煤炭加工与环保

活化半焦对胜利褐煤热解挥发分氮的催化重整

张雪莹, 王永刚, 秦中宇, 郑盼盼, 周玉健 (中国矿业大学(北京) 化学与环境工程学院, 北京 100083)

摘 要:为减少褐煤热解过程中有害氮产物(包括 HCN、NH₃和焦油-N)的释放,以生物质、褐煤、烟煤 和无烟煤为原料制备的半焦以及负载质量分数7%、10%、13%和15% Ca²⁺的烟煤半焦作为催化剂,在 两段流化床石英反应器中进行胜利褐煤热解挥发分氮的催化重整研究。结果表明:半焦有助于促进 焦油和 HCN 的二次反应,降低焦油-N 和 HCN 的产率,增加 N₂的产率。半焦中 Ca²⁺的加入,有利于 释放半焦催化剂中的 H 自由基,从而进一步催化焦油-N 的裂解。半焦催化剂中烟煤半焦的催化效 果最好,较佳的 Ca²⁺负载量为 13%。影响半焦催化重整活性的主要因素有半焦比表面积、表面含氧 官能团、碱金属和氢自由基。

关键词:褐煤热解;半焦;氮迁移;催化重整

中图分类号:TQ546 文献标志码:A 文章编号:0253-2336(2017)06-0207-07 Study on catalytic reforming of volatile-N from pyrolysis of

Shengli brown coal by activated chars

Zhang Xueying, Wang Yonggang, Qin Zhongyu, Zheng Panpan, Zhou Yujian

(School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China)

Abstract: In order to decrease the release of harmful nitrogen (including HCN, NH_3 and tar-N) during the pyrolysis of brown coal, taking chars that prepared with biomass, brown coal, bituminous coal and anthracite and chars with loading mass fraction 7%, 10%, 13% and 15% Ca²⁺ as catalysts, the catalytic reforming of volatile–N from pyrolysis of Shengli brown coal was studied in a two-stage fluidized-bed quartz reactor. The results showed that activated char apparently contributed to the secondary reaction of tar and HCN, thus reducing the production rate of tar–N and HCN as well as increasing the yield of N_2 .Ca²⁺ loaded in char was beneficial to release hydrogen radicals and further catalyze tar–N cracking. Overall, the char catalyst derived from bituminous coal had the better catalytic activity than the chars from other materials, whereas the loading level of Ca²⁺ on char should be controlled at around 13% to achieve the best performance in this study. The major factors that affected char activity were the specific surface area, the O–containing functional groups, alkali metals and hydrogen radicals.

Key words: brown coal pyrolysis; char; nitrogen transfer; catalytic reforming

0 引 言

煤热解挥发分中有害的含氮产物主要包括: NH₃、HCN 和焦油-N。工业中,NH₃所导致的铵盐结 晶会造成管路的磨蚀和阻塞,含氰废水会提高污水 处理的难度^[1-2],焦油中的氮会造成具有酸活性中 心的催化剂失活,油品颜色加深和安定性降低及大 气污染等问题^[3]。因此,研究煤中的氮在转化过程 中的迁移规律并设法将其尽可能地原位转化为无害 的氮气至关重要。半焦是热解过程的一种重要产

收稿日期:2017-01-20;责任编辑:代艳玲 DOI:10.13199/j. cnki. cst. 2017.06.034

基金项目:"十二五"国家科技支撑计划资助项目(2012BAA04B02)

作者简介:张雪莹(1992—),女,天津人,硕士研究生。Tel:15201312921,E-mail:zhangxueyingmaomao@163.com

引用格式:张雪莹,王永刚,秦中宇,等.活化半焦对胜利褐煤热解挥发分氮的催化重整[J].煤炭科学技术,2017,45(6):207-213.

Zhang Xueying, Wang Yonggang, Qin Zhongyu, *et al*. Study on catalytic reforming of volatile-N from pyrolysis of Shengli brown coal by activated chars[J]. Coal Science and Technology, 2017, 45(6):207-213.

物,具有多孔吸附性且表面富含高分散碱金属物质 和自由基(例如H自由基),能够催化一些特定的反 应。目前文献报道多为应用半焦作为催化剂或载体 对焦油的催化重整^[4-7]和对烟气中 NO 的催化还 原^[8]。也有学者研究了半焦对气体产物的催化作 用,常丽萍等^[9]应用流化床/固定床反应装置研究 在慢速升温煤热解过程中 NH₃和 HCN 的释放,试验 中发现挥发分与新生焦之间会进一步发生反应,促 进了含氢基团与新生焦中含氮结构的相互接触从而 影响挥发分氮的迁移。Zhang Shu 等^[10]应用流化床 反应装置进行煤半焦影响煤气化的研究,煤在水蒸 气和氩气气氛下快速被送入反应器中,煤经高温快 速气化,生成的半焦随挥发分上升附着在反应器的 上层筛板形成半焦层,挥发分经过半焦层受到半焦 的催化作用,增加了气体产物的产率并降低了焦油 产率。

以上研究表明,半焦有良好的催化重整活性,但 研究的不足之处在于:①半焦对焦油产率的催化重 整研究较多,但对焦油中氮的转化影响并不明确; ②新生焦对含氮气体产物的影响研究有迹可循,但 应用半焦作为催化剂对煤热解总体挥发分氮的影响 还不十分清楚,且半焦的催化机理和影响其活性的 因素有待进一步研究。因此,笔者采用气化半焦及 其负载 Ca²⁺的改性半焦作为催化剂,应用两段流化 床装置对褐煤热解过程中挥发分氮的迁移进行研 究,解析活性半焦对挥发分中氮迁移转化的影响,并 通过对反应前后半焦的性质分析总结影响半焦活性 的基本因素,以期为煤热解过程中氮的可控转化奠 定理论基础。

1 试 验

1.1 半焦(催化剂)的制备

将粒度为 61~98 μm 的褐煤(胜利)、生物质 (栎木天然锯末木屑)、烟煤(大同)、无烟煤(晋城) 4 种原料分别进行酸洗(HCl 与 HF 体积比为 1: 1),脱除矿物质备用。将原料置于两段石英反应器 (图 1)中,经水蒸气气化制得 4 种活化半焦,4 种活 化半焦分别标记为褐煤半焦(HM-c)、生物质半焦 (SWZ-c)、烟煤半焦(YM-c)、无烟煤半焦(WYMc)。采用离子交换法^[11]为烟煤半焦负载 Ca²⁺,Ca²⁺ 负载量(质量分数)分别为 7%、10%、13%和 15%。 负载后半焦中的 Ca²⁺含量用电感耦合等离子光谱发 生仪(ICP)检测,见表 1。

图1 半焦制备/氮催化重整试验两段石英反应器

Fig. 1 Schematic diagram of reactor for char

preparation and N catalytic reforming

表 1	负载 Ca ²⁺ 半焦的 ICP 检测结果
Table 1	ICP test results of loading Ca ²⁺ char

			8		
半焦	ҮМ-с	YM-c1	YM-c2	YM-c3	YM-c4
Ca ²⁺ 负载量/%	0	7	10	13	15
负载后 Ca ²⁺ 含量/%	0.02	2.29	4.41	8.79	11.16

1.2 热解试验

选取胜利褐煤作为试验原料(表2),经破碎、研

磨、筛分后,选取粒径 61~98 μm 的煤样备用。将处 理过的胜利褐煤原料标记为 RC。

2 胜利褐煤煤质分析	
------------	--

Table 2	Proximate	analysis	and	ultimate	analysis	of	Shengli	lignite
	1 I UAIIIIaw	anaryons	unu	ununuu	anaryono	UI.	onengn	inginiu

表

煤样		工业分	}析/%			元素	分析(干燥无力	灭基)/%	
	$M_{\rm ad}$	$A_{\rm d}$	V_{daf}	$FC_{\rm daf}$	w(C)	<i>w</i> (H)	w(0)	w(N)	<i>w</i> (S)
胜利褐煤	6.44	8.54	45.93	54.07	60.55	4.66	33.27	0.95	0.56
	111 J								

挥发分氮的催化重整试验在两段石英反应

器中进行,将1.5 g 真空干燥(60 ℃、24 h)过的

2017年第6期

煤样平铺于下层筛板,将1g半焦催化剂均匀铺 于上层筛板,煤样热解时挥发分通过上层催化剂 与之充分接触,增加挥发分和半焦催化剂的接触 时间,从而考察生物质半焦、褐煤半焦、烟煤半 焦、无烟煤半焦和负载 Ca²⁺的烟煤半焦对煤热解 挥发分中氮的催化重整作用。试验温度为 800 ℃,以高纯氩气为热解气氛,室温下气体流量为 1.5 L/min。

1.3 热解挥发分的收集及分析

1)产物收集。褐煤热解和产物收集装置及工 艺流程如图 2 所示。自主设计的焦油捕集装置结构 如图 3 所示,其整体形状是一个圆柱体,图 3 人口处 有一个小球分散器,用来急冷高温挥发分,在装置瓶 身的 1/3 处有一圆盘小孔分散器,借由宽阔的瓶身 将挥发分更充分地冷凝下来。瓶身内可按试验需求 放置一定量的经处理过的棉花,以彻底吸收焦油。 试验时,需将此焦油捕集装置埋没于存放有干冰和 冰的保温盒中。热解气中 NH₃和 HCN 的吸收在 1—4 号吸收瓶中进行,通过 0.02 mol/L H₂SO₄溶液 (1 号和 3 号瓶)对目标产物 NH⁴进行收集,0.1 mol/ L NaOH 溶液(2 号和 4 号瓶)对目标产物 CN⁻进行 收集。

2) 产物分析。焦油的定性分析:焦油中的氮元素 含量采用 Elementar Vario MICRO Cube 型元素分析仪 测定。吸收液 H_2SO_4 和 NaOH 中的 NH⁺₄和 CN⁻采用 TU-1901 型紫外可见分光光度计分析。煤气收集袋 中的 N₂含量采用 GC3420 型气相色谱仪进行分析(热 解产物的生成量皆以煤中氮为基准进行计算)。

1.4 半焦催化剂的性质分析

半焦催化剂反应前后的氮含量采用 Elementar Vario MICRO Cube 型元素分析仪进行分析。利用 Nicolet iS10 型红外光谱仪分析反应前后半焦催化 剂的化学组成及官能团的变化,样品采用 KBr 压片 法。利用 X 光电子能谱(XPS)测定催化剂中含氮 化合物的形态及含量。采用 BET 比表面积测试方 法分析半焦催化剂的比表面积,试验采用的吸附介 质为氮气,温度为 77 K,脱气温度为 120 ℃。

2 结果与讨论

2.1 活化半焦的催化重整作用

煤中的氮在热解过程中迁移转化到产物的气、 液、固三相中,试验应用半焦催化剂研究热解过程挥 发分氮的原位催化重整。热解半焦中氮的含量变化 不大,约为66%,其余34%为挥发分氮。焦油来源 于煤一次热解过程的挥发分,达到800℃以后,焦油 转变成主要组分为多环芳烃的较稳定结构,而焦油 中^[12]。

生物质半焦、褐煤半焦、烟煤半焦、无烟煤半焦 作为催化剂在褐煤热解过程中对焦油-N含量的影 响见表3。由表3可知,添加半焦催化剂与无添加 的原煤相比,焦油-N含量降低,究其原因有以下2 个方面。前期挥发分经过半焦床层时,半焦催化剂 含有丰富的孔结构,焦油分子被吸附在孔结构中,延 长了焦油在反应器中的停留时间,焦油发生二次反 应,焦油中一部分含氮芳环催化裂解重整为气体 (如NH₃、HCN和N₂)和水^[13];反应后期,催化剂上 附着的游离活性氢减少,发生部分积碳使焦油-N中 不能及时逸出的部分转化成结构更稳定的焦油-N 并被固定于半焦催化剂中^[14]。4种半焦中,生物质 半焦对降低焦油-N含量影响最为显著。

煤热解条件下,氨气来源于煤一次热裂解中不 稳定含氮结构、半焦较稳定含氮结构二次裂解、焦油 中含氮芳环以及 HCN 的二次反应。一般认为,HCN 主要来源于煤中不稳定的含氮结构和焦油中含氮杂 环结构的热分解,它的形成也与自由基有关^[15],尤 其是 H 自由基^[16]。添加 4 种不同半焦催化剂对煤 热解过程中 NH₃-N 和 HCN-N 产率的影响见表 3。 与原煤的热解相比加入半焦催化剂后,NH₃-N 和 HCN-N 产率均有所降低,且烟煤半焦的影响效果最

第45卷

为显著。半焦催化剂中含有的活性 H 自由基为 HCN 的二次反应提供了可能,使得 HCN 分解为 NH₃或直接与氢结合形成 N₂,因此造成 HCN 的产率 降低。NH₃产率降低的原因略为复杂,减少的一部 分是由于和 H 自由基的作用被转化为更稳定的 N₂, 还有一部分是由于流化床焦层的碳沉积,生成的 NH₃不能及时逸出,导致 NH₃与石英反应器和石英 砂的相互作用^[17],致使 NH₃热分解。

表 3	4种半焦催化剂对焦油-N含量,NH ₃ -N、HCN-N和N ₂ 产率的影响	
-----	--	--

Table 3	Effect of four char	catalysts on	contents of tar-N	and yields	of NH ₃ -N,	HCN-N and N ₂
---------	---------------------	--------------	-------------------	------------	------------------------	--------------------------

样品	RC	RC+SWZ-c	RC+HM-c	RC+YM-с	RC+WYM-c
焦油-N 含量/%	10.10	4.09	5.96	7.94	10.01
HCN-N 产率/%	1.89	1.14	0.79	1.59	1.30
NH3-N 产率/%	18.76	15.56	13.39	10.52	12.85
N2产率/%	0.28	0.36	2.06	2.92	2.40

4 种半焦催化剂的加入均对 N_2 产率有增加效 果,其中烟煤半焦对 N_2 增加的影响最为显著。煤热 解挥发分在上层筛板和半焦催化剂层的阻隔下不能 及时逸出,延长了挥发分在反应器内的反应时间,有 助于挥发分的二次裂解。 NH_3 、HCN 与 H 自由基作 用均有转化为 N_2 的可能, NH_3 和 H 自由基的反应只 需要键的断裂,而 HCN 和 H 自由基反应需要键的 断裂和重组。 N_2 产率的升高主要是由于 NH_3 的分 解,但不乏焦油-N 的裂解会直接转化为 N_2 ,或是 HCN 的转化。以添加 YM-c(烟煤半焦)试验结果 为例, N_2 产率约增加 3%,而 NH_3 产率约降低 9%,结 果表明, NH_3 除了转化为 N_2 ,还有转化为其他稳定 物质的可能,如会与 RCH_2 ·结合转化为稳定的化 合物。

在半焦催化剂参与下煤热解过程中氮迁移转化 的路径如图 4 所示,煤热解初期,煤中不稳定的含氮 结构会热裂解为小分子自由基,自由基间反应转化 为更稳定的半焦-N、焦油-N,NH₃和 HCN 等。随温 度升高,半焦催化剂促进 HCN 和焦油的二次反应, 在氢自由基参与下转化为 NH₃、N,及炭黑-N。

图 4 煤热解过程中氮的迁移转化路径

Fig. 4 Path of nitrogen transformation during coal pyrolysis process

2.2 Ca²⁺对活化半焦催化重整作用的影响

负载 Ca²⁺的烟煤半焦(YM-c1~c4)作为催化 剂在褐煤热解过程中对焦油-N 含量的影响见 表4。

表 4 不同 Ca²⁺负载量烟煤半焦催化剂对焦油-N 含量, NH₃-N、HCN-N 和 N₂产率的影响

Table 4	Effect of different content Ca ²	^t loading char catalysts on contents of tar–N and yield	Is of NH ₃ -N. HCN-N and N ₂

样品	RC+YM-c	RC+YM-c1	RC+YM-c2	RC+YM-c3	RC+YM-c4
焦油-N 含量/%	7.94	6.59	6.53	4.28	6.75
HCN-N 产率/%	1.59	1.23	1.16	1.01	1.09
NH3-N产率/%	10.52	14.97	15.92	13.57	11.61
N_2 产率/%	2.92	4.03	4.22	9.55	4.74

由表4可知,将烟煤半焦负载 Ca²⁺后,进一步降 低了焦油-N 的含量,分析其原因如下:反应前期,负 载的 Ca²⁺与更易结合的羟基相连^[18],从而释放出 更多的氢自由基参与焦油的催化裂解反应。反应后 期,随温度的升高,钙在半焦催化剂表面热解形成 CaO 或与含氧官能团结合成有机钙 R—O—Ca— O—R 微结构^[19]。CaO 覆盖在半焦表面时易形成 具有极性的活化位,降低焦油裂解的活化能^[20],有 机钙微结构会造成半焦晶格缺陷的增加,表面活性 位增加,促进焦油-N的转化。不同 Ca²⁺负载量的 4 种半焦催化剂中,YM-c3(Ca²⁺负载量为 13%的烟煤 半焦)效果最显著,Ca²⁺负载量的升高和焦油-N 降 低趋势并不成比例,Ca²⁺负载量过高会堵塞半焦的 孔隙,阻碍挥发分进入半焦催化剂的孔道,使催化剂 活性降低,催化性能降低,焦油-N含量不减反增。

不同 Ca²⁺负载量的烟煤半焦催化剂对煤热解过 程中 NH₃-N、HCN-N 和 N₂产率的影响见表 4。从 表 4 可知,烟煤半焦催化剂负载 Ca²⁺后 NH₃产率增 加,而 HCN 产率降低。负载 Ca²⁺在半焦催化剂上的 作用机理如前所述,Ca²⁺的存在增加了氢自由基的 获取概率,降低了焦油裂解的自由能,焦油中含氮芳 香环加氢开环易分解成小分子含氮气体,氢自由基 的存在催化 HCN 的二次反应,致使 NH₃产率增加, HCN 产率则降低。

为烟煤负载 Ca²⁺后,对氮气产率的增加有进一步的作用,其中 Ca²⁺负载量为 13%的烟煤半焦效果最好。对比添加 YM-c3 和添加 YM-c 的试验结果可以发现,NH₃产率约增加 3%,HCN 产率降幅约为 1%,焦油-N 含量降低 4%左右,而 N₂产率增加约 5%。由结果可知,催化剂负载 Ca²⁺后,活性氢增加,活性位增多,进一步催化焦油的热裂解,催化 HCN 和 NH₃的转化,且 Ca²⁺的引入降低焦油-N 向炭黑-N 的转化概率,从而导致 N₂产率升高。

2.3 半焦催化剂性质分析

试验所用的制备半焦催化剂的原料全部经过酸洗,除负载的钙之外几乎不含金属物质,因此导致半 焦活性的差别主要来源于半焦的结构差异。影响半 焦催化活性的因素主要有3个方面:比表面积、含氧 官能团和氢自由基。

生物质半焦、褐煤半焦、烟煤半焦、无烟煤半焦 BET比表面积分别为262.446、185.745、21.016、 18.908 m²/g,生物质半焦比表面积远大于其他3 种,可见生物质半焦结构比较疏松,吸附作用更强。 烟煤和无烟煤半焦的比表面积相差较小,但烟煤半 焦催化重整焦油氮的能力远大于无烟煤半焦。由于 制备半焦的原料全部经过酸洗,基本可以忽略金属 物质的催化作用,所以可以得出结论:当比表面积差 别较大时,比表面积越大,半焦催化效果往往越好; 当比表面积较小时,影响催化活性的主要因素除了 半焦的比表面积外,还有其他因素如氢自由基。

为了解半焦催化剂中氢自由基的作用,对反应 前后的半焦及负载 Ca²⁺半焦进行红外光谱分析,结 果如图 5 所示。

从图 5a 可以观察到,反应后的半焦催化剂羟基 (-OH)减少,碳氢键(C-H)减少,羰基(C=O)、 醚键(C-O-C)等并无显著变化。羟基和碳氢键 的减少说明与之相连的氢自由基易脱离形成活性

图 5 反应前后半焦及负载 Ca²⁺烟煤半焦催化剂的红外光谱分析 Fig. 5 Infrared spectra analysis of char and Ca²⁺

loading char catalysts before and after reaction

氢,挥发分经活性氢催化重整为更稳定的物质,这证 明了氢自由基参加了反应。无显著改变的羰基和醚 键则说明这3种类型的官能团在催化焦油热裂解的 反应中贡献不大。图5b为负载 Ca²⁺烟煤半焦反应 前后官能团的变化,与图5a不同的是羟基在反应后 增多,这是因为前期钙与羟基氧结合,后期脱离后氢 自由基重新与氧结合为羟基,因此检测到的羟基有 增多的趋势。反应前后半焦的含氧官能团的变化实 际上是反应氢自由基的变化,由此可知氢自由基在 半焦的催化重整中有着重要的作用。

反应前后半焦催化剂的元素分析如图 6 所示, 由图 6 可知,半焦催化剂在反应后 N 元素的含量增 大,同时 H/N 比减小,O/N 比减小。元素分析结果 说明,半焦催化剂内的含氧官能团和氢自由基参与 催化裂解反应并有一定的固氮作用,导致 H/N 比及 O/N 比皆减小,因此认为焦油-N 转化为炭黑-N 并 固定于催化剂中。

烟煤半焦和负载 13% Ca²⁺烟煤半焦的 XPS 谱 图及其拟合结果如图 7 所示。图 7 中各子峰的面积 占谱图中总峰面积的百分比见表 5。半焦表面氮主 要以吡啶型氮(N-6),吡咯型氮(N-5),季氮(N-Q)和氧化型氮(N-X)的形态存在,它们相对应的结 合能分别为 398.7±0.4、400.5±0.3、401.1±0.3、403.5 ±0.5 eV^[21]。由图 7 可知,吡咯型氮(N-5)是烟煤

半焦和负载 13% Ca²⁺烟煤半焦催化剂(反应前)中 的主要含氮形式,质量分数分别为46.27%和47.3%, 而吡啶型氮(N-6)和季氮(N-Q)质量分数分别为 22.47%, 31.26%和23.12%, 29.58%。可知, 负载 Ca²⁺后的半焦催化剂(反应前)中氮的形态及含量无 明显变化。纵观此2种催化剂在反应后的氮形态及 含量可知,无论是烟煤半焦还是负载 Ca²⁺的改性半 焦,在反应后半焦中含有的 N-5 和 N-6 都减少, N-O都增加,且出现了氮氧化物结构 N-X。褐煤热解 过程中,在挥发分中的含氮小分子如 NH,在高温下 分解为--NH,、--NH-等自由基,经过催化剂床层 在自由基和含氧官能团的作用下与催化剂中的含氮 官能团反应,将 N-5 和 N-6 转化为相对稳定的 N-Q,因此反应后催化剂中的 N-5 和 N-6 含量减少, 而 N-Q 含量增加。挥发分中的水分带入的氧及半 焦催化剂中的含氧官能团与含氮活性位结合出现了

N-X。反应后负载 Ca²⁺的催化剂和未负载的相比 较:N-X 质量分数分别为 15.78%, 15.66%, 相差不 大;N-6、N-5、N-Q 质量分数分别为 21.44%、 24.91%、37.99%和 16.68%、36.74%、30.80%。由以 上结果可知,为催化剂负载 Ca²⁺后, 促进了 N-6 的 转化并对 N-5 的转化有抑制作用。烟煤半焦和负 载 Ca²⁺烟煤半焦反应前后的谱峰面积分别为 1 003.55、1 577.93 和 1 117.04、1 631.66。峰面积大 小代表半焦中含氮官能团含量多少, 因此反应后的 半焦催化剂氮含量大于反应前氮含量, 这与半焦催 化剂的元素分析结果相一致。

---含氮物质 XPS 原始峰 ---含氮物质 XPS Peak 拟合峰

400 398 396

402

406 404 402 400 398 396 406 404 结合能/eV (a)反应前YM-c (b)

结合能/eV

(b) 反应后 YM-c

406 404 402 400 398 396 406 404 402 400 398 396 结合能/eV 结合能/eV (c)反应前YM-c3 (d)反应后YM-c3

Fig. 7 XPS spectrogram of nitrogen from YM-c and YM-c3 before and after reaction

表 5 YM-c和 YM-c3 反应前后半焦中各种氮化合物含量

Table 5 Relative content of nitrogen compounds of YM-c and YM-c3 before and after reaction

半焦 -		质量分	≻数/%		修面和
	N-6	N-5	N-Q	N-X	₩¥ 四 1/八
反应前 YM-c	22.47	46.27	31.26	0	1 003.55
反应后 YM-c	21.44	24.91	37.99	15.66	1 577.93
反应前 YM-c3	23.12	47.30	29.58	0	1 117.04
反应后 YM-c3	16.68	36.74	30.80	15.78	1 631.66

3 结 论

1)半焦催化剂的加入有助于降低焦油-N含量,NH₃和 HCN 产率,增加 N₂产率。半焦催化剂丰富的孔隙结构,比表面积、活性氢自由基和表面金属的存在是半焦具有催化重整作用的原因,且氢自由基影响挥发分氮的迁移转化路径。

2)烟煤半焦负载 Ca²⁺后,进一步降低了焦油-N 含量和 HCN 产率,增加了 N₂产率,同时增加了 NH₃ 产率。 3)反应后的半焦催化剂中,吡啶类氮(N-6)和 吡咯类氮(N-5)含量降低,季氮(N-Q)含量增加并 出现了氮氧化物结构(N-X)。催化剂中 N-5 和 N-6与热解挥发分中的含氮小分子转化为相对稳定的 N-Q。催化剂负载 Ca²⁺后,增强了催化剂中吡啶类 氮的转化作用并减弱了吡咯类氮的转化作用。

参考文献(References):

[1] 陈 忠,王辅臣,祝庆瑞,等.水煤浆气化生成的氨对生产系统
 的影响[J].煤化工,2009,37(2):43-45,51.

212

图7 YM-c和YM-c3反应前后半焦N的XPS谱图

Chen Zhong, Wang Fuchen, Zhu Qingrui, *et al.* Impact on the production aystem of NH₃ fenerated suring coal slurry gasification [J]. Coal Chemical Industry, 2009, 37(2):43-45, 51.

- [2] Zhong C, Shuai Y, Liang Q, et al. Distribution of HCN, NH₃, NO and N₂, in an entrained flow gasifier [J]. Chemical Engineering Journal, 2009, 148(2/3): 312-318.
- [3] 赵训志,隋芝宇,李 佳,等.碱性氮化物对油品的危害及脱除研究进展[J].工业催化,2009,17(S):60-62.
 Zhao Xunzhi,Sun Zhiyu,Li Jia,*et al.* Basic nitrogen harm on oils and removing research progress [J].Industrial Catalysis,2009,17(S):60-62.
- Zhang S, Asadullah M, Dong L, et al. An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: tar reforming using char as a catalyst or as a catalyst support [J]. Fuel, 2013, 112(3):646-653.
- [5] Li C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007, 86(12/13):1664-1683.
- [6] Min Z, Yimsiri P, Asadullah M, et al. Catalytic reforming of tar during gasification. Part II. char as a catalyst or as a catalyst support for tar reforming[J]. Fuel, 2011, 90(7):2545-2552.
- [7] 陈宗定,张 书,王芳杰. 活化前后半焦原味催化重整褐煤热 解焦油研究[J]. 煤炭科学技术,2014,42(11):105-110.
 Chen Zongding,Zhang Shu,Wang Fangjie,*et al.* Study on in-situ catalytic reforming of coal tar pyrolysis of brown coal by activated and inactivated char[J]. Coal Science and Technology,2014,42 (11): 105-110.
- [8] Ju Shangguan, Li Chunhu, Li Yanxu, et al. Study on removal of sulfur dioxide in flue gas using activated semi-coke [C].4th Korea-China Joint Workshop On Clean Enengy Technology Proceeding, Korea, 2002: 192-194.
- [9] 常丽萍,谢克昌,李春柱. 煤热解过程中 NH₃和 HCN 的释放 [C]//第九届全国化学工艺学术年会,重质油国家重点实验 室,北京,2005.
- [10] Zhang S, Min Z, Tay H L, et al. Effects of volatile-char interactions on the evolution of char structure during the gasification of Victorian brown coal in steam [J]. Fuel, 2011, 90 (4): 1529-1535.
- [11] Garcia B, Takarada T.Caion-exchanged coal char as H₂S sorbent
 [J].Fuel, 1999, 78(5):573-581.
- [12] 李 强,车得福,刘银河,等.煤焦油二次热解过程中 HCN 及

(上接第182页)

oleum Exploration and Development, 2012, 39(3):275-284.

- [26] Zeng Hongliu, Backus M M. Interpretive advantages of 90° phase wavelets:Part 1:modeling[J].Geophysics,2005,70(3):5-7.
- [27] Zeng Hongliu, Backus M M. Interpretive advantages of 90° phase wavelets: Part 2: seismic applications [J]. Geophysics, 2005, 70 (3):14-17.
- [28] 钱荣钧.对地震切片解释中一些问题的分析[J].石油地球物

NH₃释放特性研究[J].燃料化学学报,2005,33(2):161-165. Li Qiang, Che Defu, Liu Yinhe, *et al.* Investigation on HCN and NH₃ formation during secondary pyrolysis of coal tars[J]. Journal of Fuel Chemistry and Technology,2005,33(2):161-165.

- [13] Dogru M, Howarth C R, Akay G, et al. Gasification of hazelnut shells in a downdraft gasifier [J]. Energy, 2002, 27 (5):415-427.
- [14] Tan L L, Li C Z. Formation of NO_x, and SO_x, precursors during the pyrolysis of coal and biomass. Part I. effects of reactor configuration on the determined yields of HCN and NH₃, during pyrolysis[J]. Fuel, 2000, 79(15):1883–1889.
- [15] Kambara S, Takarada T, Yamampto Y, et al. Relation between functional forms of coal nitrogen and formation of NO_x precursors during rapid pyrolysis [J]. Energy & Fuel, 1996, 10: 1022 1027.
- [16] Li C Z, Li L T. Formation of NO_x and SO_x precursors during the pyrolysis of coal and biomass. Part III. further discussion on the formation of HCN and NH₃ during pyrolysis[J]. Fuel, 2000, 79: 1899–1906.
- [17] Li C Z, Nelson P F. Interactions of quartz, zircon sand and stainless steel with ammonia: implications for the measurement of ammonia at high temperatures [J]. Fuel & Energy Abstracts, 1996, 75:525-526.
- [18] 谢克昌,李文英.氧化钙在煤岩显微组分气化中的作用研究
 [J].太原理工大学学报,1993,24(S1):51-57.
 Xie Kechang,Li Wenying. The effect of CaO on CO₂-or H₂O(g) gasification of coal macerals[J]. Journal of Taiyuan University of Technology,1993,24(S1):51-57.
- [19] 李 娜,李 阳,班延鹏,等.胜利褐煤焦钙催化水蒸气气化反应中活性微结构分析[J].燃料化学学报,2016,44(11): 1297-1303.
 Li Na, Li Yang, Ban Yanpeng, et al. Analysis of active microstructrue devices the section of Shandi devented by a chine

ture during steam gasification of Shengli char catalyzed by calcium component[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11); 1297–1303.

- [20] Chang C S. Thermal reactions of freshly generated coal tar over calcium oxide[D].Boston; Massachusetts Institute of Technology, 1986.
- [21] Kapteigin F, Mouligin J A, Matzner S, et al. The development of nitrogen functionality in model chars during gasification in CO₂ and O₂[J].Carbon, 1999, 37(7):1143-1150.

理勘探,2007,42(4):482-487.

Qian Rongjun. Analysis of some issues in interpretation of seismic slices [J].Oil Geophysical Prospecting, 2007, 42(4):482-487.

 [29] 张军华,周振晓,谭明友,等.地震切片解释中的几个理论问题
 [J].石油地球物理勘探,2007,42(3):348-352,361.
 Zhang Junhua, Zhou Zhenxiao, Tan Mingyou, *et al*. Several theoretical issues about interpretation of seismic slices[J]. Oil Geophysical Prospecting, 2007,42(3):348-352,361.