, 29(6): 265-270.
- [25] 付康康,曹振东,付世建.温度驯化对高体鳑鲏热耐受及低氧耐受能力的影响[J]. 生态学杂志, 2015, 34(6):
 1586-1590.

Fu K K, Cao Z D, Fu S J. Effects of acclimation temperature on thermal tolerance and hypoxia tolerance in *Rhodeus ocellatus*[J]. Chinese Journal of Ecology, 2015, 34(6): 1586-1590(in Chinese).

- [26] 王云松,曹振东,付世建,等.南方鲇幼鱼的热耐受特征[J]. 生态学杂志, 2008, 27(12): 2136-2140.
 Wang Y S, Cao Z D, Fu S J, *et al.* Thermal tolerance of juvenile *Silurus meridionalis* Chen[J]. Chinese Journal of Ecology, 2008, 27(12): 2136-2140(in Chinese).
- [27] Das T, Pal A K, Chakraborty S K, et al. Thermal tolerance and oxygen consumption of Indian major carps acclimated to four temperatures[J]. Journal of Thermal Biology, 2004, 29(3): 157-163.
- [28] Fernando A V, Lochmann S E, Haukenes A H. Critical thermal maxima of juvenile alligator gar (*Atractosteus spatula*, Lacépède, 1803) from three Mississippi - drainage populations acclimated to three temperatures[J]. Journal of Applied Ichthyology, 2016, 32(4): 701-705.
- [29] Currie R J, Bennett W A, Beitinger T L. Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures[J]. Environmental Biology of Fishes, 1998, 51(2): 187-200.
- [30] Monirian J, Sutphin Z, Myrick C. Effects of holding

temperature and handling stress on the upper thermal tolerance of threadfin shad *Dorosoma petenense*[J]. Journal of Fish Biology, 2010, 76(6): 1329-1342.

[31] 夏继刚,蔡瑞钰,吕潇,等.升温/降温速率和驯化模式 对斑马鱼及孔雀鱼热耐受性测定的影响[J]. 生态学杂 志, 2016, 35(8): 2170-2174.

Xia J G, Cai R Y, Lü X, *et al.* The effects of heating/cooling rate and acclimation mode on the determination of thermal tolerance of zebrafish (*Danio rerio*) and guppy (*Poecilia reticulata*)[J]. Chinese Journal of Ecology, 2016, 35(8): 2170-2174(in Chinese).

- [32] Elliott J M, Elliott J A. The effect of the rate of temperature increase on the critical thermal maximum for part of Atlantic salmon and brown trout[J]. Journal of Fish Biology, 1995, 47(5): 917-919.
- [33] 窦硕增,南鸥,曹亮,等.石岛湾四种常见鱼类的热耐受性比较研究[J].海洋科学,2017,41(9):56-64.
 Dou S Z, Nan O, Cao L, *et al.* A comparative study of the thermal tolerance of four common fish species in Shidao Bay, the Yellow Sea[J]. Marine Sciences, 2017, 41(9): 56-64(in Chinese).
- [34] Hutchison V H, Murphy K. Behavioral thermoregulation in the salamander *Necturus maculosus* after heat shock[J]. Comparative Biochemistry and Physiology Part A: Physiology, 1985, 82(2): 391-394.
- [35] Lutterschmidt W I, Hutchison V H. The critical thermal maximum: history and critique[J]. Canadian Journal of Zoology, 1997, 75(10): 1561-1574.
- [36] Beitinger T L, Bennett W A, McCauley R W. Temperature tolerances of north American freshwater fishes exposed to dynamic changes in temperature[J]. Environmental Biology of Fishes, 2000, 58(3): 237-275.

The thermal tolerance of five common marine species in Huangmao Sea, the South China Sea

CUI Wenting^{1,3}, SONG Junjie^{1,3}, TIAN Honglin^{1,3}, DOU Shuozeng^{1,2,3}, ZHAO Bo^{1,2}, CAO Liang^{1,2*}

(1. Key Laboratory of Marine Ecology and Environmental Sciences of Chinese Academy of Sciences,

Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;

2. Laboratory for Marine Ecology and Environmental Science,

Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;

3. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Using dynamic method and the static method, we studied the effects of acclimation temperature (14.0, 18.0, 24.0, 30.8 °C) and temperature-rising rates (0.5, 1.0, 2.0, 3.0, 4.0, 6.0, 9.0, 12.0, 15.0 °C/h) on the thermal tolerance of five common marine animals (*Siganus fuscessens, Sebastiscus marmoratus, Epinephelus bruneus, Oratosquilla oratoria* and *Charybdis japonica*) in Huangmao Sea, the South China Sea. The results showed that both acclimation temperature and temperature-rising rate significantly affected the critical thermal maximum (CTM) and the 24 h upper incipient lethal temperature (24 h UILT₅₀) of the experimental animals. The CTM of each experimental species was positively related to acclimation temperature. The patterns in which temperature-rising rate affected the thermal tolerance of the animals varied among species, depending on acclimation temperature. In the static experiments, 24 h UILT₅₀ of *S. fuscessens, S. marmoratus, E. bruneus, O. oratoria* and *C. japonica* increased from 28.1, 28.9, 30.3, 28.4, 36.3 °C to 34.6, 36.1, 36.6, 35.1, 38.2 °C with the increasing acclimation temperature (14.0 °C to 30.8 °C). In terms of thermal tolerance, the five experimental animals showed a ranking of *C. japonica*-*S. marmoratus*-*S. marmoratus*-*S. fuscessens*.

Key words: marine species; thermal tolerance; acclimation temperature; temperature-rising rate; critical thermal maximum (CTM); 24 h upper incipient lethal temperature (24 h UILT₅₀); Huangmao Sea

Corresponding author: CAO Liang. E-mail: caoliang@qdio.ac.cn

Funding projects: Joint Funds of the National Natural Science Foundation of China and Shandong Province (U1606404); National Science and Technology Major Project (2013ZX06002001); Aoshan Science and Technology Innovation Project (2015ASKJ02-04)

4期