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Abstract

The motivation for this work comes from the need to strengthen security of secure multi-party
protocols with the ability to guarantee that the participants provide their truthful inputs in the
computation. This is outside the traditional security models even in the presence of malicious
participants, but input manipulation can often lead to privacy and result correctness violations.
Thus, in this work we treat the problem of combining secure multi-party computation (SMC)
techniques based on secret sharing with signatures to enforce input correctness in the form of
certification. We modify two currently available signature schemes to achieve private verification
and efficiency of batch verification and show how to integrate them with two prominent SMC
protocols.

1 Introduction

Secure multi-party computation (SMC) deals with protecting confidentiality of private data during
computation in distributed or outsourced settings. This is a mature research field with a variety of
techniques for securely evaluating arbitrary functions by two or more computational parties who
are not permitted to have access to the inputs in the clear. Recent rapid advances in this field
significantly reduced SMC overhead, and we are witnessing growing deployment of SMC solutions
in practice [4, 3, 24].

A standard formulation of SMC defines the problem as evaluating some function f on k (≥ 1)
private inputs in1, . . ., ink from different sources by m (≥ 2) computational parties and producing
s (≥ 1) outputs which get revealed to the designated parties. The security objective is that no
information about the private data is revealed to any party beyond the agreed upon output (or
no information at all if a party receives no output). Standard security definitions model the par-
ticipants as semi-honest (who correctly follow the prescribed computation, but might analyze the
messages they receive in the attempt to learn unauthorized information) or malicious (who can
arbitrary deviate from the computation in the attempt to learn unauthorized information). Out-
put correctness guarantees must also hold in these respective models. These definitions, however,
provide no guarantees with respect to what inputs are entered into the computation. That is, a
malicious participant can modify its real input in the attempt to harm security or correctness. For
example, the participant can perturb his input in such a way that all output recipients receive
incorrect information, but he can compensate for the error and learn the correct result. Or, al-
ternatively, the participant can modify his input in such a way as to learn the maximum amount
of information about private data of others’, beyond what would be available if the computation
was run on truthful inputs ([2] gives an example of this attack in the context of computing with
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genomic data). These attacks are beyond the scope of standard SMC security models and cannot
be mitigated.

In this work, we study enforcement of correct (i.e., truthful) inputs being used in SMC via input
certification. That is, at the time of computation initiation, a party supplying input accompanies
it by a certificate and proves that the data input into the computation is identical to what has
been certified. It goes without saying that the certificate and its verification must maintain data
confidentiality. There are many types of data which is generated or can be verified by an authority
(such as the government, a medical facility, etc.) who can issue private certification to the user at
that time.

The problem of enforcing input correctness via certification has been studied for specific SMC
applications (e.g., anonymous credentials [8] or set operations [10, 15]) and, more recently, for
general functions [2, 23, 32]. However, all of the efforts we are aware of for the general case
have been for secure two-party computation based on garbled circuits (GCs). It is an interesting
problem to study because GC evaluation does not naturally combine with signature or certification
techniques, but we also believe that this problem deserves attention beyond GCs. For this reason,
in this work we treat the problem of input certification in the multi-party setting based on secret
sharing.

Because both secret sharing and signature schemes exhibit algebraic structure, the use of sig-
natures appears to be a natural choice in enabling input certification in secret sharing based SMC.
We note that, unlike many other conventional uses of signatures, this problem setting requires that
signature verification is performed privately, without revealing any information about the signed
message to the verifier. Another important consideration is that in many SMC applications the
size of the input is large (consider, e.g., genomic data). Because signatures are built using rather
expensive public-key techniques, which in the privacy-preserving setting often need to be combined
with zero-knowledge proofs, we are interested in improving signature verification time using batch
verification of multiple signatures.

In this work we study two types of signatures in the context of this problem: (i) CL-signatures
[6, 7] which were designed for anonymity applications and achieve both message privacy and unlink-
ability of multiples showings of the same signature and (ii) conventional ElGamal signatures [17].
After formulating the necessary security guarantees of private signature verification, we show that
signature showing in [7] can be simplified to meet our definition of message privacy and construct a
batch verifier for the resulting signature. In the case of ElGamal signatures, we first modify a prov-
ably secure ElGamal signature scheme from [28] to achieve private verification and consequently
construct a batch verifier for the resulting algorithm. Our batch verifiers use the small exponents
technique [1] to randomize multiple signatures to ensure that batch verification can succeed only
when all individual signatures are valid.

Another component of this work deals with combining the developed signature schemes with
SMC techniques secure in the malicious model. Toward this goal, we identify two prominent con-
structions of SMC based on secret sharing: (i) Damg̊ard-Nielsen solution [13] of low communication
complexity where the number of corrupted parties is below m/3 and (ii) SPDZ [14] with a very fast
online phase and tolerating any number of corruptions. We show how to modify their input phase
to use our signatures with an additional optimization of utilizing a single commitment to multiple
signatures instead of using individual commitments.

Finally, we implement our ElGamal-based signature scheme and SPDZ-based use of certified
inputs for a varying number of messages (SMC inputs) and show that they result in efficient
performance. The techniques are general enough to be applicable to other signature algorithms
(such as ElGamal-based DSA and others).
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2 Related Work

The only publications on certified inputs for SMC that we are aware of were mentioned above (i.e.,
techniques for specific applications [8, 10, 15] and techniques for GCs [2, 23, 32]). There is also
work on using game theory to incentivize rational players to enter their inputs truthfully (see, e.g.,
[21, 30] among others), but such techniques are complementary to this work and can be used for
inputs which cannot be feasibly certified.

The first systematic treatment of batch signature verification appeared in [1], although interest
in batch verification of signatures and other cryptographic operations in general goes further back.
More recent techniques for batch verification include [5, 18] among others, although none of them
target private verification (defined in section 3.1) which is central to this work.

A related concept is that of aggregate signatures. It allows a number of different signatures to
be aggregated into a single short signature to save bandwidth in resource-constrained environments.
Aggregate signature schemes were developed for CL signatures on which we build in this work [25].
There are, however, two central differences from our work: (i) aggregate signatures have strictly
weaker security guarantees than batch verification [5] because verification of an aggregate signature
can succeed even if the individual signatures included in it do not verify, and (ii) message privacy
was not considered. Guo et al. [20] use privacy features of CL signatures and construct an aggregate
CL signature, but the difference in the security guarantees still stands.

Privacy-preserving signature schemes have been studied in other contexts. Examples include
anonymous signatures [31], confidential signatures [16], and pseudorandom signatures [19]. There
is a connection between these concepts (especially, confidential signatures) and our notion of sig-
natures with privacy, but these prior concepts provide message confidentiality guarantees only for
high-entropy message spaces.

3 Preliminaries

3.1 Definitions

We next describe notation and definitions used in the rest of the paper. A function ε : N→ R≥0 is
negligible (denoted, negl) if for every positive polynomial p(·) there exists an integer N such that
for all κ > N ε(κ) < 1

p(κ) . The notation G = 〈g〉 means that g generates group G. We rely on
groups with pairings, which we review next.

Definition 1 (Bilinear map) A one-way function e : G×G→ G is a bilinear map if it is:
• (Efficient) G and G are groups of the same prime order q and there exists an efficient algo-

rithm for computing e.
• (Bilinear) For all g, h ∈ G and a, b ∈ Zq, e(ga, hb) = e(g, h)ab.
• (Non-degenerate) If g generates G, then e(g, g) generates G.

We assume that there is a trusted setup algorithm Setup that, on input a security parameter 1κ,
outputs the setup for group G = 〈g〉 of prime order q ∈ Θ(2κ) that has a bilinear map e, and e(g, g)
generates G of order q. That is, (q,G,G, g, e)← Setup(1κ).

Definition 2 (Signature scheme) A signature scheme consists of three algorithms:
• KeyGen is a probabilistic polynomial-time (PPT) algorithm that, on input a security parameter

1κ, generates a public-private key pair (pk, sk).
• Sign is a PPT algorithm that, on input a secret key sk and message m from the message

space, outputs signature σ.
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• Verify is a deterministic polynomial-time algorithm that, on input a public key pk, a message
m, and a signature σ, outputs a bit.

Security of a signature scheme is defined as difficulty of existential forgery under a chosen-message
attack by any PPT adversary, which we provide in Appendix A.

Batch verification [1] is a method for verifying a set of signatures on different messages signed
by the same or different signers, which is intended to be more efficient than verifying them inde-
pendently. In this work, we are primarily interested in batch verification of signatures produced by
the same signer. Batch verification is defined as:

Definition 3 (Batch verification of signatures [5]) Let Π = (KeyGen,Sign, Verify) be a signa-
ture scheme and κ be a security parameter. Let (pk1, sk1), . . . , (pkn, skn) be key pairs of n signers
P1, . . . , Pn produced by KeyGen(1κ) and PK = {pk1, . . . , pkn}. Let Batch be a PPT algorithm that
takes a set of tuples (pki,mi, σi) and outputs a bit. Then Batch is a batch verification algorithm if
the following holds:
• If pki ∈ PK and Verify(pki,mi, σi) = 1 for all i ∈ [1, n], then Batch((pk1,m1, σ1), . . . ,

(pkn,mn, σn)) = 1.
• If pki ∈ PK for all i ∈ [1, n] and Verify(pki,mi, σi) = 0 for at least one i ∈ [1, n], then
Batch((pk1,m1, σ1), . . ., (pkn,mn, σn)) = 1 with probability at most 2−κ.

In our constructions, we rely on zero-knowledge proofs of knowledge (ZKPKs) and commitments. A
ZKPK is a two-party protocol between a prover and a verifier, during which the prover convinces
the verifier that a certain statement is true without revealing anything else about the values used
in the statement. Informally, a ZKPK should satisfy the following properties: (i) completeness:
if the statement is true, then an honest verifier will be convinced of the statement’s validity after
interacting with an honest prover; (ii) soundness: if the statement is false, then no cheating prover
can convince an honest verifier that the statement is true, except with a negligible probability (in
the security parameter); and (iii) zero-knowledge: if the statement is true, then no cheating verifier
can learn anything other than the fact that the statement is true. We are interested in simple
statements over discrete logarithms such as those described, e.g., in [11, 9].

A commitment scheme allows one to commit to message m in such a way that the commitment
reveals no information about m and, given a commitment on m, it is not feasible to open it to
a value other than m. In other words, once the value m has been committed to, it cannot be
changed and kept private until the user reveals it. These properties are known as hiding and
binding. A commitment scheme is defined by Commit and Open algorithms, and we omit their
formal specification here. We only note that Commit is a randomized algorithm and for that reason
we use notation com(m, r) to denote a commitment to m using randomness r.

As mentioned before, in this work we are interested in signature schemes which allow for private
verification of signature validity without revealing any information about the signed message. We
refer to such schemes as signature schemes with privacy and refer to the corresponding verification
process as private verification to distinguish it from the conventional signature verification process.
This property implies that the signature itself reveals no information about the signed message. In
the rest of this subsection, we provide the necessary definitions for signature schemes with privacy.
We start by re-defining the traditional formulation of a signature scheme as follows:

Definition 4 (Signature scheme with privacy) A signature scheme with privacy consists of
the following polynomial-time algorithms:
• KeyGen is a PPT algorithm that, on input a security parameter 1κ, generates a public-private

key pair (pk, sk).
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• Sign is a PPT algorithm that, on input a secret key sk and message m from the message
space, outputs signature σ and optional auxiliary data xσ.
• PrivVerify is a possibly interactive algorithm, in which the prover and the verifier hold a public

key pk, the prover has access to m and (σ, xσ) output by Sign, supplies a message encoding
xm and a (possibly modified) signature σ̃ to the verifier, and the verifier outputs a bit.

With this definition, we allow for two possibilities: either xσ produced during signing can be used
to form xm used during verification, or xσ is empty and anyone with access to σ and m can compute
a suitable (possibly randomized) xm for signature verification.

To ensure unforgeability, PrivVerify must verify signature σ̃ similar to the way Verify would and
must enforce that the prover knows the message m (encoded in xm) to which the σ̃ corresponds.
Because in this work xm always takes the form of a commitment to m, com(m, r), we explicitly
incorporate this in our security definition.

The security (unforgeability) experiment of a signature with privacy is similar to the conven-
tional definition (see ForgeSig in Appendix A) with two conceptual differences: (i) After producing
the challenge pair (σ̃∗, xm∗), the adversary A is required to prove in zero-knowledge that xm∗ cor-
responds to a message, a signature on which has not been queried before. (ii) The signature forging
experiment now invokes modified verification algorithm PrivVerify instead of Verify. The signature
is verified against a committed value xm∗ = com(m∗, r), but the prover is also required to prove
the knowledge of message m∗ itself encoded in the commitment. Thus, we obtain the following:

Experiment ForgePrivSigA,Π(κ):

1. The challenger creates a key pair (pk, sk)← Gen(1κ) and gives pk to A.
2. A has oracle access to Signsk(·). For each message m that A queries the oracle, m is stored

in list Q and A learns (σ, xσ) = Signsk(m).
3. The challenger and A engage in PrivVerify, as part of which A reveals the challenge pair

(xm∗ , σ̃
∗). A proves in ZK that it knows the opening of the commitment xm∗ = com(m∗, r)

and that m∗ 6∈ Q.
4. Output 1 if PrivVerify returns 1 and all other checks succeed; otherwise, output 0.

To model private verification, we define the following message indistinguishability experiment
for a signature scheme with privacy Π = (KeyGen, Sign,PrivVerify):

Experiment MesIndA,Π(κ):

1. The challenger creates a key pair (pk, sk)← KeyGen(1κ) and gives pk to A.
2. A has oracle access to Signsk(·) and learns the algorithm’s output for messages of its choice.
A eventually outputs a pair (m0,m1).

3. The challenger draws a random bit b ∈ {0, 1}. Upon A’s request, it executes (σb, xσb) ←
Signsk(mb). It computes xmb and returns (σ̃b, xmb) where σ̃b is derived from σb. If xmb and/or

σ̃b are probabilistic, A can request multiple encodings (σ̃
(i)
b , x

(j)
mb) for the same signature and

i, j ∈ N. These signature verification queries are repeated the desired number of times.
4. A eventually outputs a bit b′. The experiment outputs 1 if b = b′, and 0 otherwise.

Definition 5 (Private verification) A signature scheme Π = (KeyGen, Sign, PrivVerify) is said
to achieve private verification if for all PPT adversaries A there is a negligible function negl such
that Pr[MesIndA,Π(κ) = 1] ≤ 1

2 + negl(κ).

On the relationship of private verification and proving possession of a signature in zero-knowledge.
Prior work on using signatures in privacy-preserving contexts [6, 7] allows for proving possession
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of a signature in ZK. Their definition implies that no information about the signed message is
revealed and two instances of proving knowledge of a signature cannot be linked to each other. Our
definition of private verification is weaker in the sense that we do not attempt to hide whether the
same or different signature is verified at two different times, but fully protect the signed data itself.
Unlinkability of signature showings is generally not needed in our application, where a user can use
its data (e.g., DNA data) in multiple computations and does not need to hide the fact that the
same data was used (which can be determined from the computation itself). Thus, we only protect
information about the signed values and this difference allows for faster signature verification while
still maintaining the necessary level of security.

When we consequently discuss batch verification of signatures with privacy, we modify the
interface of Batch to match that of PrivVerify.

3.2 Signature and Commitment Schemes

In this work, we build on Camenisch-Lysyanskaya signature Scheme A from [7] (CL Scheme A for
short), defined as follows:

Key generation: On input 1κ, execute (q,G,G, g, e)← Setup(1κ), choose random x, y ∈ Zq and
compute X = gx, Y = gy. Set sk = (x, y) and pk = (q,G,G, g, e,X, Y ).

Signing: On input message m ∈ Zq, secret key sk = (x, y) and public key pk = (q,G,G, g, e,X, Y ),
choose random a ∈ G and output σ = (a, b, c) = (a, ay, ax+mxy).

Verification: On input message m, pk = (q,G,G, g, e,X, Y ), and signature σ = (a, b, c), check
whether e(a, Y ) = e(g, b) and e(X, a) · e(X, b)m = e(g, c). If both equalities hold, output 1;
otherwise, output 0.

Proof of signature: The prover and verifier have pk = (q,G,G, g, e, X,Y ). The prover also has
m ∈ Zq and the corresponding signature σ = (a, b, c) = (a, ay, ax+mxy).

1. The prover chooses random r′, r′′ ∈ Zq, computes blinded signature σ̃ = (ar
′′
, br
′′
, cr
′′r′) =

(ã, ãy, (ãx+mxy)r
′
) = (ã, b̃, ĉ), and sends it to the verifier.

2. Let vx = e(X, ã), vxy = e(X, b̃), and vs = e(g, ĉ). The prover and verifier engage in the
following ZKPK: PK{(µ, ρ) : v−1

x = vµxyv
ρ
s}.

3. The verifier accepts if it accepts the proof above and e(ã, Y ) = e(g, b̃).

Unforgeability of CL Scheme A is shown under the LRSW assumption [26], while demonstrating
the zero-knowledge property of proving possession of a signature uses no additional assumptions
other than hardness of discrete logarithm.

We also build on ElGamal signature scheme [17]. Because the original construction allows for
existential forgeries, we use its provably secure variant by Pointcheval and Stern [29, 28]. The setup
assumes an α-hard prime number p for some fixed α, defined as having p−1 = qR where q is prime
and R ≤ |p|α. This is necessary for the difficulty of discrete logarithm and is more general than
requiring the use of prime order q. This signature scheme uses a hash function H and is shown to
be unforgeable in the random oracle model (i.e., H is modeled as a random oracle).

Key generation: On input a security parameter 1κ, choose a large α-hard prime p and a generator
g of Z∗p. Then choose random x ∈ Zp−1 and compute y = gx mod p. Set sk = x and
pk = (p, g, y).
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Signing: On input message m, secret key sk = x and public key pk = (p, g, y), choose random
k ∈ Z∗p−1, compute t = gk mod p and s ≡ (H(m||t) − xt)k−1 (mod p − 1), where || denotes
concatenation, then output σ = (t, s).

Verification: On input message m, public key pk = (p, g, y), and signature σ = (t, s), check
whether 1 < t < p and gH(m,t) ≡ ytts (mod p). If both conditions hold, output 1; otherwise,
output 0.

Lastly, we also utilize well-known Pedersen commitment scheme [27] based on discrete logarithm.
The setup consists of a group G of prime order q and two generators g and h. To commit to message
m ∈ Zq, we choose random r ∈ Zq and set com(m, r) = gmhr. To open the commitment, the
user reveals r. This commitment scheme is information-theoretically hiding and computationally
binding (when the discrete logarithm of h to the base g is not known to the user) under the discrete
logarithm assumption.

4 Constructions based on CL Signatures

In this section, we discuss constructions based on CL signatures. We start by demonstrating that
CL signatures with protocols satisfy our notion of signatures with privacy and discuss the cost of
verifying multiple signatures using that construction. We consequently proceed with simplifying
CL Scheme A’s verification and construct the corresponding batch verifier. The next section treats
ElGamal signatures.

4.1 CL Scheme A

Recall that a signature scheme with privacy is defined as Π = (KeyGen,Sign,PrivVerify). To use
CL Scheme A in our context, we leave KeyGen and Sign unmodified, except that KeyGen ad-
ditionally computes h = gu for a random u ∈ Zq and stores it in the public key, i.e., pk =
(q,G,G, g, h, e,X, Y ). PrivVerify is realized as follows:

PrivVerify: The prover holds signature σ = (a, b, c) on private message m ∈ Zq and both parties
hold pk. The prover computes xm = com(m, r) = gmhr using random r ∈ Zq and sends xm to
the verifier. The remaining steps are the same as in the proof of signature in Scheme A above,
except that the ZKPK in step 2 is modified to: PK{(µ, ρ, γ) : xm = gµhγ ∧ v−1

x = vµxyv
ρ
s}.

Note that the signing algorithm is not modified and in the verification protocol we only extend the
ZKPK statement. Because the original proof of signature protocol was shown to be proof of knowl-
edge and the signature was shown to be unforgeable, this scheme satisfied signature unforgeability.
We also achieve the private verification property:

Theorem 1 CL Scheme A above is a signature scheme with privacy.

Proof The original proof of signature protocol in [7] was shown to be zero-knowledge, meaning that
no information about the original signature σ or the corresponding message m is revealed. We only
modify the ZKPK statement to prove well-formedness of the commitment com(m, r) (i.e., the fact
that the prover knows m), which also reveals no information about m. When PrivVerify is executed
multiple times using the same original signature σ, the verifier learn no additional information. �

To facilitate close comparison of different algorithms, we spell out the computation used in the
ZKPK of PrivVerify above. This will allow us to determine the exact number of operations (such as
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modulo exponentiations and pairing function evaluations). In this ZKPK, the prover first chooses
random v1, v2, v3 ∈ Zq, computes T1 = gv1hv3 , T2 = vv1xyv

v2
s , and sends T1, T2 to the verifier. The

verifier chooses a challenge e ∈ Zq at random and sends it to the prover. The prover responds by
sending r1 = v1 + em mod q, r2 = v2 + er′ mod q, and r3 = v3 + er mod q. Finally, the verifier
accepts if gr1hr3 = T1x

e
m and vr1xyv

r2
s = T2v

−e
x .

When certified inputs are used in SMC, we need to evaluate the time of signature verification
and integration into an SMC protocol. Thus, we consider signature issuance as a one-time cost
and concentrate on verification. Then to use this scheme with secure computation, the cost of
(independent) private verification of n signatures is 3n modulo exponentiations (mod exp) for
signature randomization, 2n mod exp for creating commitments (n of which are for messages and
are thus short), and 10n mod exp and 5n pairings for proving the knowledge of signatures. This
gives us 15n mod exp (n of which are short) and 5n pairings and serves as the baseline for our
comparisons.

4.2 Modified CL Scheme A

We next introduce a simplification to CL Scheme A of the previous subsection to allow for more
efficient private verification in the context of SMC. To construct a signature scheme with privacy
Π = (KeyGen,Sign,PrivVerify), we retain KeyGen and Sign algorithms of the previous subsection
(i.e., the public key is augmented with h), but modify the verification algorithm PrivVerify as follows:

PrivVerify: The prover has private message m ∈ Zq and the corresponding signature σ = (a, b, c) =
(a, ay, ax+mxy); both parties hold pk = (q,G,G, g, h, e,X, Y ).

1. The prover forms a commitment to m as xm = com(m, r) = gmhr using randomly chosen
r ∈ Zq and sends xm to the verifier.

2. The prover chooses random r′ ∈ Zq, computes randomized signature σ̃ := (a, b, cr
′
) =

(a, b, c̃), and communicates it to the verifier.

3. Let vx = e(X, a), vxy = e(X, b), and vs = e(g, c̃). The prover and verifier execute
ZKPK: PK{(µ, ρ, γ) : xm = gµhγ ∧ v−1

x = vµxyv
ρ
s}.

4. If the verifier accepts the proof in step 2 and e(a, Y ) = e(g, b), output 1; otherwise,
output 0.

In this verification, part of signature randomization is removed, which means that the verifier will
be able to link two showings of the same signature together. This change, however, does not affect
the unforgeability property of the scheme. The privacy property can be stated as follows:

Theorem 2 Modified CL Scheme A above is a signature scheme with privacy.

Proof Let A be a PPT adversary attacking our modified CL Scheme A. Recall that A has
the ability to query the signing oracle and obtain signature on messages of its choice. Once

A submits the challenge (m0,m1), it will be given pairs (σ̃
(i)
b , x

(j)
mb), where b is a random bit,

σ̃
(i)
b = (a, ay, ar

′
i(x+mbxy)) = (a, b, c̃(i)) for random r′i ∈ Zq, and x

(j)
mb = gmbhrj for random rj ∈ Zq,

for any combination of i and j and the number of queries polynomial in κ. In other words, A has
access to a signature with different randomizations (using r′is) and different commitments to mb

(using rjs for randomness).
Before we proceed with further analysis, note that the ZKPK in PrivVerify is zero-knowledge and

thus does not reveal information about mb to A. Furthermore, other signatures on m0 and m1 that
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A can obtain using its access to the signing oracle do not contribute additional information (and use
unrelated randomness) and thus do not help in answering the challenge. It thus remains to analyze

c̃(i) and x
(j)
mb values. Now note that each c̃(i) and x

(j)
mb are random elements in G because r′i, rj are

chosen uniformly and independently at random. This means that if we modify A’s view to replace

mb in c̃(i)s and x
(j)
mbs with a random value, this modified view will be identically distributed to that

of the original A’s view. In more detail, suppose that we modify the signature scheme to use a
random value z instead of the actual message and the commitment is formed consistently to use the
same z as well. Let call the resulting scheme Π′. Clearly, we have that Pr[MesIndA,Π′(κ) = 1] = 1

2 .
Also, because the views of A are identical in the security experiments for Π and Π′, we obtain
that |Pr[MesIndA,Π′(κ) = 1] − Pr[MesIndA,Π(κ) = 1]| = 0. This means that A cannot learn any
information about mb during verification in Π and the security property follows. �

When we use this scheme for secure computation, we reduce the randomization cost by 2n mod
exp. Thus the cost of private verification of n signatures is 13n mod exp (n of which are short) and
5n pairings.

4.3 Batch Verification of Modified CL Scheme A

The next step is to design batch verification for verifying n signatures. Because for our application
we are primarily interested in verifying multiple signatures issued by the same signer (e.g., infor-
mation about one’s genome represented as a large number of individual values), we present batch
verification of signatures issued using the same key. We use a version of the small exponent test [1]
that instructs the verifier to choose security parameter lb such that the probability of accepting a
batch that contains an invalid signature is at most 2−lb (e.g., lb is set to 60 or 80 in prior work).

Batch: The prover holds signatures σi = (ai, bi, ci) on messages mi ∈ Zq for i = 1, . . . , n, and both
parties hold pk = (q,G,G, g, h, e,X, Y ).

1. The prover forms commitments xmi = com(mi, ri) = gmihri using randomly chosen
ri ∈ Zq for i = 1, . . ., n and sends them to the verifier.

2. The prover chooses random r′i ∈ Zq, computes blinded signatures σ̃i = (ai, bi, c
r′i
i ) =

(ai, bi, c̃i) for i = 1, . . . , n, and sends them to the verifier.

3. The verifier chooses and sends random δ1, . . . , δn ∈ {0, 1}lb to the prover.

4. The parties compute v̂x = e(X,
∏n
i=1 a

δi
i ), v̂xyi = e(X, bδii ) and v̂si = e(g, c̃i

δi) for
i = 1, . . ., n, and engage in the ZKPK: PK{(µ1, . . . , µn, ρ1, . . . , ρn, γ1, . . . , γn) : v̂−1

x =∏n
i=1 v̂µixyi v̂

ρi
si ∧ xm1 = gµ1hγ1 ∧ · · · ∧ xmn = gµnhγn}.

5. If this proof passes and e(
∏n
i=1 a

δi
i , Y ) = e(g,

∏n
i=1 b

δi
i ), the verifier outputs 1; otherwise,

the verifier outputs 0.

Theorem 3 Batch above is a batch verifier for Modified CL Scheme A.

Proof First, we show that success of PrivVerify on (pk,mi, σi) for all i ∈ [1, n] implies that Batch
also outputs 1 on pk, (m1, σ1), . . ., (mn, σn). When all PrivVerify output 1, for each i = 1, . . ., n
v−1
x = vmixy vris , which is expanded as e(X, ai)

−1 = e(X, bi)
mi · e(g, c̃i)ri . Then e(X, aδii )−1 =

e(X, bδii )mi · e(g, c̃iδi)ri for all i and consequently
n∏
i=1

e(X, aδii )−1 =
n∏
i=1

e(X, bδii )mie(g, c̃i
δi)ri . Be-

cause
n∏
i=1

e(X, aδii ) = e(X,
n∏
i=1

aδii ), we obtain equivalence with v̂−1
x =

n∏
i=1

v̂mixyi v̂
ri
si .
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To show the other direction, assume that Batch accepts. We know that c̃i, ai, bi ∈ G, thus
c̃i = gγi , ai = gsi , bi = gti for some γi, ai, bi ∈ Zq. Then

v̂−1
x =

n∏
i=1

v̂mixyi v̂
ri
si =

n∏
i=1

e(X, bδii )mi · e(g, c̃iδi)ri =
n∏
i=1

e(X, gtiδi)mi · e(g, gγiδi)ri

=
n∏
i=1

e(g, g)xtiδimi · e(g, g)γiδiri =
n∏
i=1

e(g, g)δi(xtimi+γiri)

Because v̂−1
x = e(X,

n∏
i=1

aδii )−1 = e(gx,
n∏
i=1

gsiδi)−1 =
n∏
i=1

e(g, g)−xsiδi , e(g, g)−x
∑
i siδi = e(g, g)

∑
i δi(xtimi+γiri)

and consequently
∑

i xsiδi +
∑

i δi(xtimi + γiri) ≡ 0 (mod q). Let us set βi = x(si + timi) + γiri,
then ∑n

i=1
δiβi ≡ 0 (mod q) (1)

Now suppose that Batch returned 1, while for at least one i PrivVerify returns 0 on the corresponding
input (pk,mi, σi). Without loss of generality, let i = 1. This means that e(X, a1)−1 6= e(X, b1)m1 ·
e(g, c̃1)r1 and consequently β1 = x(s1 + t1m1) + γ1r1 6= 0. Because G and G are cyclic groups of
prime order q, β1 has an inverse α1 such that β1α1 ≡ 1 (mod q).

We re-write equation (1) as δ1β1 +
∑n

i=2 δiβi ≡ 0 (mod q), and substitute β1 with α−1
1 to obtain

δ1α
−1
1 +

∑n
i=2 δiβi ≡ 0 (mod q). This gives us

δ1 ≡ −α1

∑n

i=2
δiβi (mod q) (2)

Let E be an event such that PrivVerify(pk,m1, σ1) = 0, but Batch(pk, (m1, σ1), . . ., (mn, σn)) = 1.
Also, let vector 4 = (δ2, . . . , δn) and |4| denote the number of possible values of 4. By equation
(2), when 4 is fixed, there exists only one value of δ1 that results in event E happening. In
other words, for a fixed 4 the probability of E given a randomly chosen δ1 is Pr[E |4′] = 2−lb .
Thus, we can bound the probability of E for randomly chosen δ1 by summing over all possible

choices of 4, i.e., Pr[E] ≤
∑|4|

i=1(Pr[E |4] · Pr[4]). We obtain Pr[E] ≤
∑2lb(n−1)

i=1 (2−lb · 2−lb(n−1)) =∑2lb(n−1)

i=1 (2−lbn) = 2−lb . �

As before, we spell out the ZKPK computation in the Batch protocol: The prover chooses

random vi, v
′
i, v
′′
i ∈ Zq and computes Ti = gvihv

′′
i for i = [1, n] as well as T =

∏n
i=1

(
vvixyiv

v′i
si

)
,

and sends Tis and T to the verifier. After receiving challenge e ∈ Zq from the verifier, the prover
responds with ui = vi + emi mod q, u′i = v′i + er′i mod q, and u′′i = v′′i + eri mod q for all i. The

verifier accepts if guihu
′′
i = Tix

e
mi for i = 1, . . . , n and

∏n
i=1

(
vuixyiv

u′i
si

)
= Tv−ex .

The cost of using this construction for n certified inputs in SMC is n mod exp for signature
randomization, 2n mod exp for creating commitments (n of which are short), 12n+ 1 mod exp (3n
of which are short) and 2n+ 3 pairings for the ZKPK. This gives us 15n+ 1 mod exp (4n of which
are short) and 2n + 3 pairings and significantly reduces the number of pairing operations, which
we consider to be the costliest operation, compared to private verification of individual messages.

The way inputs are entered in the SMC constructions considered in Section 6, a single commit-
ment to all inputs of a participant is permissible. Thus, instead of using separate commitments for
each mi, we could form a single commitment to n messages com(m1, . . . ,mn, r) = gm1

1 · · · gmnn hr

and modify the ZKPK to use it instead of the individual commitments. This reduces the cost of
forming commitments to n short and one regular mod exp, and the cost of ZKPK is reduced by
3n− 3 mod exp (i.e., only one v′′ needs to be formed and we compute only one Ti instead of n of
them). This gives us the total of 11n+ 5 mod exp (4n of which are short) and 2n+ 3 pairings.
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5 Construction based on ElGamal Signature

In this section, we show how to modify (provably secure) ElGamal signature scheme to achieve
private verification and consequently provide a batch verifier for the resulting construction.

5.1 Modified ElGamal Scheme

Our starting point was provably secure ElGamal [28] described in section 3.2. To enable private
verification, the idea is to use signatures on commitments to messages instead of on messages them-
selves. We also modify the setup to work in a group of prime order q, i.e., a subgroup of Z∗p, instead
of entire Z∗p. This simplifies the design and opens up additional possibilities, without compromis-
ing security guarantees. In particular, the small exponent test used for batch verification is not
applicable to groups of non-prime order [1]. Our signature scheme Π = (KeyGen, Sign,PrivVerify) is
given as:

KeyGen: On input a security parameter 1κ, choose a groupG of large prime order q and its generator
g. Then choose random x, u ∈ Zq and compute y = gx and h = gu. Set sk = x, pk =
(q,G, g, y, h).

Sign: On input message m, secret key sk = x and public key pk = (q,G, g, y, h), choose random
k, r ∈ Zq and compute t = gk, xm = com(m, r) = gmhr, and s ≡ (H(xm||t)−xt)k−1 (mod q).
The algorithm outputs σ = (t, s) and xσ = r. The recipient computes com(m,xσ) and verifies
the signature on com(m,xσ).

PrivVerify: The prover has private m and xσ, the corresponding signature σ = (t, s) on xm, where
xm = gmhxσ , and both parties hold pk. The prover gives the verifier σ and xm and they
engage in the following ZKPK: PK{(µ, γ) : xm = gµhγ}. If this proof passes and the equality
gH(xm||t) = ytts holds, the verifier outputs 1; otherwise, the verifier outputs 0.

Note that in this scheme the signer chooses g, h and thus will be able to open a commitment
com(m, r) to a message different from m (but the users will not be able to do so). If this poses a
security risk, h will need to be produced by an independent party or parties so that the signer does
not know the discrete logarithm of h to the base g.

This signature scheme remains unforgeable, and we prove it using the standard definition (Defi-
nition 6) with ForgePrivSig experiment that accommodates privacy as described in section 3.1. The
intuition is that the prover now has a signature on a commitment, but has to demonstrate the
knowledge of the commitment opening, i.e., the message itself, and the use of groups of prime order
only simplifies the analysis in [28]. We state unforgeability and privacy properties next.

Theorem 4 Modified ElGamal signature scheme is existentially unforgeable against an adaptive
chosen-message attack in a random oracle model.

Proof (Sketch) The ElGamal signature scheme on which we build [28, 29] was shown to be secure
in the random oracle model assuming α-hard prime moduli. This assumption is satisfied by groups
of prime order which our modification uses.

The proof in [29] proceeds in two steps: First, security against a no-message attack is shown.
Second, it is shown that the signer can be simulated with an indistinguishable distribution, which
using the forking lemma implies security against an adaptively chosen-message attack. If we exam-
ine the proof of the first step, we can see that two cases are considered: t is prime to q mod p− 1
and t is not prime to q mod p− 1, where σ = (t, s). In our case, the second option does not exist
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as the computation is mod q and thus the rest of the analysis goes through with only one option
to consider. The second part of the proof in [29] can also be simplified because we only need to
consider computation modulo q in the exponent as opposed to computation modulo qR = p − 1.
Thus, it is only easier to show security when the setup assumes groups of prime order.

As far as our modification to replace message m with a commitment to m xm goes, xm can be
treated as m in the proof above. Furthermore, because H is modeled as a random oracle, there is
flexibility with respect to the values to which its output can be set. The verification process also
requires that the prover proves the knowledge of the discrete logarithm representation of xm, which
means that the prover must know m using which xm was formed (because the protocol is a proof
of knowledge). This also means that A will be able to correctly prove (in zero-knowledge) that
m included in xm for every message that A used to query the signing oracle is different from the
messages m∗ output during its forgery, as required by the security definition. �

Theorem 5 Modified ElGamal scheme is a signature scheme with privacy.

Proof Let A be a PPT adversary attacking our modified ElGamal signature scheme with access
to the signing oracle. After A submits the challenge (m0,m1), it receives (σb, xmb), where xmb =
com(mb, r) for some random private r and σb is an ElGamal signature on xmb . Note that in this
scheme the signature σb and commitment xmb that A observes are fixed meaning that even if A
executes multiple instances of PrivVerify, it will still observe the same values of σb and xmb and only
the execution traces of the ZKPK can differ. Based on the properties of the underlying building
blocks, we know that the ZKPK is zero-knowledge and the commitment scheme is information-
theoretically hiding, which means that A cannot have a non-negligible advantage in determining
any information about mb assuming the difficulty of the discrete logarithm problem. In other
words, if we replace mb in the challenge with a randomly chosen message (in which case A cannot
do better than a random guess), the execution trace of PrivVerify will be indistinguishable to that
of the actual challenge.

Recall that A has access to the signing oracle and can obtain its own signatures on m0 and m1

prior to the challenge phase. We note any such previously issued signatures on m0 and m1 cannot
help A to answer the challenge because A observes only a commitment to mb which information-
theoretically hides it and new randomness is used for each new signature. �

The ZKPK in this PrivVerify proceeds similar to prior ZK proofs, where the prover chooses
v1, v2 ∈ Zq, computes T = gv1hv2 , and sends T to the verifier. After receiving the challenge e from
the verifier, the prover responds by sending r1 = v1 +em mod q, r2 = v2 +er mod q, and the verifier
accepts if gr1hr2 = xemT . The cost of using this construction in SMC is 5 mod exp for the ZKPK
and 3 for signature verification, giving us 8 mod exp. (If the user does not store commitment xm,
its re-computation is another 1 regular and 1 short mod exp.)

5.2 Batch Verification of Modified ElGamal Signatures

Our batch verifier for the modified ElGamal signature is given next. It uses the same security
parameter lb as before.

Batch: The prover holds commitments xmi = com(mi, xσi) = gmihxσi on messages mi ∈ Zq using
randomness xσi ∈ Zq and signatures σi = (ti, si) on xmi for i = 1, . . . , n. Both parties hold
pk = (q,G, g, y, h).

1. The prover sends signatures σi and commitments xmi to the verifier for i = 1, . . . , n.
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2. The prover and verifier engage in the following ZKPK: PK{(µ1, . . . , µn, γ1, . . . , γn) :
xm1 = gµ1hγ1 ∧ · · · ∧xmn = gµnhγn}. If the proof fails, the verifier outputs 0 and aborts.

3. The verifier chooses δ1, . . . , δn ∈ {0, 1}lb at random, computes u1 =
∑n

i=1H(xmi ||ti)δi
and u2 =

∑n
i=1 tiδi, and checks whether gu1 = yu2

∏n
i=1 t

siδi
i . If the check succeeds, the

verifier outputs 1, and 0 otherwise.

Theorem 6 Batch above is a batch verifier for the modified ElGamal scheme.

Proof First we show that PrivVerify(pk,m1, σ1) = . . . = PrivVerify(pk, mn, σn) = 1 implies
that Batch (pk, (m1, σ1), . . . , (mn, σn)) = 1. Suppose that the individual signatures verified, i.e.,
gH(xmi ||ti) = ytitsii for all i = 1, . . . , n. Then

gu1 = g

n∑
i=1

H(xmi ||ti)δi
=

n∏
i=1

(
gH(xmi ||ti)

)δi =
n∏
i=1

(
ytitsii

)δi =
n∏
i=1

ytiδi
n∏
i=1

tsiδii

= y

n∑
i=1

tiδi
n∏
i=1

tsiδii = yu2
n∏
i=1

tsiδii

as desired. To show the other direction, assume that Batch accepts. We know that each ti was
computed as ti = gki for some ki ∈ Zq, thus we can write:

g

n∑
i=1

H(xmi ||ti)δi
= y

n∑
i=1

tiδi
n∏
i=1

tsiδii = g

n∑
i=1

xitiδi
n∏
i=1

gkisiδi = g

n∑
i=1

xitiδi+
n∑
i=1

kisiδi

It follows that
n∑
i=1

H(xmi ||ti)δi −
n∑
i=1

xitiδi −
n∑
i=1

kisiδi ≡ 0 (mod q) (3)

Let βi = H(xmi ||ti)−xiti−kisi. Then equation (3) can be written as
∑n

i=1 δiβi ≡ 0 (mod q), which
is the same as equation (1) in the proof of Theorem 3. Thus, the remainder of the proof proceeds
in the same way as the proof of Theorem 3 to obtain that the probability of Batch successfully
completing when at least one signature does not verify is at most 2−lb . �

The ZKPK in Batch above consists of n invocations of the ZKPK in modified ElGamal’s
PrivVerify. Thus, the cost of batch verification of n messages is 5n mod exp for the ZKPK and
n+ 2 mod exp for signature verification, or 6n+ 2 mod exp total. (If the commitments are to be
re-computed, we add n regular and n short mode exp.)

Now recall that the way messages are input into SMC allows us to use a single commitment
to all n messages. For our modified ElGamal this optimization results in great savings because
this means that we can use only a single signature. Thus, the signer now issues a signature on
xm = com(m1, . . . ,mn, r) and xσ still contains the randomness r. This significantly simplifies the
Batch algorithm above because only 1 signature and 1 commitment are communicated in step 1,
step 2 only involves the proof of knowledge of the discrete logarithm representation of xm, and step
3 consists of verifying a single signature without the use of δis. This has significant performance
improvement implications, with the cost of step 2 reduced to 2n+ 3 mod exp and the overall cost
of Batch reduced to 2n + 6 mod exp (if the commitment is to be re-computed, we add 1 regular
and n short mod exp).

Table 1 summarizes performance of our constructions.
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Scheme Single message
Batch with n Batch with 1
commitments commitment

Modified CL Scheme A
11 mod exp and 10n+ 1 regular and 6n+ 5 regular and

5 pairings 3n short mod exp 3n short mod exp
and 2n+ 3 pairings 2n+ 3 pairings

Modified ElGamal 8 mod exp 6n+ 2 mod exp 2n+ 6 mod exp

Table 1: Performance of private verification for a single signature and a batch of size n. It is
assumed that commitments are stored pre-computed.

6 Using Certified Inputs in Secure Computation

Having described our private verification protocols, we now address the question of integrating
them with SMC techniques based on secret sharing in the presence of malicious adversaries. For
that purpose, we have chosen two prominent constructions of Damg̊ard and Nielsen [13] and SPDZ
[14] and discuss them consequently. These were chosen based on their attractive performance and
distinct security guarantees that they provide: when the computation is performed by m parties,
the former solution tolerates fewer than m/3 corruptions, while the latter can handle any number
of corrupt parties. Our solution uses signatures with privacy to guarantee that inputs entered into
secure computation are identical to those generated or observed by an authority, but in general
certification could take different forms.

As far as security properties go, the privacy guarantees of SMC in the presence of malicious ad-
versaries must hold as in the standard formulation of the problem, which we provide in Appendix A.
We additionally require that it is not feasible for a participant to enter (certified) inputs into the
computation without possessing a signature on them. More formally, if a participant supplying in-
put x enters a value different from what was certified by a certification authority, this behavior will
be detected by the participants with overwhelming probability. In other words, if the computation
completes successfully, there is only a negligible chance that a corrupt input owner can enter an
input that has not be signed by the certification authority.

In what follows, we denote the computational parties as P1, . . ., Pm and assume that they
are connected by pairwise secure channels. These constructions use (m, t)-threshold linear secret
sharing, and we denote a secret shared version of x by [x].

6.1 Damg̊ard-Nielsen Scalable and Unconditionally Secure Multiparty Compu-
tation

The construction of Damg̊ard-Nielsen [13] is unconditionally secure (assuming secure channels) in
the presence of at most t < m/3 malicious participants. It was the first to achieve unconditional
security with communication complexity where the part that depends on the circuit size is only
linear in m. The computation proceeds in two stages: offline pre-computation that generates
random multiplication triples and other random values and the online phase which is executed
once the inputs become available.

As far as input into the computation (during the online phase) goes, let x denote party P`’s
input into the secure computation for some ` (the same will apply to all other parties holding
inputs; participants with input who are not computational parties can be accommodated as well).
To secret-share x among the parties, P` computes δ = x + r, where r is a random value chosen
during pre-computation in such a way that the parties hold shares of r [r] and the value of r is
known in the clear to P` (i.e., [r] was opened to P`). Both the shares [r] and the value r that
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P` possesses are guaranteed to be correct in the presence of malicious participants. Then once P`
computes δ, P` broadcasts it to all parties who compute [x] = δ − [r] and use [x] in consecutive
computation.

To enable the use of certified inputs, we need to modify the above input sharing procedure to
guarantee that x that P` uses in computing δ was indeed certified. Then to ensure that correct
x is input into the computation, the parties could compute a commitment to r and verify (in
zero-knowledge) that δ corresponds to the sum of r and x. This could be implemented by having
the parties broadcast commitments to their shares of r and interpolating them to compute a
commitment to r. In that case, reconstructing a reliable commitment to r presents the main
challenge because any participant can be malicious. If the input owner P` is honest, it can verify
correctness of commitments from other parties and discard incorrect transmissions. Dealing with
malicious P`, however, is more difficult because P` can influence through its share the value of r
in the commitment which the parties reconstruct. Then because validity of P`’s share cannot be
verified, P` can adjust its share to modify the reconstructed r by the amount it wants to change x
from its certified version, getting around the certification process.

To solve the issue, we chose to proceed with directly entering input x into the computation
as opposed to supplying the delta. To accomplish this, we utilize one of the building blocks from
[13] for dealing consistent shares of a value (which is input x in our case). It has a mechanism
for resolving conflicts and upon successful termination provides a set of parties holding consistent
shares. We use this set to form a commitments to shares of x and interpolate them to reconstruct
a commitment to x.

Because each P` often enters multiple inputs into the computation, we will associate inputs
x1, . . ., xn with party P`. In what follows, we describe the version with a single commitment to
all xis which allows for improved performance. The case of a single certified input x will follow
from that construction. Also, when P`’s inputs are certified by multiple authorities, this procedure
is performed for each public key separately. Because the solution uses (Pedersen) commitments,
we assume that a group setup (G, q) where the discrete logarithm problem is hard with generators
g1, . . ., gn, h is available to the parties. All signature schemes that we considered in this work already
use commitments, and therefore we will assume that this setup comes from the public key of the
corresponding signature scheme.

In what follows, we use notation [y]j to denote the jth share of y held by party Pj . As in [13],
we assume that operations on secret shares take place in a field F and secret shares correspond to
the evaluation of a polynomial of degree t on different points. For concreteness, we set F = Fp for
a prime p (q � p). The computation is then as follows:

Input: The parties collectively hold the public key pk of the certification authority. P` has pri-
vate input x1, . . ., xn, cx = com(x1, . . ., xn, r̂), and signatures with privacy σ1, . . ., σn on x1, . . ., xn,
respectively.1

Output: [x1], . . ., [xn] are available to the parties and their certification has been verified.

1. The parties execute the protocol for P` to deal consistent shares of x1, . . . , xn and another
value α that P` randomly chooses from Fp (as specified in Figure 7 from [13]). If P` is honest,
there are at least 2t+ 1 parties who hold consistent shares of each xi and we denote this set
by S. (Otherwise, the protocol fails and the parties restart it as specified in [13].)

2. P` broadcasts commitments com([x1]j , . . ., [xn]j , [α]j) = g
[x1]j
1 · · · g[xn]j

n h[α]j and each Pj ∈ S
verifies that the jth commitment is consistent with its shares.

1Note that in the case of our modified ElGamal signatures, P` will hold a single signature on com(x1, . . ., xn, r̂).
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3. The parties compute interpolation coefficients βj (in Fp) for each Pj ∈ S and then compute
c′x = com(x′1, . . ., x

′
n, α

′) =
∏
Pj∈S com([x1]j , . . ., [xn]j , αj)

βj . Note that xi =
∑

Pj∈S βj [xi]j
(in Fp) for each i.

4. P` computes α′ =
∑

Pj∈S βj [α]j (in Zq) and x′i =
∑

Pj∈S βj [xi]j , si = bx′i/pc (over integers)

for i = 1, . . ., n. It creates commitment cs = com(s1, . . ., sn, r̃) = gs11 · · · gsnn hr̃ and broadcasts
it to the other parties.

5. P` broadcasts cx, σ1, . . ., σn and the parties execute Batch(pk, x1, σ1, . . ., xn, σn) with P` play-
ing the role of the prover.

6. The parties additionally execute PK{(x1, . . ., xn, x
′
1, . . ., x

′
n, s1, . . ., sn, α

′, r̂, r̃) : cx = gx11 · · · gxnn hr̂∧
c′x = g

x′1
1 · · · g

x′n
n hα

′ ∧ cs = gs11 · · · gsnn hr̃ ∧
∧n
i=1

(
x′i = xi + sip

)
} where P` plays the role of the

prover.

Because different moduli are used for exponents in G and arithmetic in Fp, to guarantee correct-
ness, we need to compensate for reduction modulo p for field operations. To accomplish that, we
interpolate each xi over integers and thus have that x′i = xi + sip for some unique integer si, which
is the relationship that P` proves in step 6. This computation requires that |q| > 2t|p|, which is
the case in practice for typical values of q, t, and p (i.e., threshold t is usually low and set to 1–2,
|p| is set to accommodate integers of 64 or fewer bits, and |q| is at least in hundreds to guarantee
security).

Note that step 6 already includes a PK of the discrete logarithm representation of com(x1, . . ., xn, r̂)
and thus the same ZKPK in Batch is no longer executed in step 6.

To show security, we prove that this modification complies with the definition of secure multi-
party computation and it is not feasible for a dishonest participant to supply inputs different from
what was signed by a certification authority.

Theorem 7 Assuming security of Pedersen commitment, Batch is a batch verifier for a signature
scheme with privacy, and the proof of knowledge is zero-knowledge, our modification to the Damg̊ard-
Nielsen construction above is a t-secure multiparty protocol for t < m/3.

Proof (Sketch) In the context of our problem, we treat cx, σ1, . . . , σn as public values accessible
to the adversary in both ideal and real models. This may be of particular importance when the
same certification is used in multiple secure function evaluations, possibly with a different set of
participants and may be observable by the adversary. We consider two cases: 1) P` is not among
the corrupted parties and 2) P` is among the corrupted parties.

Case 1. When P` is not among the corrupt parties, the simulator is unable to obtain access to
P`’s input and simulates the adversarial view on randomly chosen data. In particular, the simulator
uses randomly chosen values in place of x1, . . . , xn in step 1 and the parties hold shares of these
values at the end of step 1. In step 2, the simulator forms commitments on behalf of P` consistent
with the shares generated in step 1, and each party computes c′x in step 3. Step 5 uses true
cx, σ1, . . . , σn (recall that no ZKPKs are executed in that step). To carry out the ZKPK in step
6, the simulator can compute all values and the commitment in step 4 based on the information
it used in earlier steps of the protocol (i.e., shares [xi]j produced in step 1) and needs to invoke
the ZKPK simulator in step 6 to simulate the verifier view. Once the computation completes, the
simulator sets the shares of the output that the corrupt parties receive as in the original protocol,
so that they re-assemble to the output the parties are entitled to learn.
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This simulation achieves indistinguishability because secret shares and commitments are per-
fectly hiding and reveal no information about the values they encode (and thus the adversary is
unable to tell that randomly chosen inputs are used to generate shares and commitments that use
the shares), signature verification maintains privacy of the inputs, and the ZKPK reveals no infor-
mation about the values used in its statement as well. Finally, the computation on secret-shared
data that follows maintains security guarantees as well.

Case 2. In this case, the honest parties whose participation the simulator is to simulate con-
tribute no input. Therefore, the simulator simply follows the protocol the way honest participants
would. �

Observe that the same signature (and possibly the same commitment to the signed message)
can be used in multiple secure function evaluations for possibly different functions. To capture
this formally, one would need to modify the standard definition to allow for the participants to
evaluate multiple functions with the same observable information associated with an input (i.e.,
signatures and commitments in our case). Here we only note that our construction remains secure
in those circumstances as well. This is because the modification uses perfectly hiding Pedersen
commitments, zero-knowledge proofs, and signatures that provably protect the messages being
signed. If the commitment associated with a signature does not change across different secure
function evaluations, the steps above (for entering certified inputs into secure computation) can
be executed only once for multiple invocations of secure multi-party computation (with possibly
different functions). Otherwise, the steps above can be executed using fresh randomness for the
commitments, still maintaining privacy of the inputs.

Theorem 8 If the computation above does not abort, PK is a proof of knowledge, Batch is un-
forgeable, and commitments are binding, a dishonest P` can enter x′i 6= xi for at least one i ∈ [1, n]
with at most negligible probability.

Proof First of all, because we only consider computation that could successfully complete, the
checks performed in steps 2, 5, and 6 must hold. Second, because of the properties of the signature
scheme, commitment cx has to be on true input x1, . . . , xn with all but negligible probability to
pass signature verification. We also have that ZKPK is secure, which means that the relationship
x′i = xi + sip must hold in step 6 for some integer si, which means that x′i and xi are equivalent for
the purposes of the computation that follows. Therefore, it remains to show that it is not feasible
to tamper with the values that lead to the computation of x′is.

Next, based on the properties of the original construction, we have that the parties in S col-
lectively hold consistent shares of the inputs entered by P`. The most crucial step here is to
demonstrate that transition from shares to commitments does not let P` modify the values that
others view as its inputs in this process. Then if dishonest P` broadcasts commitments inconsistent
with the shares [xi]j of some party Pj ∈ S, P`’s behavior will be detected. On the other hand, if
dishonest Pj ∈ S claims that P` did not send a correct commitment, the dispute can be resolved
as in the original solution with dispute resolution by possibly eliminating some parties from S (but
the number of honest parties is guaranteed to be at least 2t+ 1, which allows for successful dispute
resolution). We obtain that if step 2 successfully completes, the shares must re-assemble to x′i over
integers, which has identical meaning to xi in Fp. Therefore, the computation that follows proceeds
on consistent shares of xis and P` must possess signatures on xi or xi + zip for some zi ∈ Z (which
have identical meaning when computing in Fp). �
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6.2 SPDZ

The second solution that we study is built on SPDZ [14]. This is an SMC protocol that achieves
security in the presence of any number of malicious parties t < m (and thus offers stronger security
guarantees than the previous solution) and has a fast online phase. This construction enters private
inputs into the computation similar to the way [13] did. That is, to secret share input xi, the input
owner P` uses a random value ri computed during the preprocessing phase known only to P` and
the parties jointly holding [ri]. P` then computes and broadcasts δi = xi − ri (in Fp) and the
players compute [xi] = [ri] + δi. The difference is that now additive secret sharing (i.e., (m − 1)-
out-of-m) is used instead of threshold secret sharing and each secret-shared value y also uses a
secret-shared MAC γ(y) in the form of α(y + τ), where α is a global secret key and τ is public,
to authenticate its value. In other words, a secret shared value [y] is represented by each party Pi
holding 〈τ, [y]i, [γ(y)]i〉, where [y]1 + . . .+ [y]n = y and [γ(y)]1 + . . .+ [γ(y)]m = α(y+ τ). The value
of α is opened at the end of secure computation and is used to verify consistency of certain values
used during computation, before the parties can learn the result (see [14] for detail).

Unlike the solution considered in section 6.1, we could proceed with the approach where the
parties compute the input as xi = ri + δi, reconstruct a commitment to ri, and use it to verify the
relationship between xi and ri. Verification of correct ri used in the commitment is deferred to
the end of the computation where the value of α is opened. Then if the parties determine that the
commitment to ri was correctly formed, they proceed with reconstructing the output.

In order for our security analysis to go through, we require that the field size is sufficiently large
so that the probability 1/|Fp| can be considered to be negligible. This assumption is already present
in SPDZ itself, which states that the field size must be large to have the desired error probability
of (1/|Fp|)c for a small constant c.

The inputs of the procedure remain unchanged and the computation proceeds as follows:

1. Each Pj (including P`) chooses random α′j ∈ Zq, sends its shares [r1]j , . . ., [rn]j and α′j to P`,

and also broadcasts com([r1]j , . . ., [rn]j , α
′
j) = g

[r1]j
1 · · · g[rn]j

n hα
′
j .

2. P` verifies that
∑m

j=1[ri]j = ri (in Fp) for each i = 1, . . ., n and that the received commitments
are consistent with [ri]js and α′js.

3. The parties compute c′r = com(r′1, . . ., r
′
n, α

′) =
∏m
j=1 com([r1]j , . . ., [rn]j , α

′
j).

4. Each Pj (including P`) chooses random α′′j ∈ Zq and broadcasts com([γ(r1)]j , . . ., [γ(rn)]j , α
′′
j ) =

g
[γ(r1)]j
1 · · · g[γ(rn)]j

n hα
′′
j .

5. The parties compute c′γ = com(γ′1, . . ., γ
′
n, α

′′) =
∏m
j=1 com([γ(r1)]j , . . ., [γ(rn)]j , α

′′
j ).

6. P` computes δi = xi − ri (in Fp) and broadcasts δi for i = 1, . . ., n.

7. P` computes α′ =
∑m

j=1 α
′
j (in Zq) and r′i =

∑m
j=1[ri]j , si = b(r′i + δi − xi)/pc (over integers)

for i = 1, . . ., n. It creates commitment cs = com(s1, . . ., sn, r̃) = gs11 · · · gsnn hr̃ and broadcasts
it to the other parties.

8. P` broadcasts cx = com(x1, . . ., xn, r̂), σ1, . . ., σn and the parties execute Batch(pk, x1, σ1, . . ., xn, σn)
with P` playing the role of the prover.

9. The parties additionally execute PK{(x1, . . ., xn, r
′
1, . . ., r

′
n, s1, . . ., sn, α

′, r̂, r̃) : cx = gx11 · · · gxnn hr̂∧
c′r = g

r′1
1 · · · g

r′n
n hα

′ ∧ cs = gs11 · · · gsnn hr̃ ∧
∧n
i=1

(
r′i = xi − δi + sip

)
} where P` plays the role of

the prover.
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As before, the ZKPK of x1, . . . , xn, r̂ is redundant and no longer executed in Batch.
Then once the computation is complete and the value of α is opened (but prior to reconstructing

the output of the computation from the shares), the parties perform additional computation and
checks:

1. Each Pj sends α′′j and [γ(ri)]j for i = 1, . . . , n to P`.

2. P` checks that each com([γ(r1)]j , . . ., [γ(rn)]j , α
′′
j ) is consistent with [γ(ri)]js and α′′j and aborts

otherwise.

3. P` computes α′ =
∑m

j=1 α
′
j (in Zq), γ′i =

∑m
j=1[γ(ri)]j , ui = br′i/pc, wi = bγ′i/pc (over

integers) for i = 1, . . ., n. P` creates commitments cu = com(u1, . . ., un, z) = gu11 · · · gunn hz,
cw = com(w1, . . . , wn, z

′) = gw1
1 · · · gwnn hz

′
and broadcasts them to other parties.

4. P` proves the following statement PK{r′1, . . . , r′n, γ′1, . . . , γ′n, u1, . . . , un, w1, . . ., wn, α
′, α′′, z, z′ :

c′r = g
r′1
1 · · · g

r′n
n hα

′ ∧ c′γ = g
γ′1
1 · · · g

γ′n
n hα

′′ ∧ cu = gu11 · · · gunn hz ∧ cw = gw1
1 · · · gwnn hz

′ ∧
∧n
i=1

(
γ′i =

α(r′i − uip+ τi) + wip
)
}, where τi was the public value in ri’s MAC.

As in the previous section, we show that augmenting SPDZ with certified inputs maintains security
of the construction in the presence of malicious players and furthermore it is not feasible for a
dishonest participant to supply inputs different from what the values that the certification authority
signed.

Theorem 9 Assuming security of Pedersen commitment, Batch is a batch verifier for a signature
scheme with privacy, and the proof of knowledge is zero-knowledge, our modification to the SPDZ
above is a t-secure multiparty protocol.

Proof (Sketch) As before, we need to analyze two cases: when P` is among the corrupted parties
and when it is not. We start with the latter.

Case 1: When P` is not among the corrupt parties, the simulator does not have access to its
inputs and uses randomly chosen inputs to simulate the adversarial view (while presenting authentic
cx and σis).

Unlike using certified inputs with the Damg̊ard-Nielsen construction, this solution relies on
values generated as part of the offline phase. For that reason, the simulator needs to participate in
the offline phase as well. Because we make no modifications to the offline phase and because the
original SPDZ construction has been previously shown secure, we could call the offline computation
as a black box. Also note that offline computation is only used to produce shares of random values
and uses no private inputs. Thus, the simulator could simply play the roles of the honest parties
(without involvement of the trusted party) and store the shares that they generate. Then because
the offline computation opens randomly generated values ris to P`, the simulator will store them
as well (on behalf of P`).

Once the online computation starts, the simulator will receive shares from the corrupt parties in
step 1, contribute its shares for honest parties stored during the offline computation, and perform
the check in step 2 as honest P` would using the ris. The simulator proceeds with the computation
as prescribed and in step 6 computes the values of δi using previously generated ris and any values
of its choice in place of xis. It consequently uses the same values for xis in step 7, while step 8
is performed using authentic commitment cx and signatures σ1, . . . , σn which encode true inputs.
The simulator finishes the first portion of the online computation by invoking a simulator for the
ZKPK in step 9.
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Once the main computation on private data completes and the value of α is opened, the sim-
ulator participates in the verification steps. It receives values α′′j and [γ(ri)]j from each corrupt
party in step 1 and retrieves the corresponding values chosen on behalf of honest participants. The
simulator performs the same checks as an honest P` would in step 2. Finally, the simulator can
compute all values in step 3 honestly and has enough information to execute the ZKPK in step 4
on behalf of P`.

The main difference between the real and simulated views is that the simulator has no access
to the xis and uses randomly generated values in place of them in steps 6–7, as well as simulates
the ZK proof. We note that this inconsistency cannot be detected by the adversary because it
is not feasible to gather information about (true) xis from the corresponding commitment and
signature verification. Similarly, it is not feasible to gather information about ris from their shares
or commitments (to use that information in combination with δis). Finally, the ZK proofs reveal
no information about their private inputs.

Case 2. Similar to the use of certified inputs with the Damg̊ard-Nielsen construction, simulating
the adversarial view is straightforward when P` is corrupt. In that case the honest parties contribute
no input and the simulator simply follows the protocol on behalf of them. �

It is also not difficult to see that the security guarantees will hold even if we invoke multiple
secure function evaluations with the same certification. The same reasoning used in the previous
section applies here as well.

Theorem 10 If the computation above does not abort, PK is a proof of knowledge, Batch is un-
forgeable, and commitments are binding, a dishonest P` can enter x′i 6= xi for at least one i ∈ [1, n]
with at most negligible probability for a sufficiently large Fp.

Proof Note that in this setting (where all but one party can be corrupt) detectable misbehavior
of at least one party leads to computation abort, therefore for the computation to finish, all checks
must succeed. Combined with the fact that the signature scheme is unforgeable, we obtain that
the commitment cx has to be on truthful inputs that P` possesses. Also, based on the security of
the original SPDZ construction, the offline generation of the shares of ris is correct (which in part
is due to post-computation checking of the corresponding MACs). What remains to show is that
ris are correctly converted to commitments and ris are correctly linked to true inputs xis included
in cx (i.e., it is not feasible to cheat at the time of creating δis).

To convert the shares of ris to commitments, each Pj broadcast a commitment to its own share
of both ris and the MAC on each ri, which are consequently combined into aggregate commitments
c′r and c′γ , respectively. Consider what happens when some parties cheat in this process. If some
Pj 6= P` are dishonest and provide shares that do not sum to the ris that P` expects in step 2, the
computation aborts. Note that it is possible for 2 or more dishonest parties to modify their shares
from the originally distributed shares in such a way that the sum (over Fp) remains correct, but
in that case correctness if not affected. Now suppose that P` modifies its shares [ri]` that it uses
form its commitment in step 1 so that

∑m
j=1[ri]j 6= ri (in Fp). This change, if not detected, would

allow P` to cheat on its inputs by silently modifying the value of ri. We, however, note that it is
not feasible for P` to make this change without being detected because, in order to succeed, P` has
to consistently modify the corresponding MAC (and commit to it in step 5). Because the value
of α is information-theoretically protected from P` (or any coalition of parties that includes P`),
it has only 1/|Fp| probability of successfully matching the MAC. This would result in negligible
probability for sufficiently large field Fp. Because of the soundness of the ZK proof performed in
step 4 of post-computation, P` must have a correct MAC in order for the protocol to finish.
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Number of messages n
1 10 102 103 104 105 106

Modified Signing 0.69ms 0.70ms 1.0ms 5.2ms 56.1ms 675ms 8.59s
ElGamal Verification 1.8ms 2.7ms 12.6ms 111ms 1.11s 12.6s 134s
Signatures Communication 140B 392B 2.84KB 27.4KB 274KB 2.67MB 26.7MB

SPDZ-based Input comp. 4.61ms 8.69ms 49.5ms 462ms 4.63s 52.9s N/A
entering of party comm. 1.02KB 2.81KB 20.7KB 200KB 1.95MB 19.5MB 195MB
certified Other comp. 5.45ms 8.90ms 43.4ms 393ms 3.92s 45.4s N/A
inputs party comm. 232B 304B 1.00KB 8.03KB 78.3KB 781KB 7.63MB

Table 2: Performance of batch signatures and using certified inputs in SMC.

Once a commitment to the ris is formed, the correct link between xis and ris (i.e., the fact that
δis were computed correctly) is shown through the ZK proof in step 9 that connects commitments
cx and c′r. Because of its soundness property, a dishonest P` is unable to successfully finish the
proof if at least one δi does not correspond to the difference between xi and ri in Fp. This completes
the proof. �

7 Performance Evaluation

Before we conclude, we provide a brief performance evaluation of the developed techniques. We
have implemented the modified ElGamal with private verification that uses a single commitment
to n messages (and thus a single signature). Additionally, we have implemented SPDZ-based input
of certified inputs into SMC using the same signature. All programs were written in C using
OpenSSL’s elliptic curve implementation with a 224-bit modulus (equivalent to a 2048-bit modulus
in the standard setting) and SHA-256 as the hash function. The experiments were run on an 8-core
2.1GHz machine with a Xeon E5-2620 processor and 64GB of memory running CentOS using a
single thread and the times were averaged over at least 20 executions. The results are given in
Table 2.

The table shows the time of Sign, cumulative computation of Batch (the prover and verifier
work), and communication amount in Batch (which is n+ 4 group elements, with a 28-byte group
element in our experiments). Recall that the ZKPK of Batch becomes a part of the ZKPK used
during entering certified inputs into SMC and is not executed separately then. For the SPDZ-
based solution of section 6.2, we used a setup with m = 3 computational parties and |p| = 32. We
report computation time of input party P` and all other parties (who do identical work) as well as
the amount of communication sent by P` and other parties, respectively. A broadcast message is
counted multiple times using direct transmissions to each party and an EC point is counted as 1
group element.

In our construction, P` does a slightly larger amount of work per input xi than other parties,
which is reflected in Table 2 for large n. When, however, n is small, the constant terms (e.g., batch
verification carried out by everyone except P`) noticeably contribute to the overall time making
P`’s time slightly faster. But in all cases, each party’s work is not substantially higher than the
work of private signature verification itself.

An improvement to SPDZ [12] reports for p near 232 in the malicious model (without certified
input) 7.5–134 thousand multiplications per second (for 1 to 50 operations in parallel) during
the online phase. This is about 7.5–130µs per multiplication (including communication), while
our work associated with input certification is about 400µs with on the order of hundred bytes of
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communication per message, which in not drastically higher than that of an online multiplication (all
of which can be improved with parallel execution using multiple cores). For many computations, the
number of multiplications is significantly greater than the number of inputs, which means that the
cost of computation will exceed that of entering and verifying inputs in our solution. Furthermore,
offline work per multiplication triple in SPDZ is significantly higher at 28.7ms per triple. All of this
suggests that the performance of our solution is quite good and is not expected to be the bottleneck
in secure computation.

8 Conclusions

In this work, we showed how to modify CL and ElGamal signature schemes to achieve efficient
private batch verification for use in SMC with certified inputs and integrate them with two secret-
sharing-based protocols. Our results demonstrate that the techniques are efficient even for a large
number of inputs and the ideas behind private verification are rather general to have a potential
application to other signature schemes.
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A Additional Background

Let Π = (KeyGen, Sign,Verify) be a signature scheme and consider the following experiment:

Experiment ForgeSigA,Π(κ):

1. The challenger creates a key pair (pk, sk)← Gen(1κ) and gives pk to A.

2. A has oracle access to Signsk(·). For each message m that A queries the oracle, m is stored
in list Q and A learns σ = Signsk(m). A eventually outputs a pair (m∗, σ∗).

3. The experiment outputs 1 if both Verifypk(m
∗, σ∗) = 1 and m∗ /∈ Q. Otherwise, it outputs 0.

Definition 6 (Security of a signature scheme [22]) A signature scheme Π = (Gen, Sign,Verify)
is existentially unforgeable under an adaptive chosen-message attack if for all PPT adversaries A
there is a negligible function negl such that Pr[ForgeSigA,Π(κ) = 1] ≤ negl(κ).

Security of a protocol in the malicious model is shown according to the ideal/real simulation
paradigm. In the ideal execution of the protocol, there is a trusted third party (TTP) that evaluates
the function on participants’ inputs. The goal is to build a simulator S who can interact with the
TTP and the malicious party and construct a protocol’s view for the malicious party. A protocol
is secure in the malicious model if the view of the malicious participants in the ideal world is
computationally indistinguishable from their view in the real world where there is no TTP. Also
the honest parties in both worlds receive the desired output. This gives us the following definition
of security in the malicious model.
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Definition 7 Let parties P1, . . ., Pm engage in a protocol Π that computes a (possibly probabilistic)
n-ary function f : ({0, 1}∗)m → ({0, 1}∗)m, with party Pi contributing input ini. Let A be an
arbitrary algorithm with auxiliary input x, S be an adversary/simulator in the ideal model and
I be a set of indices of the corrupted parties. Let REALΠ,A(x),I(in1, . . ., inm) denote the view of
adversary A controlling parties in I together with the honest parties’ outputs after real protocol
Π execution. Similarly, let IDEALf,S(x),I(in1, . . ., inm) denote the view of S and outputs of honest
parties after ideal execution of function f . We say that Π t-securely computes f if for each coalition
I of size at most t, every probabilistic adversary A in the real model, all ini ∈ {0, 1}∗ and x ∈
{0, 1}∗, there is probabilistic S in the ideal model that runs in time polynomial in A’s runtime and
{IDEALf,S(x),I(in1, . . ., inm)} ≡ {REALΠ,A(x),I(in1, . . ., inm)}.
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