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Abstract. Standardization bodies such as NIST and ETSI are currently
seeking quantum resistant alternatives to vulnerable RSA and elliptic
curve-based public-key algorithms. In this context, we present Round5,
a lattice-based cryptosystem providing a key encapsulation mechanism
and a public-key encryption scheme. Round5 is based on the General
Learning with Rounding problem, unifying non-ring and ring lattice
rounding problems into one. Usage of rounding combined with a tight
analysis leads to significantly reduced bandwidth and randomness re-
quirements. Round5’s reliance on prime-order cyclotomic rings offers a
large design space allowing fine-grained parameter optimization. The use
of sparse-ternary secret keys improves performance and significantly re-
duces decryption failure rates at minimal additional cost. The use of
error-correcting codes further improves the latter. Round5 parameters
have been carefully optimized for bandwidth, while the design facili-
tates efficient implementation. As a result, Round5 has leading perfor-
mance characteristics among all NIST post-quantum candidates, and at
the same time attains conservative security levels that fully fit NIST’s
security categories. Round5’s schemes share common building blocks,
simplifying (security and operational) analysis and code review. Finally,
Round5 proposes various approaches of refreshing the system public pa-
rameter A, which efficiently prevent precomputation and back-door at-
tacks.

Keywords: Lattice cryptography · Post-quantum Cryptography · Learn-
ing With Rounding · Prime cyclotomic ring · Key encapsulation · CCA
Security · CPA Security.

1 Introduction

Due to the inherent vulnerability of RSA and Elliptic Curve cryptography to
attacks by quantum computers and the relatively long time period that public
key encryption algorithms must guarantee the confidentiality of their secrets, a
transition to quantum-secure alternatives has been initiated by the U.S. Gov-
ernment and the information security community. Standardization bodies such



as NIST [51] and ETSI [33,32] are currently in the process of evaluating and
standardizing Post-Quantum Cryptography (PQC).

Lattice-based cryptography is a prominent branch of post-quantum cryptog-
raphy that is based on well studied problems and often offers very good per-
formance characteristics. Among others, there exist lattice-based proposals for
key exchange [20,18,3], key encapsulation [19] [28], public key encryption [24,25]
and digital signatures [31,30]. The main hard problem underlying the security of
most lattice-based proposals is the Learning with Errors (LWE) problem defined
on general Euclidean lattices.

The decision variant of the LWE problem refers to distinguishing uniform
samples (a, b) ∈ Znq × Zq from samples of the form (a,aTs + e) where a is
uniform on Znq (multiple m samples of which constitute the problem’s public
parameter A ∈ Zm×nq ), the secret s is drawn uniformly from Znq , and e is drawn
from a known error distribution on the integers modulo q. Matrix multiplication
and vector addition are performed modulo q.

The ring variant of LWE (RLWE) introduces more structured ideal lat-
tices [47] for better performance. Module lattices [45] allow for additional flexi-
bility in the parameter choice and are structurally in between the former two.

In the Learning with Rounding (LWR) problem [10], the independent, ran-
domly drawn error e from LWE is replaced by a deterministic error via rounding
as to a smaller modulus p. An earlier version of this technique was used in
“modulus switching” to limit the growth of noise in fully homomorphic encryp-
tion [21]. The decision variant of the LWR problem is to distinguish uniform

samples (a, b) ∈ Znq × Zq, from samples of the form (a,
⌊
p
qa

Ts
⌉
), where a is

uniform on Znq , s is uniform on Znq and b·e denotes (coordinate-wise) rounding
to the closest integer modulo p. LWR has practical advantages over LWE: it re-
quires the generation of less randomness as there is no need to explicitly generate
the components of the noise vector e. Furthermore, rounding results in smaller
ciphertexts, as they have p-ary symbols instead of q-ary symbols.

1.1 Separate Solutions for LWE and RLWE

The (decision variants of the) ring learning with errors (RLWE) and ring learning
with rounding (RLWR) are defined analogously to LWE and LWR, however with
the parameter a and secret s replaced with elements from a chosen polynomial
ring R. Due to the structure of ideal lattices, the hardness assumptions for these
problems are considered less conservative than for LWE and LWR. On the other
hand, RLWE and RLWR are more efficient than their non-ring counterparts [49].
No scheme has however been fully defined with the flexibility of fitting diverse
use-cases with diverse trust requirements, e.g., Ring-LWE against LWE assump-
tions. Furthermore, for some use-cases with critical performance requirements
IND-CPA (indistinguishability under chosen plaintext attack [54]) security may
be enough, in which cases designing for only slower IND-CCA (indistinguisha-
bility under chosen ciphertext attack [54]) security might be over-provisioning.
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We will now give some examples of applications and their particular require-
ments. A high-performance IPSec [42] solution may require a ring-based scheme
for shorter messages and lower latency; such a scheme also makes key refreshing
easier, thus ensuring forward secrecy for which CPA-security may be sufficient.
In contrast, securing email requires CCA-security since public keys are long-
term; still, a well-performing solution is needed so that the overhead is low even
for small emails. On the other hand, a governmental VPN [57] may want to trade
some of the key exchange performance to the added security assurance offered by
unstructured lattice. Similarly, long-term security of healthcare records requires
a public key encryption solution that avoids additional security assumptions.

Looking into the state of the art, we find solutions that fit individual ap-
plications, but no solution that can be easily configured to fit all of them. For
instance, Frodo [18] is based on the conservative LWE assumption, but is rather
inefficient for performance-intensive scenarios, requiring bandwidth as high as
23 kilobytes. Kyber [19] is comparatively efficient but depends on one single un-
derlying ring choice. Most schemes such as [18], [19], [28] or [64] are defined to
provide either IND-CPA or IND-CCA security, but not both.

1.2 Inflexibility in Ring Selection

The choice of the underlying polynomial ring greatly affects the performance of
schemes based on ideal lattices. A common choice [20,3] of the polynomial ring
to instantiate an RLWE or RLWR problem is Zq[x]/Φ2n(x) where n is a power
of 2, so that Φ2n(x) denotes the 2n-th cyclotomic polynomial xn + 1. However,
requiring that n be a power of 2 restricts the choice of n. For example, n = 512
results in a lattice problem not hard enough to achieve a 128-bit security level;
n = 1024 provides high security, but at the cost of bandwidth.

An optimal value is n ≈ 700, resulting in a lattice dimension large enough,
yet with moderate bandwidth requirements. This choice is reflected in proposals
like Kyber [19], NTRUEncrypt [39], NTRU-KEM [41], SABER [28] and more.
Kyber [19] and SABER [28] use modules of rank k = 3 over Zq[x]/(x256 + 1), so
that the underlying module lattice problem (conjecturally) relates to a lattice
problem of dimension n = 3 ∗ 256 = 768, allowing some additional flexibity
via varying k. NTRUEncrypt uses the reduction polynomial xn − 1, and its
underlying problem remains hard for this ring. However, as suggested by [56, p.
6], the decisional RLWE problem over this ring is easy.

1.3 Parameter Selection: Prior Work

Applebaum et al. [5] showed that the LWE secrets s can be drawn according
to the same distribution as the errors without impacting hardness. [22] further
showed that LWE with binary errors is also provably hard. When used to con-
struct actual schemes, such small secrets improve computational performance
and operational correctness. This motivated [24,25] to propose schemes where
the LWE secrets are sparse and ternary. NTRUPrime [14] also utilizes rounding
and sparse-ternary secrets. The decryption/decapsulation failure probability can
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be further reduced by using error-correcting codes. The analysis in [35] shows
that the usage of error correction can result in significant increases in estimated
bit-security and significantly reduced communication overhead.

A final aspect to consider refers to public parameters such as the matrix
A. Some schemes propose static parameters for improving performance [20].
Other proposals [18,3,19] rather argue that such parameters should be variable,
e.g., in order to prevent pre-computation and backdoor attacks. The overhead
for generating a new A can be high, particularly in the case of unstructured
lattice-based schemes that must generate n2 elements. We offer solutions to this
problem in our work.

1.4 Our Contributions and Structure of This Paper

We present Round5, consisting of algorithms for an IND-CPA secure key encap-
sulation mechanism Round5.KEM and an IND-CCA secure public key encryp-
tion scheme Round5.PKE. Our main contributions are:

- Unified Design. Round5 instantiates the LWR problem and the RLWR prob-
lem in a seamless manner, through its reliance on the General Learning with
Rounding (GLWR) problem (Section 2.3). The same algorithm(s) can instanti-
ate LWR or RLWR depending on the input parameters, while also supporting
both IND-CPA and IND-CCA security.

- Prime Cyclotomic Ring. As in [63], NTRU-KEM [41], and [64], Round5
uses as reduction polynomial the (n + 1)-th cyclotomic polynomial Φn+1(x) =
xn + · · · + x + 1, for n + 1 a prime. The choice of n = 1 leads to a non-ring
configuration; taking n > 1 leads to a ring configuration. Compared with the
power-of-2 cyclotomic polynomial xn + 1, our ring choice offers a larger design
space, allowing better parameter optimization.

We further require that Φn+1(x) is irreducible modulo two, so that we hedge
against possible vulnerabilities in power-of-2 cyclotomic rings [13,14]. In addition
and importantly, as shown in [52], decisional RLWE over this ring remains hard
for any modulus, including the power-of-2 moduli q, p as used in Round5.

- Designed for Performance. Round5 is designed to be highly efficient : its
use of rounding firstly requires less randomness; further, combined with our
tight analysis of the security of LWR for our chosen secret-key distribution, and
highly optimized parameter selection, it results in some of the smallest key and
ciphertext sizes in lattice-based cryptography [37]. As the moduli q and p are
powers of two, modular operations can be implemented efficiently. Furthermore
the use of ternary secrets and error correction codes leads to significant reduction
in failure rate without compromising performance or security, improving Round5
parameters even further.

Round5 combines design features from the NIST PQC proposals “Round2” [6]
(specifically, the unified design based on GLWR, the use of rounding, the secret-
key distribution, the use of the prime cyclotomic polynomials, security and failure
rate analysis) and “Hila5” [59] (specifically, the use of forward error correction).
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The rest of the paper is organized as follows: In Section 2, we present pre-
liminaries, notation, and the hard problem underlying the security of Round5.
In Section 3, Round5.KEM and Round5.PKE and their internal building blocks
are specified. Section 4 analyzes the correctness of Round5. In Section 5, the
IND-CPA security of Round5.KEM and the IND-CCA Security of Round5.PKE
are detailed. Section 6 presents concrete security analysis with respect to known
attacks against Round5. Section 7 presents Round5 configuration parameters,
performance and comparison with other schemes, followed by conclusions in
Section 8.

2 Preliminaries

Let Z and Zq denote respectively the ring of integers, and for an integer q ≥ 1 the

quotient ring Z/qZ. For a set A, we denote by a
$←− A that a is drawn uniformly

from A. If χ is a probability distribution, then a ← χ means that a is drawn
at random according to the probability distribution χ. Logarithms are in base
2, unless specified otherwise. All vectors are column vectors. Bold upper case
letters are matrices. The transpose of a vector v or a matrix A is denoted by
vT or AT . For x ∈ Q, we denote by bxc and bxe rounding downwards to the
next smaller integer and rounding to the closest integer (with rounding up in
case of a tie) respectively. For a positive integer α and x ∈ Q, we define {x}α
as the unique element x′ in the interval (−α/2, α/2] satisfying x′ ≡ x (mod α).
We define 〈x〉α as the unique element x′ in the interval [0, α) for which x ≡ x′

(mod α).

2.1 Underlying Ring

Let n + 1 be prime. We denote by Rn the polynomial ring
Z[x]/(Φn+1(x)), for the (n+1)-th cyclotomic polynomial Φn+1(x) = xn+xn−1+
· · ·+x+ 1. When n equals 1, then Rn = Z. For each positive integer a, we write
Rn,a for the set of polynomials of degree less than n with all coefficients in Za.
We call a polynomial in Rn ternary if all its coefficients are 0, 1 or −1. Through-
out this document, regular font letters denote elements from Rn, and bold lower
case letters represent vectors with coefficients in Rn.

2.2 Distributions

For each v ∈ Rn, the Hamming weight of v is defined as its number of non-
zero coefficients. The Hamming weight of a vector in Rkn equals the sum of
the Hamming weights of its components. We denote with Hn,k(h) the set of all
vectors v ∈ Rkn of ternary polynomials of Hamming weight h, where h ≤ nk.
By considering the coefficients of a polynomial in Rn as a vector of length n, a
polynomial in Hn,k(h) corresponds to a ternary vector of length nk with non-

zeroes in h positions, so that Hn,k(h) has
(
nk
h

)
2h elements. When k = 1, we omit
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it from the notation, and Hn(h) denotes the set of all ternary polynomials in
Rn of Hamming weight h, corresponding to the set of all vectors v ∈ {−1, 0, 1}n
with Hamming weight h. Secret keys in Round5 consist of matrices that contain
(column) vectors that are distributed according to some distribution χS defined
over the set Hn,d/n(h).

2.3 Hardness Assumption: The General Learning with Rounding
problem

The problem underlying the security of Round5 is the General Learning with
Rounding (GLWR) Problem, formally defined as follows:

Definition 1 (General LWR (GLWR)). Let d, n, p, q be positive integers
such that q ≥ p ≥ 2, and n ∈ {1, d}. Let χS be a probability distribution on

Rd/nn .
The search version of the GLWR problem sGLWRd,n,m,q,p(χS) is as follows:

Given m samples of the form (ai, bi =
〈⌊

p
q ·
〈
aTi s

〉
q

⌉〉
p
) with ai ∈ Rd/nn,q for

1 ≤ i ≤ m and a fixed s← χS, recover s.
The decision version of the GLWR problem dGLWRd,n,m,q,p(χS) is to distin-

guish between the uniform distribution for the samples (ai, bi) on Rd/nn,q × Rn,p
and m samples from the distribution (ai, bi =

〈⌊
p
q ·
〈
aTi s

〉
q

⌉〉
p
) with ai

$←− Rd/nn,q

for 1 ≤ i ≤ m for some secret s← χS common to all i.

When the secret distribution χS is the uniform one over Rd/nn,q , it is omitted
from notation. When the distribution χS is set to U (H1,d(h)), we denote the spe-
cialized version GLWRd,n,m,q,p

(
U
(
Hn,d/n(h)

))
of the (decision) GLWR problem,

as dGLWRspt (spt denoting sparse-ternary secrets) for brevity. When n = 1, the
above is equivalent to the LWR problem LWRspt with dimension d, large modulus
q, rounding modulus p, and sparse-ternary secrets. The hardness of the LWR
problem has been studied in [10,4,16,9] and established based on the hardness
of the Learning with Errors (LWE) problem [55]. The most recent reductions
are due to [9, Theorem 6.4] (that preserves the dimension n between the two
problems) and [16, Theorem 3] (that preserves the number of samples m). We
extend the above work by proving that there exists a polynomial-time reduction
from the (decision) Learning with Errors (LWE) problem with secrets chosen
uniformly from Zdq and errors chosen from a Gaussian distribution, to (decision)
LWRspt, for appropriate parameters. A full statement of the reduction and its
proof can be found in Section 5.3.

When n = d ≥ 1 is such that n + 1 is prime, and Rn,q = Zq[x]/ (Φn+1(x)),
the dGLWRspt problem is equivalent to the Ring LWR problem RLWRspt defined on
Φd+1(x), dimension d, large modulus q, rounding modulus p, and sparse-ternary
secrets. We are only aware of a reduction from Decision-RLWE to Decision-
RLWR due to [10, Theorem 3.2] which requires the underlying ring and secret
to be the same for the two problems, that the RLWE noise is sampled from
any (balanced) distribution in {−B, . . . , B}, and q is super-polynomial in n, i.e.,
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Underlying problem and parameter sets (Sections 2.3, 7)

GLWR (d > 1, n = 1), q a power of 2

R5T{τ}
GLWR (d > 1, n = d), q a power of 2

R5ND

CPA-PKE (Section 3.2)
f
(τ)
d,n (Section 3.1)

CCA-KEM (Section 3.5) DEM

Round5.KEM (Section 3.4) Round5.PKE (Section 3.6)

XEf () (Section 3.3)

Fig. 1: Overview of Round5.

q ≥ pBnω(1). The last condition may be too restrictive for practical schemes.
Hence, although [10, Theorem 3.2] is relevant for the (asymptotic) security of
our ring-based instantiations, it remains to be seen whether it can be improved
and generalized to be directly applicable.

We define the GLWR oracle Om,χS ,s for a secret distribution χS that returns
m GLWR samples as follows:

Om,χS ,s : A
$←− Rm×d/nn,q , s← χS ; return

(
A,

〈⌊
p

q
· 〈As〉q

⌉〉
p

)
(1)

The dGLWRspt problem is to distinguish between the distributions (U(Rd/nn,q )×
U(Rn,p))m andOm,χS ,s, with s common to allm samples and χS := U(Hn,d/n(h)).
For an adversary A, we define

Adv
dGLWRspt

d,n,m,q,p(A) = |Pr
[
A(A, b) = 1 | (A, b) $←− Om,χS ,s

]
−

Pr
[
A(A, b) = 1 | A $←− Rm×d/nn,q , b

$←− Rmn,p
]
|

(2)

For an extended form of the decision-GLWR problem with the secret in form
of a matrix consisting of n independent secret vectors, we define a similar oracle
Om,χS ,n,S as follows:

Om,χS ,n,S : A
$←− Rm×d/nn,q , S ← (χS)n; return

(
A,

〈⌊
p

q
· 〈AS〉q

⌉〉
p

)
(3)

The advantage of an adversary for this extended form of the decision-GLWR
problem is defined in a similar manner as above.

3 Round5

Figure 1 provides an overview of Round5, and shows the different configurations
of the schemes based on the underlying GLWR problem. Externally Round5
consists of:
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– Round5.KEM (Section 3.4), an IND-CPA secure key encapsulation mech-
anism (KEM).

– Round5.PKE (Section 3.6), an IND-CCA secure public key encryption
algorithm (PKE).

Section 3.1 describes options for generating Round5’s public parameter A.
The public schemes are derived from internal building blocks; We first describe
CPA-PKE (Section 3.2), and the error correction code XEf (Section 3.3), leading
to Round5.KEM.

We then apply a KEM variant [38] of the Fujisaki-Okamoto transform to
CPA-PKE, to obtain a key encapsulation mechanism CCA-KEM (Section 3.5),
that is IND-CCA secure in the classical and quantum ROM model [12,17].
Round5.PKE is obtained by combining CCA-KEM with a secure one-time symmetric-
key encryption scheme. Details of the IND-CPA and IND-CCA [11] security
properties of CPA-PKE, CCA-KEM, and Round5.PKE are discussed in Sec-
tion 5.

3.1 Internal building block: Definitions of f
(τ)
d,n(σ)

Round5.KEM and Round5.PKE require the generation of the GLWR public

parameter A ∈ Rd/n×d/nn,q . In order to make the choice for A explicit, a seed σ is
used, as well as a description of how to construct A from σ ∈ {0, 1}κ. Round5

provides three functions for f
(τ)
d,n(σ), with τ ∈ {0, 1, 2}, for doing so. We note

that for τ ∈ {1, 2}, the mapping f
(τ)
d,n is only applied if n = 1, i.e., in the non-ring

case. In the definitions given below, s′ = H(0x0000|s) indicates the derivation
of seed s′ from seed s by using padding 0x0000 and applying a hash function H.
With PRNG(s)[k] we mean the k-th element of the deterministic pseudorandom
number generator PRNG applied to seed s.

0. f
(0)
d,n: A new A ∈ Rd/n×d/nn,q is derived by a PRNG from a seed σ for each

protocol instantiation. We define σ0 = H(0x0000|σ). If n = 1, then A ∈
Zd×dq , and for 0 ≤ i, j ≤ d − 1, ai,j = PRNG(σ0)[id + j]. This is the same

generation of the public parameter in [18]. If n = d, then A =
∑d−1
k=0 akx

k ∈
Zq[x], and ak = PRNG(σ0)[k] for 0 ≤ k ≤ d − 1, like in [3]. In both cases,
PRNG outputs symbols in {0, 1, . . . , q − 1}.

1. f
(1)
d,1 : In this instantiation, which is only used for the case n = 1, a new A

is derived using permutations on a long-term matrix Amaster ∈ Zd×dq . The
permutation is computed by applying a PRNG to seed σ1 = H(0x0001|σ),
as follows. For 0 ≤ i ≤ d−1, we have oi = PRNG(σ1)[i]. For 0 ≤ i, j ≤ d−1,
ai,j = amaster

i,(j+oi)(mod d). In this case, PRNG outputs symbols in {0, 1, . . . , d−
1}.

2. f
(2)
d,1 computes the elements inA by applying a permutation to a set of L = q

elements. The permutation is computed as follows:
σ1 = H(0x0001|σ), oi = PRNG(σ1)[i] for 0 ≤ i ≤ d − 1. Here PRNG
outputs symbols from {0, 1, . . . , L− 1}.
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The entries of the matrix A are obtained as

ai,j = PRNG1(σ0)[(j + oi)(mod L)], where σ0 = H(0x0000|σ). Here
PRNG1 outputs symbols from {0, 1, . . . , q − 1}.

The functions f
(τ)
d,n stop both backdoor-like and precomputation attacks. Sec-

tion 5.1 contains a discussion on the role of f
(0)
d,n and f

(1)
d,n in the provable security

of Round5.

3.2 Internal building block: CPA-PKE

CPA-PKE consists of algorithms 1 (key-generation), 2 (encryption) and 3 (de-
cryption), and various cryptosystem parameters, viz positive integers n, d, h,
p, q, t, B, n, m, µ, y, and a security parameter κ. In the proposed configura-
tions, n ∈ {1, d}, and q, p, t are powers of 2, such that 2B |t|p|q. It is required that
µ ≤ n ·m ·n and that µB ≥ κ. The function Sampleµ : C ∈ Rn×mn,p → Zµp outputs
the values of µ of the n ·m · n polynomial coefficients present in C. For n = d,
the parameters n = m = 1, then Sampleµ picks up the µ coefficients of highest
order. If n = 1, Sampleµ picks up the last µ entries of the vector obtained by
serializing the matrix row by row. CPA-PKE.Keygen generates a secret matrix
S with ternary columns drawn independently according to a distribution χS
with support on

(
Hn,d/n(h)

)1×n
.

The integer y is the index for an error correction code Yy ⊂ Zµ
2B

. We
have an encoding function ECC Ency : {0, 1}κ → Yy and a decoding function
ECC Decy : Zµ

2B
→ {0, 1}κ such that for each m ∈ {0, 1}κ:

ECC Decy(ECC Ency(m)) = m. (4)

Algorithm CPA-PKE.Encrypt employs a deterministic function fR for gener-

ating a secret matrix R ∈
(
Hn,d/n(h)

)1×m
from an input ρ. If ρ is uniformly

distributed, each column of fR(ρ) is distributed according to χS . Defining ρ as
an explicit input to CPA-PKE.Encrypt allows us to reuse this same algorithm
as a building block for both IND-CPA and IND-CCA secure cryptographic con-
structions. Furthermore, CPA-PKE uses five rounding constants, H1 up to h5.
These, combined with rounding downwards, implement all of the actual rounding

operations in its algorithms. The matrix H1 ∈ Rd/n×nn,q has all coefficients equal
to q/2p. This constant leads to rounding to the closest integer, exactly as done in
Round2 [6], as by definition for any x ∈ Zq, b(p/q) · {x+ (q/2p)}c ≡ b(p/q) · xe.
The coefficients of H2 ∈ Rd/n×mn,q and h3 ∈ Zµq all are equal to q/2z, for
z = max(p, tq/p). This ensures that Round5’s ciphertext (U ,v) is provably
pseudorandom under the GLWR assumption. Details are provided in the proof of
IND-CPA security for CPA-PKE and Round5.KEM (Section 5). All coefficients

of H4 ∈ Rd/n×mn,q are equal to
(
q
2p −

q
2z

)
. Finally, all coefficients of h5 ∈ Zµq are

equal to
(
q2

2pz −
q
2t −

q
2B+1

)
.
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Algorithm 1: CPA-PKE.Keygen()

1 Choose τ ∈ {0, 1, 2}
2 σ

$←− {0, 1}κ

3 A = f
(τ)
d,n(σ)

4 S ← χnS

5 B = 〈
⌊
p
q
· 〈AS +H1〉q

⌋
〉p

6 pk = (τ, σ,B)
7 sk = S
8 return (pk, sk)

Algorithm 2: CPA-PKE.Encrypt(pk,m, ρ)

1 A = f
(τ)
d,n(σ)

2 R = fR(ρ)

3 U = 〈
⌊
p
q
· 〈ATR+H2〉q

⌋
〉p

4 v = 〈
⌊
t
p
·
〈
Sampleµ(BTR) + h3

〉
p

⌋
+ t

2B
ECC Ency(m)〉t

5 c = (U ,v)
6 return c

Algorithm 3: CPA-PKE.Decrypt(sk, c)

1 vq = q
t
v

2 z =

〈⌊
2B

q

〈
vq − h5 − Sampleµ

(〈
ST
(
q
p
·U +H4

)〉
q

)〉
q

⌋〉
2B

3 m̂ = ECC Decy(z)
4 return m̂
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3.3 Error correction

Round5 has a trade-off between decryption error probability and security: the
smaller p

q , the higher both the security and the failure probability. In [35], it is
analyzed how error-correcting codes can be used the enhance the error resilience
of protocols like NewHope, Frodo and Kyber, and it is shown that the usage of
error correcting codes can significantly increase the estimated bit-security and
decrease the communication overhead. Round5 uses an f -bit error correcting
block code XEf to decrease the failure rate. The code is built using the same
strategy as codes used by TRUNC8 [58] (2-bit correction) and Hila5 [59] (5-bit
correction).

The XEf code is described by 2f “registers” Ri of size |Ri| = li. We view the
κ-bits payload block m as a binary polynomial mκ|−1x

|κ|−1 + · · ·+m1x+m0 of
length κ. Registers are defined via cyclic reduction

Ri = m mod xli − 1, (5)

or equivalently by

r(i,j) =
∑

k≡j mod li

mk (6)

where r(i,j) is bit j of register Ri. A transmitted message consists of the payload
m concatenated with register set r (a total of µ = κ+

∑
li bits).

Upon receiving a message (m′ | r′) one computes the register set r′′ corre-
sponding to m′ and compares it to the received register set r′ – that may also
have errors. Errors are in coefficients m′j where there is parity disagreements
r′(i,j mod li)

6= r′′(i,j mod li)
for multitude of registers Ri. We use a majority rule

and flip bit m′j if

2f∑
i=1

((
r′(i,〈j〉li )

− r′′(i,〈j〉li )
)

mod 2
)
≥ f + 1 (7)

where the sum is taken as the number of disagreeing register parity bits at j.
It is easy to show that if all length pairs satisfy lcm(li, lj) ≥ κ when i 6= j,

then this code always corrects at least f errors. Typically one chooses coprime
lengths l1 < l2 < · · · < l2f so that l1l2 ≥ κ.

The main advantage of XEf codes is that they avoid table look-ups and
conditions altogether and are therefore resistant to timing attacks.

3.4 Round5.KEM

Round5.KEM, an IND-CPA-secure [11] key encapsulation method, builds on
CPA-PKE (Section 3.2) and consists of algorithms 4, 5 and 6. It furthermore
uses the hash function H : {0, 1}∗ → {0, 1}κ, and a function bin(·) that expands
an input into its full binary representation (concatenated in case of multiple
inputs); the input and output types of bin shall be evident from the context.
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Algorithm 4: Round5.KEM.Keygen()

1 (pk, sk) = CPA-PKE.Keygen()
2 return (pk, sk)

Algorithm 5: Round5.KEM.Encapsulate(pk)

1 m
$←− {0, 1}κ

2 ρ
$←− {0, 1}κ

3 c = CPA-PKE.Encrypt(pk,m, ρ)
4 K = H(m, bin(c))
5 return (c,K)

Algorithm 6: Round5.KEM.Decapsulate(sk, c)

1 m = CPA-PKE.Decrypt(sk, c)
2 K = H(m, bin(c))
3 return K

3.5 Internal building block: CCA-KEM

CCA-KEM, a building block for Round5.PKE, consists of the algorithms 7, 8, 9,
and several system parameters and functions in addition to those from CPA-PKE
and Round5.KEM. In addition to the hash function H from Round5.KEM, it
uses another hash function G : {0, 1}∗ → {0, 1}κ × {0, 1}κ × {0, 1}κ. CCA-
KEM is actively secure as it is obtained by application of the Fujisaki-Okamoto
transform [38] on CPA-PKE, similarly as in [19, Sec. 4]. On decapsulation failure,
i.e. if the condition in line 4 of Algorithm 9, a pseudorandom key is returned,
causing later protocol steps to fail implicitly. Explicit failure notification would
complicate analysis, especially in the quantum random oracle (QROM) case.

3.6 Round5.PKE

The IND-CCA [54] public key encryption scheme Round5.PKE consists of algo-
rithms 10, 11 and 12. Round5.PKE combines CCA-KEM with a data encapsu-
lation mechanism (DEM), in the canonical way proposed by Cramer and Shoup
[27]. CCA-KEM is used to encapsulate a key K that is then used by the DEM
to encrypt an arbitrary-length plaintext, optionally adding integrity protection.
In decryption, CCA-KEM is used to decapsulate K, which is then used by the
DEM to decrypt and authenticate the plaintext.

4 Correctness of Round5

In this section, the decryption failure behavior of CPA-PKE is analyzed. In

decryption, the vector z = 〈b 2
B

q ζc〉2B is computed, where

ζ =

〈
vq − h5 − Sampleµ

(〈
ST
(
q

p
U +H4

)〉
q

)〉
q

.
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Algorithm 7: CCA-KEM.Keygen()

1 (pk, skCPA−PKE) = CPA-PKE.Keygen()

2 z
$←− {0, 1}κ

3 sk = (skCPA−PKE , z, pk)
4 return (pk, sk)

Algorithm 8: CCA-KEM.Encapsulate(pk)

1 m
$←− {0, 1}κ

2 (L, ρ, g) = G(m, bin(pk))
3 (U ,v) = CPA-PKE.Encrypt(pk,m, ρ)
4 c = (U ,v, g)
5 K = H(L, bin(U ,v), g)
6 return (c,K)

Algorithm 9: CCA-KEM.Decapsulate(sk, c)

1 m′ = CPA-PKE.Decrypt(skCPA−PKE , (U ,v))
2 (L′, ρ′, g′) = G(m′, bin(pk))
3 (U ′,v′) = CPA-PKE.Encrypt(pk,m′, ρ′)
4 if (U ′,v′, g′) = (U ,v, g) then
5 return K = H(L′, bin(U ,v), g)
6 else
7 return K = H(z, bin(U ,v), g)
8 end if

Algorithm 10: Round5.PKE.Keygen()

1 (pk, sk) = CCA-KEM.Keygen()
2 return (pk, sk)

Algorithm 11: Round5.PKE.Encrypt(pk,M)

1 (c1,K) = CCA-KEM.Encapsulate(pk)
2 (clen, c2) = DEM(K,M)
3 c = (c1, clen, c2)
4 return c

Algorithm 12: Round5.PKE.Decrypt(sk, c)

1 K = CCA-KEM.Decapsulate(sk, c1)
2 (mlen,M) = DEM−1(K, c2)
3 return (mlen,M)

13



As a first step, we derive a sufficient condition so that z and x = ECCy(m)
agree in a given position, where x is considered as a vector of (κ/B) B-bits
symbols.

We have that v ≡ b tp 〈Sampleµ(BTR+ h3)〉pc+ t
2B
x = t

p 〈Sampleµ(BTR+

h3)〉p − t
pIv + t

2B
x (mod t), where t

pIv is the effect of rounding, with each

component of Iv in Zp/t. Similarly, B = 〈(p/q) (AS +H1)− (p/q)IB〉p , and

U = 〈(p/q)(ATR+H2)−(p/q)IU 〉p, with all components of IB and IU in Zq/p.
We thus have that
ζ = 〈 q

2B
x+ q

ph3 − h5 − q
pIv + Sampleµ( qp 〈B

TR〉p − 〈ST ( qpU +H4)〉q)〉q.
As z = b 2

B

q ζc, it holds that xi = zi whenever

|
[
Jv + Sampleµ

(
JTBR− STJU

)]
i
| < q

2B+1
, (8)

where the subscript i means taking the i-th component, Jv = q
ph3−h5− q

2B+1 j−
q
pIv, JB = H1 − IB and JU = H2 +H4 − IU . The definitions of h3 and h5

imply that Jv = q
p ( p2t − Iv). As each entry of Iv is in Zp/t, each component of

Jv has absolute value at most q
p ·

p
2t = q

2t . As a result, xi = zi whenever

|[Sampleµ(JTBR− S
TJU )]i| < ∆ :=

q

2B+1
− q

2t
. (9)

The definitions of H1,H2 and H4 imply that all entries of JB and JU are from
the set I := (− q

2p ,
q
2p ]. In our analysis, we assume that the entries of JB and

JU are drawn independently and uniformly from I. Under this assumption, we
analyse the probability that the condition in 9 is not satisfied.

In the non-ring case, each entry of JTBR and of STJU is the inner product of

a row of JTB (resp. a column of JU ) and a ternary vector with h/2 entries equal

to one and h/2 entries equal to minus one. Hence each entry of JTBR−S
TJU is

distributed as the sum of h uniform variables on I minus the sum of h uniform
variables on I. The latter distribution can easily be computed explicitly. In the
ring case, by straightforward calculation,

〈s(x)e(x)〉Φn+1(x) =

n−1∑
k=0

dk(s, e)xk,

where for 0 ≤ k ≤ n− 2

dk(s, e) = e0sk +

k∑
j=1

ej(sk−j − sn−j)− ek+1sn−k−1 +

n−1∑
j=k+2

ej(sn+k+1−j − sn−j),

dn−2(s, e) = e0sn−2 +

n−2∑
j=1

ej(sn−2−j − sn−j)− en−1s1, and
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dn−1(s, e) = e0sn−1 +

n−1∑
j=1

ej(sn−1−j − sn−j).

That is, we can write

dk(s, e) =

n−1∑
j=0

wj,k(s)ej ,

where each weighing term wj,k(s) is a single coefficients of s, or the difference of
two coefficients of s. In case s is a ternary polynomial, wj,k(s) ∈ {−2,−1, 0, 1, 2}.
For a ternary polynomial s, integers i, k with −2 ≤ i ≤ 2 and 0 ≤ k ≤ n− 1, we
define

fi,k(s) = |{j | 0 ≤ j ≤ n− 1, wj,k(s) = i}|.
With this notation and the above assumptions, the k-th component of the

polynomial jB(x)r(x)− s(x)jU (x) has the same distribution as

Y =

2∑
i=−2

i

wi∑
j=1

Xi,j , (10)

where each Xi,j is a uniformly distributed variable on I, and wi = fi,k(s) +
fi,k(−r). Assuming that the Xi,j ’s in (10) are independent, the mean µY and
the variance σ2

Y of Y satisfy

µY = µ ·
2∑

i=−2

wi and σ2
Y = σ2

2∑
i=−2

i2wi,

where µ =
1

2
and σ2 =

1

12

(
(
q

p
)2 − 1

)
.

We approximate the tail distribution of Y by that of a Gaussian distribution
with mean µY and variance σ2

Y , i.e., we approximate

Prob(|Y | ≥ ∆) ≤ Prob (|Y − µY | ≥ ∆− |µY |) ≈

erfc

(
∆− |µY |√

2σY

)
, where erfc(x) :=

2√
π

∫ ∞
x

e−t
2

dt.

The Gaussian approximation depends on w−2, w−1, w1 and w−2. We now
given an upper bound on the approximation that depends on one single vari-
able. As each of the h non-zero coefficients of s occurs in at most two weigh-
ing coefficients,

∑
i |i|wi ≤ 4h, and so |µY | = | 12

∑
i iwi| ≤ 2h, and σ2

Y =

σ2(w1 + w−1 + 4w2 + 4w−2) ≤ σ2(4h+ 2(w2 + 2w−2)), and so

prob(|Y | ≥ q

2B+1
− q

2t
) ≈ uy(w2 + w−2), where (11)

uy(k) = erfc

(
q

2B+1 − q
2t
− 2h

(2σ2(4h+ 2k))1/2

)
.

Finally, we approximate the per-symbol failure probability pf as

pf ≈
∑
k

prob(w2 + w−2 = k) · uy(k). (12)
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The secret polynomial s has n terms; h/2 of those have value 1, h/2 of them
have value −1, and the remaining coefficients have value 0. The number of secret
polynomials thus equals

(
n
h/2

)(
n−h/2
h/2

)
. The number of secret polynomials with a

one position i and a minus one in position j 6= i equals
(
n−2
h/2−1

)(
n−2−(h/2−1)

h/2−1
)
.

The probability β that a weighing factor equals ±2 thus equals h
n

h
2(n−1) , twice

the quotient of the two above products of binomial coefficients. We approximate
the per-symbol failure probability by

pf ≈
∑
k

(
2n

k

)
βk(1− β)2n−kuy(k), where β =

h

n
· h

2(n− 1)
.

If B = 1, Round5 employs a code XEf that correct f bit errors. Assuming that
bit failures occur independently and with probability pf , the failure probability
after decoding is at most

µ∑
j=f+1

(
µ

j

)
pjf (1− pf )µ−j .

In case that no error correction is applied, by the union bound, the failure
probability after decoding is at most µ · pf .

5 Provable Security of Round5

In this section, we discuss proofs of security for both Round5 and its underlying
hard problems.

We begin by giving an overview of the security reduction for Round5 when
replacing the public parameter A sampled from a truly uniform distribution,
with one expanded from a short random seed in a pseudorandom fashion in
Section 5.1. Section 5.2 gives a proof of IND-CPA security for the Round5 core
building block CPA-PKE, following which we sketch the proofs of security for
Round5.KEM, CCA-KEM and Round5.PKE.

Finally, in Section 5.3, we give a proof of hardness of Round5’s underlying
problem – the decision GLWR problem with sparse-ternary secrets, assuming
the hardness of decision Learning with Errors with uniform secrets and Gaussian
errors [55].

5.1 Deterministic generation of A

The General Learning with Rounding (GLWR) public parameter A in Round5

is generated using the function f
(τ)
d,n from a short random seed (see Section 3.1).

The core component in f
(τ)
d,n responsible for deterministically expanding this

short random seed into a longer random sequence is either AES256 [34] or
SHAKE256 [34]. In order to relate Round5’s security to the hardness of the
GLWR problem, we reuse Naehrig et al.’s argument in [50] to argue that we
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can replace a uniformly sampled matrix A ∈ Rd/n×d/nn,q with matrices sampled
according to Round5’s key-generation algorithm, for both of the above two al-
gorithms, while considering a realistic adversary with access to the seed. The
proof for both the cases of AES256 and SHAKE256 proceeds by using the no-
tion of indifferentiability [48,26, Def. 3], in exactly the same manner as in [50,
Sec. 5.1.4].

In the case of SHAKE256, the proof of security applies directly to the instan-

tiations f
(0)
d,n and f

(1)
d,n. In case of AES256, it holds directly for the instantiation

f
(0)
d,n, and also for f

(1)
d,n when the function permutes complete AES blocks. We

refer to [50, Sec. 5.1.4] for details.

5.2 Provable security of CPA-PKE, Round5.KEM, CCA-KEM and
Round5.PKE

The following theorem proves the IND-CPA security of the Round5 building
block CPA-PKE, under the decision-GLWR assumption with sparse-ternary se-
crets.

Theorem 1 If fn : {0, 1}µB → Rd/n×d/nn,q is a secure mapping, fR has out-

put indistinguishable from (χS)
m

, then CPA-PKE is IND-CPA secure under the
hardness assumption of the decision-GLWR problem with sparse-ternary secrets,
assuming t|p|z|q for z = max(p, tq/p). More precisely, for every IND-CPA ad-
versary A, if AdvIND-CPA

CPA-PKE(A) is the advantage in winning the IND-CPA game,
then there exist adversaries D and reduction algorithms C′, E ′ such that

AdvIND-CPA
PKE (A) ≤ n ·AdvdGLWRspt

d,n, d
n
,q,p

(
A ◦ C′

)
+ AdvfR(D)+

m ·AdvdGLWRspt
d,n, d

n
+n,q,z

(
A ◦ E ′

) (13)

Adv
dGLWRspt
d,n,m,q1,q2

(Z) is the advantage of adversary Z in distinguishing m GLWR
samples (with sparse-ternary secrets) from uniform, with the GLWR problem
defined for the parameters d, n, q1, q2. Finally, the adversary D distinguishes be-
tween U({fR(ρ) | ρ ∈ {0, 1}µB}) and (χS)m. The runtimes of D,A ◦ C′,A ◦ E ′
are essentially the same as that of A.

Proof. The proof of Theorem 1 proceeds via a sequence of seven games:

Game 0 This is the real IND-CPA game for CPA-PKE: AdvIND-CPA
CPA-PKE(A) =

|Pr(S0)− 1/2|.
Game 1 (A,B) is sampled from the uniform distribution onRd/n×d/nn,q ×Rd/n×nn,p

instead of from Od/n,χS ,n,S . Distinguishing between this and Game 1 leads,
by a standard hybrid argument, to a distinguisher C′ between Od/n,χS ,s and

the uniform distribution: |PrS0 − Pr(S1)| ≤ n ·Adv
dGLWRspt

d,n, dn ,q,p
(A ◦ C′).

Game 2 R is sampled uniformly from χmS = (U(Hn,d/n(h))1×m instead of via
fR. Distinguishing this game from game 2 leads to a distinguisher D for the
above distributions: AdvfR(D) ≥ |Pr(S1)− Pr(S2)|.
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Game 3 B is replaced by Bq that is sampled uniformly from Rd/n×nn,q , and the
ciphertext component v is replaced by

v′ =

〈
Sampleµ

(⌊
tq

p
· 1

q
·
〈
BT
q R+H3

〉
q

⌋)
+

t

2B
·mb

〉
tq
p

Note that 〈v′〉t = v. As p|q, the pairs (〈Bq〉p, 〈v
′〉t) and (B,v) in games

4 and 3 respectively, are equally distributed. So by providing A with input
(〈Bq〉p, 〈v

′〉t), we obtain that: Pr(S2) = Pr(S3). This technique is originally

due to the authors of [29].
Game 4 For z = max(p, tq/p), we define

U ′ =

〈⌊
z

q
·
〈
ATR+H2

〉
q

⌋〉
z

,

v′′ =

〈
Sampleµ(

⌊
z

q
·
〈
BT
q R+H3

〉
q

⌋
) +

pz

q2B
·mb

〉
z

.

We consider the following lemma:

Lemma 1 For a, b, c, Y ∈ Z, such that a|b|c,⌊a
c
· Y
⌋

=

⌊
a

b
·
〈⌊

b

c
· Y
⌋〉

b

⌋
(mod a).

Using the above lemma, we infer thatU =
〈
p
z ·U

′〉
p
, and v′ =

〈⌊
tq
pz · v

′′
⌋〉

tq/p
.

We now introduce the matrix V ′′ =
⌊
z
q 〈B

T
q R+H3〉q

⌋
+ pz

2b
M b, with all

components of M b in Z2B such that v′′ = Sampleµ(V ′′). In Game 5, the ci-
pher text (U ,v′) is replaced by (U ′,V ′′). As shown above, (U ′,V ′′) can be
transformed into (U ,v′). Hence, if A is provided with these transformed in-
puts, then Pr(S3) = Pr(S4). As all polynomial coefficients in H2 and H3 are

equal to q
2z , we have that

[
U ′

V ′′

]
=

⌊
z
q ·
〈[

AT

Bq
T

]
R
〉
q

⌉
+
[

0
pz

q2B
Mb

]
. As A,Bq

and R are uniformly distributed, the above implies that
[
U ′

V ′′

]
−
[

0
pz

q2B
Mb

]
form d/n+ n LWR samples.

Game 5 The components U ′ and V ′′ are replaced by uniformly distributed
matrices. Equivalently, U ′ and V ′′ − pz

q2B
M b are replaced by uniformly

distributed matrices. As this equivalence holds for any M b, it is irrele-
vant that M b is chosen from an error-correcting code. Distinguishing be-
tween this and game 5 leads to a distinguisher E ′ between the uniform
and GLWR distribution (with parameters as follows): |Pr(S5)− Pr(S6)| ≤
m · AdGLWRspt

d,n, dn+n,q,z
(A ◦ E ′). Furthermore, for each independently chosen mes-

sagemb, the distribution of the inputs toA is indistinguishable from uniform.
Therefore Pr(S6) = 1/2.

Combining the equations above completes the proof of IND-CPA security for
CPA-PKE.
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We now prove the IND-CPA security claim of Round5.KEM.

Theorem 2 If fR has output indistinguishable from (χS)
m

, and H is a se-
cure pseudorandom function, then Round5.KEM is IND-CPA secure under the
hardness assumption of the decision-GLWR problem with sparse-ternary secrets,
assuming t|p|z|q for z = max(p, tq/p). More precisely, for every IND-CPA adver-
sary A, if AdvIND-CPA

Round5.KEM(A) is the advantage in winning the IND-CPA game,
then there exist adversaries D, G and reduction algorithms C′, E ′ such that

AdvIND-CPA
Round5.KEM(A) ≤ n ·AdvdGLWRspt

d,n, d
n
,q,p

(
A ◦ C′

)
+ AdvfR(D)

+m ·AdvdGLWRspt
d,n, d

n
+n,q,z

(
A ◦ E ′

)
+ AdvH(G)

(14)

Adv
dGLWRspt
d,n,m,q1,q2

(Z) is the advantage of adversary Z in distinguishing m GLWR
samples (with sparse-ternary secrets) from uniform, with the GLWR problem
defined for the parameters d, n, q1, q2. The adversary D distinguishes between
U({fR(ρ) | ρ ∈ {0, 1}µB}) and (χS)m. Finally, the adversary G distinguishes
the output of the pseudorandom function H (given uniform input) from random.
The runtimes of D,G,A ◦ C′,A ◦ E ′ are essentially the same as that of A.

Proof. The IND-CPA security of Round5.KEM can be proved through a se-
quence of 8 games. The first 7 of them are similar as for CPA-PKE. In the final
game, the shared key K is generated uniformly. An adversary that can distin-
guish between this game and the previous one leads to a distinguisher G between
the output of the pseudorandom function H and the uniform distribution.

Next, as Round5.PKE is constructed from the key encapsulation mechanism
CCA-KEM and a secure data-encapsulation mechanism in the canonical way
as proposed by Cramer and Shoup [27], it is sufficient to show the IND-CCA
security of CCA-KEM. When the hash functions G and H in Algorithms 8 and 9
are modeled as random oracles, CCA-KEM is IND-CCA secure, assuming the
hardness of the decision GLWR problem with sparse-ternary secrets.

Theorem 3 For any adversary A that makes at most qH queries to the random
oracle H, at most qG queries to the random oracle G, and at most qD queries
to the decryption oracle, there exists an adversary B such that

AdvIND-CCA
CCA-KEM (A) ≤ 3 · AdvIND-CPA

CPA-PKE (B) + qG · δ +
2qG + qH + 1

2µB
(15)

when CPA-PKE and CCA-KEM both have a probability of decryption/decapsu-
lation failure that is at most δ.

Proof. The proof of Theorem 3 proceeds via two transformation reductions due
to [38]. First, Lemma 2 below establishes that the OW-PCA5 security of the
deterministic public key encryption scheme PKE1 obtained from the public key
encryption scheme PKE via transformation T [38], tightly reduces to IND-CPA

5 The security notion of One-Way against Plaintext Checking Attacks.
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security of PKE1. This lemma is a special case of [38, Theorem 3.2] with qv = 0,
since by definition OW-PCA security is OW-PCVA6 security where the attacker
is not allowed to query the ciphertext validity checking oracle.

Lemma 2 (Adapted from [38, Theorem 3.2]) Assume PKE to be δ cor-
rect. Then, for any OW-PCA adversary B that issues at most qG queries to
the random oracle G, qP queries to a plaintext checking oracle PCO, there exists
an IND-CPA adversary C such that

AdvOW-PCA
PKE1

(B) ≤ qG · δ +
2qG + 1

|M|
+ 3 · AdvIND-CPA

PKE (C) (16)

where M is the message/plaintext space of the public key encryption schemes
PKE and PKE1.

Next, combination of Lemma 2 and the reduction in [38, Theorem 3.4] shows
that the IND-CCA security of a KEM with implicit rejection that is constructed
using a non-deterministic PKE (like CCA-KEM), tightly reduces to the IND-
CPA security of said PKE.

Direct application of [38, Theorem 4.6], similarly as in [19, Theorem 4.2],
shows that CCA-KEM is IND-CCA secure in the quantum random oracle model.
The resulting security bound however is not tight.

Theorem 4 For any quantum adversary A that makes at most qH queries to
the quantum random oracle H, at most qG queries to the quantum random oracle
G, and at most qD (classical) queries to the decapsulation oracle, there exists a
quantum adversary B such that

AdvIND-CCA
CCA-KEM (A) ≤ 4qH

√
qD · qH · δ + qG ·

√
AdvIND-CPA

CPA-PKE (B) (17)

5.3 Hardness of Sparse-Ternary LWR

In this section, we prove that the Decision-LWR problem with sparse-ternary
secrets is hard assuming that the small modulus p divides the large modulus q,
and that decision-LWE with Gaussian noise and secrets chosen uniformly from
Zdq is hard.

Theorem 5 Let k, p, q ≥ 1 and m ≥ n ≥ h ≥ 1 be integers such that p divides
q, and k ≥ m′ = q

p ·m. Let ε ∈ (0, 12 ), and α, δ > 0 such that

α ≥ q−1

√(
2

π

)
ln(2n(1 + ε−1)),

(
n

h

)
2h ≥ qk+1 · δ−2, m = O

(
logn

α
√

10h

)
. (18)

There exist three (transformation) reductions from dLWEk,m′,q,Dα to
dLWEn,m′,q,Dα√10h

(U(Hn (h))) such that for any algorithm for the latter problem

6 The security notion of OW-PCA, with access to a ciphertext Validity checking oracle.
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with advantage ζ, at least one of the reductions produces an algorithm for the
former with advantage at least (ζ−δ)/(3m′)−41ε/2−

∑
s|q,s prime s

−k−1. More-

over, there is a reduction from dLWEn,m′,q,Dα√10h
(U(Hn (h))) to

dLWRn,m,q,p (U(Hn (h))).

Proof. Combination of Lemma 3 and Lemma 6 with α′ = α
√

10h.

Step 1: Reduction from LWE with secrets in Zq and Gaussian errors to Sparse-
ternary LWE. In [25, Theorem 1], specializing [24, Theorem 4], it is shown that
if
(
n
h

)
2h > qk+1 and ω > α

√
10h, then the dLWEn,m,q,Dω (U(Hn (h))) problem is

at least as hard as the dLWEk,m,q,Dα problem. More formally, generalizing [22,
Theorem 4.1], the following holds.

Lemma 3 Let k, q ≥ 1 and m ≥ n ≥ h ≥ 1 be integers, and let ε ∈ (0, 12 ),

and α, δ > 0 such that α ≥ q−1
√

(2/π) ln(2n(1 + ε−1)), and
(
n
h

)
2h ≥ qk+1 · δ−2.

There exist three (transformation) reductions from dLWEk,m,q,Dα to
dLWEn,m,q,Dα√10h

(U(Hn (h))) such that for any algorithm for the latter problem
with advantage ζ, at least one of the reductions produces an algorithm for the
former with advantage at least (ζ − δ)/(3m)− 41ε/2−

∑
s|q,s prime s

−k−1.

Step 2: Reduction from Sparse-ternary LWE to Sparse-ternary LWR. Bai et al.
provide in [9, Theorem 6.4] a reduction from LWE with Gaussian noise to LWR,
that is based on two independent reductions. One of these reductions [9, Theo-
rem 6.3] holds for any secret distribution with support on Zn∗q = {(x1, . . . , xn) ∈
Znq | gcd(x1, x2, . . . , xn, q) = 1}, and therefore can be applied when the secret is
chosen from {−1, 0, 1}n. The other reduction [9, Theorem 5.1] however, implic-
itly assumes the secret to be chosen uniformly at random from Znq . Below, we
describe an extension of [9, Theorem 5.1] that describes a reduction from LWE
with Gaussian noise and sparse ternary secrets to LWR with sparse-ternary se-
crets. UB denotes the continuous uniform distribution in [−B, . . . , B].

Lemma 4 (Adapted from [9, Theorem 5.1]) Let n,m, q be positive integers.
Let α,B > 0 be real numbers with B = Ω (mα/log n) and Bq ∈ Z. Let m >

log
((
n
h

)
2h
)
/log (α+B)

−1 ≥ 1. Then there is a polynomial time reduction from
LWEn,m,q,Dα(U(Hn(h))) to LWEn,m,q,φ(U(Hn(h))) with φ = 1

q bqUBe.

Proof. The reduction proceeds similar to that of [9, Theorem 5.1], relying on
five steps.

1. A reduction from dLWEn,m,q,Dα to dLWEn,m,q,ψ, with ψ = Dα + UB .

2. A reduction from dLWEn,m,q,ψ to sLWEn,m,q,ψ. We adapt the corresponding
step in [9, Theorem 5.1] to work for the uniform distribution on Hn(h)
instead of that on Znq , resulting in the bound on m as in our lemma.

3. A reduction from sLWEn,m,q,ψ to sLWEn,m,q,UB .

4. A reduction from sLWEn,m,q,UB to sLWEn,m,q,φ, with φ = 1
q bqUBe.
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5. A reduction from sLWEn,m,q,φ to dLWEn,m,q,φ. Since the modulus q is not a
prime, the argument from [9, Theorem 5.1] cannot be applied. Instead, we
extend an argument due to Regev (see, e.g, [55]) to prove the search-to-
decision reduction, which requires that Bq is an integer. We first state an
easy lemma.

Lemma 5 Let a > 1, and let φ be the discrete probability distribution ob-
tained by rounding the continuous uniform probability on [−a, a] to the closest
integer. If a is an integer, then

∑
keven φ(k) =

∑
kodd φ(k) = 1

2 .

Proof. For |k| ≤ bac − 1, the interval [k − 1
2 , k + 1

2 ] is a subset of −[a, a], so

that
∑
k≡1−bac (mod 2) φ(k) =

∑bac−1
j=0 φ(2j − bac+ 1) = bac

2a .

We are now in a position to extend Regev’s reduction. Let φ be a probability
distribution on Zq such that

∑
k φ(2k) =

∑
k φ(2k+1) = 1

2 . For each s ∈ Znq ,
the probability distribution As,φ on Znq ×Zq is obtained by choosing a ∈ Znq
uniformly, e according to φ, and outputting (a, (a, s) + e) (additions modulo
q). If qB is integer, then a distinguisher for dLWEn,m,q,φ(Ds) will lead to
a solver for sLWEn,m,q,φ(Ds) for any secret distribution Ds supported on
{−1, 0, 1}n, where φ is the discrete noise 1

q bqUBc. If Bq is integer, φ is

distributed as φ(k) = 1
2B for |k| ≤ B − 1, and φ(B) = φ(−B) = 1

4B .
If Bq is integer, then a distinguisher for deciding between uniform samples
(a, u) ∈ U(Znq ) × U(Zq) and samples (a, b) from As,φ for some unknown
s ∈ S ⊂ {−1, 0, 1}n can be used for solving: first, we show how to find s1,
the secret’s first coordinate. For each k ∈ Zq, consider the transformation:
for each pair (a, b), we choose a random r ∈ Zq and output (a′, b′) = (a +
(r, 0, . . . , 0), b + rk). This transformation takes the uniform distribution to
itself. Now assume that b = (a, s) + e for some s ∈ S and some error e.
Then b′ = (a′, s) + r(k − s1) + e. If k = s1, then (a′, b′) is from As,φ. If
|k − s1| = 1 , then r(k − s1) is uniform over Zq, and so (a′,b) follows
the uniform distribution. Finally, it can be that |k − s1| = 2. We consider
k−s1 = 2, the other case being similar. Then, b′ = (a, s)+2r+e (mod q). If
q is odd, 2r is uniformly distributed on Zq, so (a′,b) is uniformly distributed.
If q is even, 2r is distributed uniformly on the even elements of Zq. With
our specific error distribution, e is even with probability 1

2 , so that 2r + e
is distributed uniformly on Zq. So in this case too, (a′, b) is distributed
uniformly.

Finally, we state the reduction from dLWEn,m,q,Dα to dLWRn,m,q,p, for the
sparse-ternary secret distribution.

Lemma 6 Let p, q be positive integers such that p divides q. Let α′ > 0. Let
m′ = m ·(q/p) with m = O(log n/α′) for m′ ≥ m ≥ n ≥ 1. There is a polynomial
time reduction from dLWEn,m′,q,Dα′ to dLWRn,m,q,p, both defined for the sparse-
ternary secret distribution.

Proof. Let B = q/2p. The reduction has two steps: first, a reduction from
dLWEn,m′,q,Dα′ to dLWEn,m′,q,φ, where B = Ω(m′α′/ log n), due to Lemma 4.
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Second, a reduction from dLWEn,m′,q,φ to dLWRn,m,q,p, due to [9, Theorem 6.3].

As m′ = m · (q/p) = (q/p)O( logn
α′ ), it follows that B = q/2p = Ω(m′α′/ log n),

so that Lemma 4 indeed is applicable.

Note that the conditions imposed by Lemma 4 imply that 1/α must at least
grow linearly in n. This is a common bottleneck in known LWE to LWR re-
ductions [9,16,10], and is an open problem. As such, it stands as an obstacle
in using the above reduction in selecting concrete parameters for our scheme.
The reduction does still strongly demonstrate the asymptotic underlying secu-
rity of our scheme. We note finally, that no lattice-based cryptosystem to the
best of our knowledge that demonstrates practical performance, actually selects
concrete parameters from reductions to underlying worst-case problems.

6 Concrete Security of Round5

In this section we analyze the security of Round5 against known attacks. In
our analysis, we adopt the conservative approach introduced in [3, Sec. 6.1] of
considering the core-SVP hardness of (Ring) Learning with Rounding, i.e., we
assume that the number of calls by the lattice reduction algorithm to the SVP
oracle is one. This is a conservative lower bound on the attack cost, as the
number of calls in practice is more than one (increasing the cost) but difficult
to accurately estimate.

Furthermore, we consider sieving algorithms instead of enumeration as this
SVP oracle since they lead to stronger attacks for lattice dimensions in the range
we consider [3], further enhanced with Grover’s quantum search algorithm [36] to
fit a post-quantum scenario. This leads to an attack cost estimate of 20.265b+o(b)

for block-size b in BKZ lattice reduction [23,61], for example. Ignoring Grover
speedup leads to a classical atack cost estimate of 20.292b+o(b). Both the above
heuristic costs stem from the work in [43,44], and are assumed to be the best
known running time of a sieve algorithm, quantum and classical respectively. To
remain consistently conservative in our analysis, we ignore the sub-exponential
factor o(b) in the attack cost, which is known to be greater than 1 in practice [3].

We optimize Round5 parameters such that the best known attacks result
in at least a minimum targeted cost – both for post-quantum and classical at-
tack scenarios, following which we choose parameters that result in minimum
bandwidth requirements.

6.1 Lattice Reduction-based attacks

As B =
〈⌊

p
q · 〈AS〉q

⌉〉
p
, the definition of the rounding function b·e, implies

that B ≡ p
q 〈AS〉q + E (mod p) with E ∈ (−1/2, 1/2]. By multiplying with q

p ,
we infer that

q

p
B ≡ AS +E′ (mod q) with E′ ∈ (− q

2p
,
q

2p
] ∩ Z (19)
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6.2 Weighted Primal Attack

We consider Eq. (19) for one column and the m top rows of q
pB. We denote

the corresponding column by b, write s for the corresponding column of S,
and Am for the m top rows of A. We then have, for some e ∈ (− q

2p ,
q
2p ]

m
,

b ≡ Ams+e (mod q). In order to benefit from the fact that ‖s‖ � ‖e‖, the at-
tacker considers the scaled lattice [8,1,25]: Λω = {(ωx,y, z) ∈ (ωZ)d × Zm × Z :(
Am|Im|−b

)( x
y
z

)
= 0 (mod q)}, which contains the vector vω = (ωsT , eT , 1)T .

The attacker then searches for the shortest vector in Λω, that he hopes to be
equal to vω. A lattice reduction algorithm can be used to obtain a reduced
basis of Λω, the first vector of which will be the shortest due to a common
heuristic. Assuming that BKZ [23,61] with block-size b is used as the lattice
reduction algorithm, vω will be detected if its projection ṽb onto the vector
space of the last b Gram-Schmidt vectors of Λω is shorter than the expected
norm of the (d′ − b)th Gram-Schmidt vector b̃d′−b, where d′ is the dimension
of Λω [3, Sec. 6.3],[18]; in other words, if (using the Geometric Series Assump-

tion), ‖ṽb‖ < ‖b̃d′−b‖ = δ2b−d
′−1 · (Vol(Λω))

1
d′ , where δ = ((πb)

1
b · b

2πe )
1

2(b−1) and
Vol(Λω) = ωdqm. Consequently, Round5 is secure against the primal attack in
Λω with BKZ with block size b if:√

(ω2 ·h+ σ′2m) · b/(d+m) ≥ δ2b−d
′−1 · (qmωd) 1

d′ , where (20)

δ = ((πb)
1
b · b

2πe
)

1
2(b−1) , σ′ = (q/2

√
3p), and d′ = d+m+ 1.

It can be shown from Eq. (20) that the optimal choice of ω for the attacker

satisfies ω2 = dmσ′2

h(d′−d) = dmσ′2

h(m+1) ≈
d
hσ
′2.

6.3 Weighted Dual Attack

The dual attack against LWE/LWR [3],[1] employs a short vector (v,w) ∈
Zm × Zd in the dual lattice Λ∗ = {(x,y) ∈ Zm × Zd : AT

mx = y (mod q)}. It
constructs a distinguisher for LWR using z = {vT b}q = {vT (Ams+ e)}q =

{wTs+ vTe}q. Since ‖s‖ � ‖e‖ in our case, the attacker can enforce that

‖w‖ � ‖v‖ to ensure that ‖wTs‖ ≈ ‖vTe‖ similar to [1]. He does so by choos-
ing ω = σ′

√
m/h (for the LWR rounding error with variance σ′2 = q2/12p2), and

considering the lattice: Λ∗ω = {(x,y/ω) ∈ Zm ×
(
1
ω · Z

d
)

: AT
mx = y (mod q)}.

A short vector (v,w) ∈ Λ∗ω gives a short vector (v, ωw) ∈ Λ∗ that is used to
construct the distinguisher z. If b is uniform modulo q, so is z. If b is an LWR sam-
ple, then z = {(ωw)Ts+ vTe}q = {wT (ωs)+vTe} has a distribution approach-

ing a Gaussian of zero mean and variance ‖(v,w)‖2 ·σ′2 as the lengths of the vec-
tors increase, due to the Central limit theorem. Note that ω has been chosen such
that ‖ωs‖ ≈ ‖e‖. The maximal statistical distance between this and the uniform

distribution modulo q is bounded by ε ≈ 2−1/2 exp(−2π2(‖(v,w)‖2 · σ′/q)2) [15,
Appendix B]. Lattice reduction with root-Hermite factor δ yields a short(est)
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vector of length δd
′−1 ·Vol(Λ∗ω)

1/d′
, where d′ = m+d and Vol(Λ∗ω) = (q/ω)d are

Λ∗ω’s dimension and volume, respectively. However, finding only one such short
vector is not enough, as the resulting ε is too small to distinguish a final key which
is hashed. The attack must therefore be repeated at least max(1, 1/20.2075b · ε2)
times [3], when considering BKZ with block size b. The cost of the weighted dual
attack on LWR (with dimension d, large modulus q, rounding modulus p) using
m samples thus is

(b · 2cb) ·max(1, 1/(ε2 · 20.2075·b)),where

ε = 2−1/2 · e−2π2((‖(v,w)‖2·σ′)/q)2 , ‖(v,w)‖2 = δm+d−1 · (q/ω)d/(m+d),

δ = ((πb)
1
b · b

2πe
)

1
2(b−1) , ω = σ′ ·

√
m/h, and σ′ = (q/2

√
3p).

(21)

The first term (b·2cb) in the overall attack cost is that of running BKZ with block-
size b. To obtain conservative security estimates, we choose the BKZ sieving ex-
ponent c = 0.265, which is the best known complexity estimate of lattice sieving
algorithms when enhanced with Grover’s quantum search algorithm [43,44].

6.4 Hybrid Attack

In this section, we consider a hybrid lattice reduction and meet-in-the-middle
attack originally due to [40] and analyzed further in [65], that benefits from the
fact that secret-keys in Round5 are sparse and ternary. This attack considers
the lattice Λ′ = {x ∈ Zm+d+1 | (Im|Am| − b)x ≡ 0 mod q} for some m ∈
[1, d], with basis B′ =

[
B C
0 Ir

]
, where 0 < r < d is the meet-in-the-middle

dimension chosen by the attacker. Λ′ contains a short vector v = (eT , sT ,1)T .
Rewriting v = (vTl v

T
g )T , the attacker first tries to recover vg of length r < d by

guessing, which if successful, allows him to recover vl given a sufficiently reduced
B̃ by considering Cvg as the target of Babai’s Nearest Planes algorithm [7],
for instance. This is due to the existence of a x ∈ Zd+m+1−r such that the
lattice vector −Bx ∈ Λ(B) is close to the one Cvg (due to vl being short),

as ( vlvg ) = B′( xvg ) =
(
Bx+Cvg

vg

)
. The cost of recovering vl (in terms of calls

to the Nearest Plane algorithm) from guessed vg candidates may be reduced to
its square root using a Meet-in-the-Middle (MITM) approach [40]. Considering
the sparse-ternary restriction on vg allows further optimizations. We estimate

this cost as 2
1
2 r·H [39], H being the per-coordinate entropy of the the guessed

vg (which depends on the secret-key distribution), and the square root resulting
from either the use of MITM or Grover’s search [36]. This leaves the cost of

finding a sufficiently reduced basis B̃ of Λ(B). Here, the attacker can again use
a similar rescaling trick with ω2 = d

hσ
′2 as in Section 6.2 to exploit Round5’s

sparse-ternary secrets. We estimate this lattice reduction cost in terms of (the
block-size of) BKZ similar to the previous sections, and we minimize the total
cost of the Hybrid attack over all possible (r,m) pairs.

Our above analysis of the hybrid attack could be further extended follow-
ing the work of Wunderer [65], which concerns a more accurate analysis of the
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attack: he considers that the attacker may choose a faster lattice reduction (a
trade off against the consequently increased cost of Babai’s algorithm due to the
lower reduction quality). He also considers that likelier candidates for vg may be
generated at an earlier phase, reducing the number of calls to Babai’s algorithm.
An improved analysis along these lines would enable more accurate estimation
of the attack cost, leading to better Round5 parameters. We leave this as future
work.

6.5 Attacks against Sparse Secrets

We consider an attack against sparse secrets due to Albrecht et al. [1]. In the
primal attack, the attacker tries to find s from the equation b ≡ Ams + e.
By setting k random components of s to zero, the attacker effectively removes
the k corresponding columns of Am, and solves an LWE/LWR problem in a
lattice of dimension d − k, hence at a lower cost. As s has d − h zeroes, the
guess is correct with probability

(
d−h
k

)
/
(
d
k

)
, and therefore on average should be

repeated
(
d
k

)
/
(
d−h
k

)
times. The overall cost thus equals this number of repetitions

times the cost for lattice reduction in such a lattice of dimension d−k. A similar
analysis can be made for the dual attack. We optimize over the Hamming weight
to choose the smallest value such that Albrecht et al.’s attack results in at least
a minimum targeted cost (both for the standard attack embodiment mentioned
above as well as an adaptive embodiment described in [1]). We finally note that
for all our chosen parameters, the Hybrid attack (Section 6.4) outperforms this
one.
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Table 1: Round5 parameter sets, with performance estimates, post-quantum and classical security levels, and failure rate.
Round5.PKE ciphertext sizes do not include the overhead required for DEM (typically 16 bytes for an authentication tag).

Round5.KEM Round5.PKE
Parameters CPA NIST1 CPA NIST3 CPA NIST5 CCA NIST1 CCA NIST3 CCA NIST5

n
=
d

,
R
in
g
v
a
ri
a
n
ts
.

d, n, h 522, 522, 208 756, 756, 242 1018, 1018, 254 546, 546, 158 786, 786, 204 1108, 1108, 198
q, p, t 214, 28, 24 215, 28, 24 215, 28, 24 216, 28, 24 216, 28, 26 216, 28, 25

B, n̄, m̄, f 1, 1, 1, 3 1, 1, 1, 3 1, 1, 1, 3 1, 1, 1, 3 1, 1, 1, 3 1, 1, 1, 3
µ 128 + 91 192 + 103 256 + 121 128 + 91 192 + 103 256 + 121

Bandwidth 1170 B 1684 B 2257 B 1234 B 1842 B 2516 B
Public key 538 B 780 B 1050 B 562 B 810 B 1140 B
Ciphertext 632 B 904 B 1207 B 672 B 1032 B 1376 B

PQ Security 2117 2176 2242 2120 2181 2246

Classical 2128 2193 2257 2128 2193 2256

Failure rate 2−76 2−75 2−64 2−129 2−128 2−129

Version (f
(0)
d,d) R5ND_1KEM R5ND_3KEM R5ND_5KEM R5ND_1PKE R5ND_3PKE R5ND_5PKE

n
=

1
,
N
o
n
-r
in
g
v
a
ri
a
n
ts
.

d, n, h 635, 1, 266 929, 1, 268 1186, 1, 712 694, 1, 152 932, 1, 540 1198, 1, 574
q, p, t 215, 211, 210 214, 211, 210 214, 212, 27 213, 211, 210 214, 212, 29 214, 212, 210

B, n̄, m̄, f 4, 6, 6, 0 4, 6, 8, 0 4, 8, 8, 0 4, 5, 7, 0 4, 6, 8, 0 4, 8, 8, 0
µ 32 48 64 32 48 64

Bandwidth 10535 B 17969 B 28553 B 11553 B 19703 B 28925 B
Public key 5256 B 7690 B 14265 B 4789 B 8413 B 14409 B
Ciphertext 5279 B 10279 B 14288 B 6764 B 11290 B 14516 B

PQ Security 2119 2182 2233 2122 2176 2233

Classical 2128 2192 2256 2128 2192 2256

Failure rate 2−65 2−65 2−84 2−128 2−135 2−129

Version (f
(0)
d,d) R5T0_1KEM R5T0_3KEM R5T0_5KEM R5T0_1PKE R5T0_3PKE R5T0_5PKE

Version (f
(1)
d,d) R5T1_1KEM R5T1_3KEM R5T1_5KEM R5T1_1PKE R5T1_3PKE R5T1_5PKE

Version (f
(2)
d,d) R5T2_1KEM R5T2_3KEM R5T2_5KEM R5T2_1PKE R5T2_3PKE R5T2_5PKE
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7 Parameter Selection and Performance

The security of Round5 depends, among other parameters, on the dimension
d and the moduli q and p. Round5 can instantiate different underlying prob-
lems depending on n: n = 1 for LWR and n = d for RLWR. The moduli are
chosen to be powers of 2, ensuring that operations remain efficient in both the
LWR and RLWR instantiations. A restriction that we enforce in our parameter
choices is that Φn+1(x) must be irreducible modulo two to avoid any possible
vulnerabilities as in some cases of power-of-2 cyclotomic rings [13,14].

In this paper, parameter sets are designated as follows: For ring variants
(n = d) we have the format R5ND {l}KEM and R5ND {l}PKE, where l ∈ {1, 3, 5}
denotes NIST security level, and ending KEM indicates IND-CPA secure KEM pa-
rameter set while PKE indicates IND-CCA secure public key encryption scheme.

Function f
(0)
d,n is always used to generate the public value A in ring setting.

In the non-ring setting n = 1 however, we have three options, f
(0)
d,n,f

(1)
d,n and

f
(2)
d,n, so the designator takes the form R5T{τ} {l}KEM and R5T{τ} {l}PKE, where

τ ∈ {0, 1, 2} is the index for the function f
(τ)
d,n , l ∈ {1, 3, 5} is the security level,

and KEM/PKE has the same meaning as before.
Table 1 summarizes the parameters for Round5.KEM and Round5.PKE tar-

geting NIST security categories I, III, and V, along with (bandwidth) require-
ment and security levels considering the best known (classical and quantum)
attacks against Round5. The parameter f in this table refers to the parameter
of XEf (Section 3.3), that is the instantiation of the (generic) error-correction
mechanism ECC Ency used in the core Round5 building block CPA-PKE (see
Section 3.2, Algorithm 2).

The security estimates of both the Round2 [6] and Hila5 [59] NIST PQC pro-
posals are conservative and were independently verified by an independent anal-
ysis [2] of various lattice-based proposals to the NIST standardization process.
Round5, which combines features from the two above cryptosystems, further im-
proves on their security analyses, and achieves even better (post-quantum and
classical) bit-security to performance ratios, while remaining highly conservative
and also fully compliant with NIST PQC security categories.

7.1 Comparison and Discussion

Round5 is both compact, i.e., it has small public keys and ciphertexts com-
pared to other lattice-based schemes offering similar security, and very fast.
Especially the ring variants offer superior speed performance when compared to
other lattice-based candidates. The non-ring variants have not received the same
level of optimization; we expect that those can be made to run an order of mag-
nitude faster. Findings in [60] also indicate leading performance characteristics
on embedded targets (Cortex M).

Table 2 leads to the following key observations on various design choices in
Round5.
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Table 2: Performance of Round5 C implementation on Intel Xeon Platinum 8168
CPU. For each scheme, columns from left to right represent respectively, the
underlying hardness assumption, claimed quantum security level, failure proba-
bility (FP) during decryption, sizes of public key (PK) and ciphertext without
DEM (CT) in bytes and finally CPU requirements for key generation (KG), en-
cryption (Enc), and decryption (Dec) in 1000s of cycles. We are including some
NIST PQC candidates for reference – security estimates and failure probabil-
ity are according to the submissions and performance measurement was under
identical conditions.

PQ Bandwidth Kilo CPU Cycles
Scheme Prob. Sec. FP PK CT KG Enc Dec

IND-CPA Security

R5ND 1KEM RLWR 2117 2−76 538 632 45.0 64.6 27.3
R5ND 3KEM RLWR 2176 2−75 780 904 53.2 81.1 43.0
R5ND 5KEM RLWR 2242 2−64 1050 1207 71.4 116.6 61.2
R5T0 3KEM LWR 2182 2−65 7690 10279 23766 28461 378
R5T1 3KEM LWR 2182 2−65 7690 10279 8811 17009 372
R5T2 3KEM LWR 2182 2−65 7690 10279 6076 8913 369
NewHope512 [53] RLWE 2101 2−213 928 1088 105.4 158.4 37.0
NewHope1024 [53] RLWE 2233 2−216 1824 2176 201.5 313.6 73.1

IND-CCA Security

R5ND 1PKE RLWR 2120 2−129 562 672 34.9 69.2 65.3
R5ND 3PKE RLWR 2181 2−128 810 1032 50.9 82.7 111.3
R5ND 5PKE RLWR 2246 2−129 1140 1376 72.7 117.9 153.7
R5T0 3PKE LWR 2176 2−135 8413 11290 27888 36408 36429
R5T1 3PKE LWR 2176 2−135 8413 11290 12617 25264 25380
R5T2 3PKE LWR 2176 2−135 8413 11290 18691 27617 28087
LAC128 [46] RLWE 2133 2−240 544 1024 87.1 161.0 251.2
Saber [28] MLWR 2180 2−136 992 1088 170.4 298.4 309.4
Kyber768 [62] MLWE 2161 2−142 1088 1152 216.7 302.9 341.8
NewHope1024 [53] RLWE 2233 2−216 1824 2208 239.3 371.2 425.6
Frodo640 [50] LWE 2103 2−149 9616 9736 38560 38521 38692
Frodo976 [50] LWE 2150 2−200 15632 15768 87722 89750 89539
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– LWE vs LWR: As expected, LWR leads to lower bandwidth requirements,
as observed, e.g., when comparing R5T0 {l}PKE with Frodo [50], or Saber
[28] with Kyber [62].

– Prime cyclotomic ring with q power of two: This allows fine-tuning of
parameters in Round5. For instance, NewHope [53] only offers two configu-
rations for fixed n and q as required for the NTT optimized implementation.
This forces NewHope to use the same parameters for its CPA and CCA con-
figurations while Round5 can be configured with tailored parameter sets so
that its CPA version provides better performance.

– RLWR vs MLWR: Saber [28] offers three configurations corresponding
to ranks {2, 3, 4} in a module lattice. In contrast, the scalability of Round5
allows finding fine-tuned parameters to fit any security target.

– Secret-key distribution : Round5 and Frodo have similarities such as the
usage of a modulus q that is a power of 2. When we compare the parameter
set Frodo640, using AES-NI instructions, and R5T0 3PKE we observe that
Round5 offers approximately ×3 faster performance even if the generation
of A is done in a similar way as in Frodo. The main reason for this faster
performance is the choice of sparse-ternary secrets.

– Generation of A: We observe that f
(1)
d,n allows for a 1.5x computational

speed-up compared with f
(0)
d,n Round5 variants when SHAKE is used as the

pseudo-random number generator. In this way, our R5T1 3PKE generic imple-
mentation achieves approximately ×1.5 faster performance than Frodo976
when using AES-NI instructions.

– Unified design : Round5 offers both IND-CPA and IND-CCA security no-
tions relying on the same building blocks. Similarly, it is configurable to rely
on a ring or non-ring structure. Thus, Round5 can fit multiple applications’
needs. For instance, some applications require the efficiency of a ring-based
IND-CPA secure construction, e.g., a fast VPN connection, while some users
might dislike any approach based on structured lattices and need to ensure
security against active attackers even if it comes at the price of a higher
overhead.

8 Conclusions

In this paper, we presented the Round5 lattice-based cryptosystem. Round5 of-
fers flexibility in the choice of the underlying problem (LWR or RLWR), security
definition (IND-CPA or IND-CCA) and parameters, so that a wide variety of
performance and security requirements can be met. On one hand, this allows
Round5 to fit the needs of diverse applications. On the other hand, the unified
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design and implementation of Round5 allows for easy post-deployment adapta-
tion of configuration parameters if future advances in cryptanalysis would require
us to do so.

The use of (Ring)-LWR instead of LWE contributes to reduction of band-
width requirements. In the ring case, the cyclotomic polynomial Φn+1(x) with
n+1 prime is used as a reduction polynomial. This results in a large set of poten-
tial choices for n, satisfying various performance and security requirements. A
further reduction of the bandwidth requirements for the ring case was obtained
by the use of the XEf error-correcting codes, which by design are resistant to
timing attacks.

We have shown that the ring variants of Round5 are faster than most com-

parable RLWE schemes. In the general lattice case the functions f
(1)
d,n and f

(2)
d,n

allow for very fast generation of the public parameter A, while both stopping
precomputation and backdoor-like attacks.

Trust on Round5 comes from the fact that it relies on well-studied variants
of the Learning with Rounding problem. We strengthen this aspect by providing
proofs of both the security of Round5’s schemes and of the hardness of the
underlying problem.
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than the statistical distance. Cryptology ePrint Archive, Report 2015/483 (2015),
http://eprint.iacr.org/2015/483

31

http://eprint.iacr.org/2017/047
https://eprint.iacr.org/2018/331
http://eprint.iacr.org/2015/1092
http://eprint.iacr.org/2015/1092
http://eprint.iacr.org/2013/098
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-642-03356-8_35
https://eprint.iacr.org/2017/1183
http://eprint.iacr.org/2013/839
http://eprint.iacr.org/2015/483


10. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. Cryp-
tology ePrint Archive, Report 2011/401 (2011), http://eprint.iacr.org/2011/401

11. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes, pp. 26–45. Springer Berlin Heidelberg,
Berlin, Heidelberg (1998), https://doi.org/10.1007/BFb0055718

12. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for de-
signing efficient protocols. In: Proceedings of the 1st ACM Conference on Com-
puter and Communications Security. pp. 62–73. CCS ’93, ACM, New York, NY,
USA (1993). https://doi.org/10.1145/168588.168596, http://doi.acm.org/10.1145/
168588.168596

13. Bernstein, D.J.: A subfield-logarithm attack against ideal lattices (February 2014),
available from https://blog.cr.yp.to/20140213-ideal.html

14. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU
Prime: reducing attack surface at low cost. Cryptology ePrint Archive, Report
2016/461 (2016), https://eprint.iacr.org/2016/461

15. Bhattacharya, S., Garcia-Morchon, O., Rietman, R., Tolhuizen, L.: spKEX: An
optimized lattice-based key exchange. Cryptology ePrint Archive, Report 2017/709
(2017), http://eprint.iacr.org/2017/709

16. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the Hardness of
Learning with Rounding over Small Modulus. Cryptology ePrint Archive, Report
2015/769 (2015), http://eprint.iacr.org/2015/769

17. Boneh, D., Dagdelen, O., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. Cryptology ePrint Archive, Report 2010/428
(2010), http://eprint.iacr.org/2010/428

18. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take off the ring! Practical, Quantum-Secure
Key Exchange from LWE. Cryptology ePrint Archive, Report 2016/659 (2016),
http://eprint.iacr.org/2016/659

19. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
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A Features of Round2, Hila5 and Round2

Table 3 summarizes design features of Round2 [6] and Hila5[59], and their ap-
plication in Round5.

Prime cyclotomic polynomials were selected because they allow for a fine-
grained optimization over the degree. By stipulating that Φn+1(x) is irreducible
modulo two, we hedge against possible vulnerabilities in power-of-2 cyclotomic
rings [13,14]. As shown in [52], decisional RLWE over this ring remains hard
for any modulus, including the power-of-2 moduli q, p as used in Round5. As
explained in [6, Sec. 2.9], multiplication in Zq[x]/Φn+1(x) can be implemented
by lifting polynomials to the ring Zq[x]/(xn+1 − 1) and operating in this ring.

Hila5 operates over the ring Zq[x]/(x1024 + 1), where q = 12289 = 3∗212 + 1,
which allows to use a number-theoretic transform (NTT) for efficient implemen-
tation. Round2 supports NTT-friendly parameters as well. With the choice for
prime cyclotomic polynomials and moduli that are a power of two, implementa-
tions are already so efficient that support of NTT was not considered necessary.

The sparse ternary secret-key distribution was selected to simplify failure
analysis, especially in the ring-case. Round5 uses balanced sparse ternary secrets,
that is, the number of plus ones and minus ones in any column of the secret
matrices are equal.

The Round5 parameter choices result in security levels that comply with the
NIST levels. Round5 uses rounding constants to implement the GLWR problem
and to prove the IND-CPA security of the CPA-PKE building block.
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Table 3: Design features of Round2, Hila5, and Round5.

Feature Round2 Hila5 Round5
Functionality Key encapsulation

and PKE
Key encapsulation

and PKE
Key encapsulation

and PKE
Underlying

problem
GLWR R-LWE GLWR

Unified
design

Yes Only ring Yes

Secret
distribution

Balanced sparse
ternary

Centered binomial Balanced sparse
ternary

Supported
NIST levels

All 5 1,3,5

Error
Correction

No XE code XE code

Ring choice Prime cyclotomic x1024 + 1
“negacyclic”

Prime cyclotomic

Support NTT
Arithmetic

Yes Yes No

Underlying
method

Noisy El-Gamal Noisy
Diffie-Hellman

Noisy El-Gamal

“Safe bits” No Yes No
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