

19世纪的最后一天,欧洲著名的科学家欢聚一堂。会上,英 国著名物理学家W. 汤姆生(即开尔文男爵)发表了新年祝词。他 在回顾物理学所取得的伟大成就时说,物理大厦已经落成,所 剩只是一些修饰工作。同时,他在展望20世纪物理学前景时, 却若有所思地讲道:"动力理论肯定了热和光是运动的两种方 式,现在,它的美丽而晴朗的天空却被两朵乌云笼罩了,"第一 朵乌云出现在光的波动理论上","第二朵乌云出现在关于能量 均分的麦克斯韦-玻尔兹曼理论上。"

量子物理 // //

The Nobel Prize in Physics 1914

Max Planck,量子论的奠基人。 1900年12月14日他在德国物理 学会上,宣读了以《关于正常 光谱中能量分布定律的理论》 为题的论文,提出了能量的量 子化假设,并导出黑体辐射能 量的分布公式。 劳厄称这一天是 "量子论的诞生日"

Max von Laue 1879-1960

Max Planck 1858-1947

The Nobel Prize in Physics 1918

L. De Broglie E. Schrödinger W. Heisenberg Max Born P. Dirac (1892-1987) (1887-1961) (1901-1976) (1882-1970) (1902-1984)

De Broglie (法)、Schrödinger (奧地利)、Heisenberg (德)、Born (德)、Dirac (英)等人建立起反映微观粒子规 律的量子力学。

历史回顾——重要事件

- 1905年, Einstein 引进光量子(光子)的概念,成功地解释了光电 效应。
- 1913年, Bohr圆满地解释了氢原子的光谱规律。
- 1923年, De Broglie提出实物粒子波粒二象性的假说。
- 1926年, Schrödinger找到了微观体系的运动方程,建立起波动 量子力学。
- 1927年, Heisenberg提出微观量子体系的测不准关系。
- Dirac、Heisenberg和Pauli将量子力学和狭义相对论结合起来,建立相对论量子力学——量子电动力学。
- 20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。

量子物理 Pro

第13章 量子物理

§13-1 黑体辐射和普朗克量子假设

一、热辐射(thermal radiation)现象

- 由经典理论,带电粒子加速运动将向 外辐射电磁波;
- 一切物体都以电磁波的形式向外 辐射能量;
- 物体的辐射与其温度有关,故将这种辐射称为热辐射;
- 这种电磁波形式的辐射能量按波长分布 是不均匀的。

当发射=吸收时,其温度不变

—— 平衡热辐射

不同的原子辐射谱线的颜色

(频率)成分不同。

二、热辐射的定量描述 黑体(black body)

物体辐射总能量及能量按波长分布 都决定于**温度**。

- (一) 描述热辐射的物理量
- 1.单色辐出度 (monochromatic radiant exitance):

二、热辐射的定量描述 黑体(black body)

物体辐射总能量及能量按波长分布 都决定于**温度**。

(一) 描述热辐射的物理量

1.单色辐出度

(monochromatic radiant exitance):

温度为T物体从单位面积上发射的、 波长介于 λ 和 λ +d λ 之间的辐射功率d E_{λ} 与d λ 之比。

$$e_{\lambda}(\lambda,T) = \frac{dE_{\lambda}}{d\lambda}$$

2. 辐出度(radiant exitance):

物体从单位面积上发射的所有各种波 长的辐射总功率。

即:
$$E(T) = \int_0^\infty e(\lambda, T) d\lambda$$

3.单色吸收率α(λ, T) (monochromatic absorptance):

当辐射从外界入射到温度为T的物体表面时,在λ到λ+dλ的波段内,吸收能量与入射总能量之比。

(二)绝对黑体(black-body) 对于任何温度,任何波长吸收比始终 等于一的物体。即: **能吸收一切外来辐射而无反射的物体**。 —理想模型 *α*₀(*λ*,*T*)=1

(二) 绝对黑体(black-body)

对于任何温度,任何波长吸收比始终 等于一的物体。即:

能吸收一切外来辐射而无反射的物体。 ——理想模型

$$\alpha_0(\lambda, T) = 1$$

(三) 基尔霍夫定律(Kirchhoff law): (1869年发现)

在同样的温度下,不同的物体或不同

G.R. Kirchhoff 1824—1887

表面性质的物体,其单色辐出度与单色三、黑体辐射(black-body radiation)定律 吸收率之比是一恒量。 黑体辐射实验:

 $\frac{e_1(\lambda,T)}{\alpha_1(\lambda,T)} = \frac{e_2(\lambda,T)}{\alpha_2(\lambda,T)} = \dots = e_0(\lambda,T)$

结论: 一个好的吸收体一定也是

一个好的发射体。

黑体的单色辐出度

三、黑体辐射(black-body radiation)定律 1.黑体辐射实验:

2.黑体的单色辐出度按波长分布实验曲线

量子物理 🔊

2.黑体的单色辐出度按波长分布实验曲线

Wavelength (μm)

3.黑体辐射基本定律

(1) 斯忒藩一玻尔兹曼定律 (Stefan-Boltaman law):

Josef Stefan 1835—1893 Ludwig Boltzmann 1844—1906

1879年,斯忒藩根据实验得出黑体 辐出度:_____

$$E_0(T) = \sigma_0 T^4$$

$$\sigma_0 = 5.6703 \times 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$$

——斯忒藩常数(Stefan constant) 1884年玻尔兹曼从理论上证明

(1) 斯忒藩一玻尔兹曼定律 (Stefan-Boltaman law):

Josef Stefan 1835—1893

Ludwig Boltzmann 1844—1906

1879年,斯忒藩根据实验得出黑体 辐出度:_____

$$E_0(T) = \sigma_0 T^4$$

$$\sigma_0 = 5.6703 \times 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$$

——斯忒藩常数(Stefan constant) 1884年玻尔兹曼从理论上证明

2.维恩位移定律(Wien displacement law)

Wilhelm Wien 1864—1928

能谱分布曲线的峰值对应的波长 $\lambda_m与温度T的乘积为一常量。$ $<math>\lambda_m T = b$ $b = 2.898 \times 10^{-3} \text{ m} \cdot \text{K}$ **固体在温度升高时颜色的变化** 800K 1000K 1200K 1400K T

2.维恩位移定律(Wien displacement law)四、经典物理的困难

Wilhelm Wien 1864—1928 上述实验定律虽然很有实用价值,但 只有从理论上得到黑体辐射的能谱公式 ——黑体的单色辐出度公式才是最重要的。 从经典理论出发能推倒出吗?

1. 维恩公式 (Wien formula)

维恩根据经典热力学得出:

$$e_0(\lambda, T) = c_1 \lambda^{-5} \mathrm{e}^{-\frac{c_2}{\lambda T}}$$

$$(c_1 和 c_2 为经验参数)$$

能谱分布曲线的峰值对应的波长

 $\lambda_{\rm m}$ 与温度**T**的乘积为一常量。

$$\lambda_{\rm m}T = b$$

$$b = 2.898 \times 10^{-3} \mathrm{m} \cdot \mathrm{K}$$

固体在温度升高时颜色的变化

1 - C			
800K	1000K	1200K	1400K
	T		
009-5-12			

1. 维恩公式 (Wien formula)

维恩根据经典热力学得出:

$$e_0(\lambda,T) = c_1 \lambda^{-5} \mathrm{e}^{-\frac{c_2}{\lambda T}}$$

$$(c_1 和 c_2 为经验参数)$$

James H. Jeans 1887-1946

瑞利和金斯用能量均分定理和电磁理论得出:

$$e_0(\lambda,T) = 2\pi c \lambda^{-4} kT$$

紫外灾难 (ultraviolet catastrophe)

五、普朗克的量子(quanta)假设和普朗克公式

1. 普朗克公式(从实验数据中分析得出)

$$e_0(\lambda, T) = \frac{2\pi hc^2 \lambda^{-5}}{e^{\frac{hc}{\lambda kT}} - 1}$$

$$h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$$

普朗克认为:经典理论只需作适当 的修正,就可以得出该公式。

经典理论的基本观点:

- 电磁辐射来源于带电粒子的振动,电磁波的频率与振动频率相同;
- 振子辐射的电磁波含有各种波长, 是连续的,辐射能量也是连续的。
- 温度升高,振子振动加强,辐射能 增大。

普朗克将上述第二点进行了修正

经典理论的基本观点:

- 电磁辐射来源于带电粒子的振动,电磁波的频率与振动频率相同;
- 振子辐射的电磁波含有各种波长, 是连续的,辐射能量也是连续的。
- 温度升高,振子振动加强,辐射能 增大。

普朗克将上述第二点进行了修正

2. 普朗克量子假设:

1900年12月14日,柏林科学院 《正常光谱中能量分布律的理论》 辐射黑体中分子、原子的振动可看作 线性谐振子,它和周围电磁场交换能量。 这些谐振子只能处于某种特殊的状态, 它的能量取值只能为某一最小能量的整 数倍。

$$\mathcal{E}_n = nhv$$

意义: 普朗克假说不仅圆满地解释了黑体 辐射问题,还解释了固体的比热等问 题,成为现代量子理论的重要组成部 分。

例13-1. (1)温度为20℃的物体,它的辐射能中辐出度的峰值所对应的波长 是多少? (2)若使一物体单色辐出度的峰值所对应的波长在红色谱线范围 内,其温度应为多少? (3)上两小题中,总辐射能的比率为多少?

解: (1) 根据维恩位移定律

$$\lambda_m = \frac{b}{T} = \frac{2.898 \times 10^{-3}}{273 + 20} = 9.89 \times 10^{-6} \text{ m}$$

(2) 取*λ* = 6500 Å

$$T = \frac{b}{\lambda_m} = \frac{2.898 \times 10^{-3}}{6.5 \times 10^{-7}} = 4.46 \times 10^{-3} \text{ K}$$

(3) 根据斯忒藩一玻尔兹曼定律

$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 = \left(\frac{4.46 \times 10^3}{293}\right) = 5.37 \times 10^4$$

§13-2 光电效应和爱因斯坦光子理论

量子物理 PSS

§13-2 光电效应和爱因斯坦光子理论

一、光电效应(photoelectric effect)

(1) 光电效应是瞬时发生的, 响应时间为 10-9 s

经典理论不能解释"毋 需时间积累"

- (2)入射光频率一定时,饱和光电流
 (saturation photocurrent)与入射光
 光强成正比,但反向截止电压
 (cutoff voltage)与入射光光强无关。
- (3)反向截止电压与入射光频率成 线性关系。

反向截止电压反映光电子的初动能

$$eV_{\varepsilon} = \frac{1}{2}mv_{\rm m}^2$$

- 即:当入射光的频率小于红限频率 时,无论光强多大,也不会 产生光电效应。
- 二、 爱因斯坦的光子(photon)理论

二、 爱因斯坦的光子(photon)理论

电磁辐射是由以光速 c 运动的 局域于空间小范围内的光量子所 组成。

光子的能量
$$\mathcal{E} = hv$$

光子的动量 $p = \frac{h}{\lambda}$

爱因斯坦光电效应方程 (photoelectric equation):

$$h\,\nu = \frac{1}{2}mv_m^2 + A$$

A - 逸出功 (work function) $\frac{1}{2}mv_m^2 - 初动能$

对光电效应实验规律的解释

- (1) 电子只要吸收一个光子就可以从金属表面逸出,所以无须时间上的累积过程。
- (2) 光强大,光子数多,释放的光电子 也多,所以饱和光电流也大。
- (3) 入射光子能量 = 逸出功 + 光电子初动能

因而光电子初动能和入射光的频率 成线性关系。

(4) 红限频率对应光电子初动能等于 0。

$$\nu_0 = \frac{A}{h}$$

三、光的波粒二象性 (wave-particle dualism)

光的性质 *初始:突出表现在传播过程中 (干涉、衍射) *****粒子性:突出表现在与物质相互作用中

(光电效应、康普顿效应)

光子能量: $\mathcal{E} = h\nu$ 光子动量: $p = \frac{\mathcal{E}}{c} = \frac{h\nu}{c}$ $p = \frac{h}{\lambda}$

光子静止质量: $m_o = 0$

光子质量: $m = \frac{\varepsilon}{c^2}$

量子物理 PMS

例13-2. 钾的光电效应红限为 λ_0 = 6.2×10⁻⁷ m,求(1)电子的逸出功;(2)在的紫外线照射下,截止电压为多少?(3)电子的初速度为多少?(紫外线 λ_0 = 3.0×10⁻⁷ m)

例13-3. 有一金属钾薄片,距弱光源3 m。此光源的功率为1W,计算在 单位时间内打在金属单位面积上的光子数。设λ=5890 Å。

解: 依题意

单位面积上的功率为: $P_s = \frac{P}{4\pi R^2} = \frac{1}{4\pi \times 3^2} = 8.8 \times 10^{-3} \text{ J} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$

一个光子的能量为
$$\varepsilon = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^{-8}}{5.89 \times 10^{-7}} = 3.4 \times 10^{-19} \text{ J}$$

单位时间内打在金属单位面积上的光子数为:

$$N = \frac{P_s}{\varepsilon} = \frac{8.8 \times 10^{-3}}{3.4 \times 10^{-19}} = 2.6 \times 10^{16} \text{ }^{\uparrow} \text{ }^{-2} \text{ }^{-1}$$

量子物理

§13-3 康普顿效应(康普顿散射)

一、康普顿效应 (Compton efffect):

散射光谱中除有波长λ₀的射线(瑞利散射)外,还有λ > λ₀的射线(康普顿散射)

Arthur H. Compton 1892-1962

The Nobel Prize in Physics 1927

量子物理 Pass

14 Si $\varphi = 0^{\circ}$ 16 S $\varphi = 45^{\circ}$ $\varphi = 90^{\circ}$ ²⁶Fe 28 Nj $\phi = 135^{\circ}$ ²⁹Cu ٨n

1. 在原子量小的物 质中,康普顿散射 较强,反之较弱。

2. 波长的改变量 λ-λ。随散射角φ的 增加而增加。

3. 对不同的散射物 质,只要在同一个 散射角下, 波长的 改变量λ-λ。都相同。

经典理论无法解释康普顿效应

根据经典电磁波理论,在光场中 作受迫振动的带电粒子,辐射的散 射光的频率应等于入射光的频率。

光子论的解释

二、康普顿效应的光量子解释:

		撞碰前		撞碰后	
_		能量	动量	能量	动 量
)	七子	hv	hv/c	hv'	h v / c
þ	王子	$m_0 c^2$	0	mc^2	mυ

此过程是光子与电子发生 相互作用,两粒子的碰撞是 完全弹性碰撞,即满足动量 守恒和能量守恒。

根据能量守恒定律:

$$h v + m_0 c^2 = h v' + m c^2$$

二、康普顿效应的光量子解释:

	撞碰前		撞碰后	
	能量	动量	能量	动 量
光子	hv	hv/c	hv'	h v'/c
电子	$m_0 c^2$	0	mc^2	mυ

根据能量守恒定律:

$$hv + m_0c^2 = hv' + mc^2$$

根据动量守恒定律:

X方向:
$$hv/c = \frac{hv'}{c}\cos\varphi + mv\cos\theta$$

Y方向:

$$0 = \frac{h v'}{c} \sin \varphi - m v \sin \theta$$

联立可得:

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \varphi)$$

康普顿波长 (Compton wavelength):

$$\lambda_c = \frac{h}{m_0 c} = 2.43 \times 10^{-12} \text{ m}$$

量子物理 PSS

联立可得:

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \varphi)$$

康普顿波长 (Compton wavelength):

$$\lambda_c = \frac{h}{m_0 c} = 2.43 \times 10^{-12} \text{ m}$$

结论:

- 1) 波长的改变量 $\Delta\lambda$ 与散射角 φ 有关, 散射角 φ 越大, $\Delta\lambda$ 也越大。
- 波长的改变量Δλ与入射光的波长 无关。

因为康普顿波长比可见光波长小得 多,所以可见光的散射主要是瑞利散射。

意义:

康普顿效应证明了光的粒子性, 同时也证明了动量守恒和能量守恒具 有普适性,相对论效应在宏观和微观 领域都存在。

例13-4. 在康普顿效应中,入射光 子的波长为3×10⁻³ nm,反冲电子的 速度为光速的60%,求散射光子的 波长和散射角。

解:根据能量守恒定律:

$$h v + m_0 c^2 = h v' + m c^2$$

$$\frac{hc}{\lambda} + m_0 c^2 = \frac{hc}{\lambda'} + \frac{m_0}{\sqrt{1 - v^2/c^2}} c^2$$
$$\frac{1}{\lambda'} = \frac{1}{\lambda} + \frac{m_0 c}{h} (1 - \frac{1}{\sqrt{1 - v^2/c^2}})$$

1

例13-4. 在康普顿效应中,入射光 子的波长为3×10⁻³ nm,反冲电子的 速度为光速的60%,求散射光子的 波长和散射角。

解:根据能量守恒定律:

$$hv + m_0c^2 = hv' + mc^2$$

$$\Delta \lambda = \lambda' - \lambda = \frac{2n}{m_0 c} \sin^2 \frac{\varphi}{2}$$

$$\sin \frac{\varphi}{2} = \sqrt{\frac{\Delta \lambda m_0 c}{2h}}$$

$$= \sqrt{\frac{(4.34 \times 10^{-12} - 3 \times 10^{-12}) \times 9.1 \times 10^{-31} \times 3 \times 10^8}{2 \times 6.63 \times 10^{-34}}}$$

$$= 0.543$$

$$\varphi = 65.7^\circ$$

つん

$$\therefore \quad v = 0.6 c$$

$$\therefore \quad \frac{1}{\sqrt{1 - v^2/c^2}} = 1.25$$

$$\lambda' = 4.34 \times 10^{-12} m$$

量子物理 **P** 例13-5、波长为 λ₀ =0.020 nm的X射线与自由电子发生碰撞,若从与

入射角成90°角的方向观察散射线。求:(1)散射线的波长;(2)反冲电子的动能;(3)反冲电子的动量。

解:
$$\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \theta)$$

= $\frac{6.63 \times 10^{-34}}{9.1 \times 10^{-31} \times 3 \times 10^8} (1 - \cos 90^\circ)$

= 0.0024 nm

$$\lambda = \lambda_0 + \Delta \lambda = 0.0224 \text{ nm}$$

$$E_k = \frac{hc}{\lambda_0} - \frac{hc}{\lambda} = \frac{hc \,\Delta \lambda}{\lambda \lambda_0} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8 \times 0.024 \times 10^{-10}}{0.2 \times 10^{-10} \times 0.22 \times 10^{-10}}$$

 $=1.08 \times 10^{-15} \text{ J}$

§13-4 氢原子光谱和玻尔理论

一、原子模型 (atomic model)1. 经典原子模型(1903)

汤姆逊西瓜

2. 卢瑟福核式模型 (1911)

The Nobel Prize in Chemistry 1908

Ernest Rutherford 1871—1937

α 粒子的大角散射

汤姆逊模型无法解释 α粒子散射实验

原子由原子核(atomic nucleus)和核 外电子构成,原子核带正电荷,占据 整个原子的极小一部分空间,而电子 带负电,绕着原子核转动。原子半径 *r* = 10⁻¹⁰ m,原子核半径 *r* = 10⁻¹⁴~10⁻¹⁵ m。

Johann Jakob Balmer 1825—1898

1885年巴耳末得到 氢原子可见光谱线 (**Balmer series**) 波 长的经验公式:

$$\lambda = B \frac{n^2}{n^2 - 2^2}$$
$$(n = 3, 4, 5, \cdots)$$

B = 364.6 nm

1885年巴耳末得到 氢原子可见光谱线 (**Balmer series**)波 长的经验公式:

$$\lambda = B \frac{n^2}{n^2 - 2^2}$$
$$(n = 3, 4, 5, \cdots)$$

Johann Jakob Balmer 1825—1898

$$B = 364.6 \text{ nm}$$

—— 巴耳末公式

Janne Rydberg 1854—1919

晶子物

Walter Ritz 1878-1909

里德伯常数: *R*_H = 1.096776×10⁷ m⁻¹ 1889年里德伯和里兹发现普遍公式:

$$\widetilde{\nu} = R_{\rm H} \left(\frac{1}{m^2} - \frac{1}{n^2} \right) = T(m) - T(n)$$

(n > m)

谱线的波数可以表示为两光谱项之差。

$$\widetilde{V} = R_H \left(\frac{1}{1^2} - \frac{1}{n^2} \right) \quad n = 2, 3, \cdots$$

$$\frac{$$
 放 曼 系 (紫外光) T. Lyman 1914年发现

氢原子光谱的波数

$$\widetilde{\nu} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2} \right) \quad n = 3, 4, \cdots$$

$$\widetilde{\nu} = R_H \left(\frac{1}{3^2} - \frac{1}{n^2} \right) \quad n = 4, 5, \cdots$$

$$\widetilde{\nu} = R_H \left(\frac{1}{4^2} - \frac{1}{n^2} \right) \quad n = 5, 6, \cdots$$

$$\widetilde{\mathbf{v}} = \mathbf{R}_H \left(\frac{1}{5^2} - \frac{1}{n^2} \right) \quad n = 6, 7, \cdots$$

帕邢系(红外光)
F. Paschen 1908年发现
布喇开系(红外光)
F. Brackett 1922年发现
普芳德系(红外光)
H.A. Pfund 1924年发现

巴尔末系(可见光)

T. Lyman 1874-1954

F. Paschen 1865-1947

A.H. Pfund 1879-1949

三、玻尔的氢原子理论

根据:
$$\frac{1}{\lambda} = R_{\rm H} \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$
$$h\nu = \frac{hc}{\lambda} = \frac{hcR_{\rm H}}{m^2} - \frac{hcR_{\rm H}}{n^2} = E_m - E_n$$

$$h\nu = E_n - E_m$$

(3)轨道角动量量子化:

$$L = mvr = n \frac{h}{2\pi} = n\hbar$$
 (n = 1, 2, 3, ...)

$$E_m = \frac{hcR_{\rm H}}{m^2} \qquad \qquad E_n = \frac{hcR_{\rm H}}{n^2}$$

1. 玻尔假设(玻尔理论):

(1) 定态(stationary state)假设:电子在原子中沿一组特殊轨道运动,并处于稳定的能量状态。

(2)频率定则:

当电子从一个能态轨道向另一个能态 轨道跃迁(transition)时,要发射或吸收 光子。

2. 半经典理论推导

——由基本假设计算能量和轨道半径:

2. 半经典理论推导

-由基本假设计算能量和轨道半径:

由经典力学: m ^{-v} / _r	$\frac{e^2}{4\pi\varepsilon_0 r_n^2} = \frac{e^2}{4\pi\varepsilon_0 r_n^2}$
$\Rightarrow r_n = \frac{1}{4\pi\varepsilon}$	$\frac{e^2}{e_0 m v_n^2}$
由玻尔量子化条件:	$v = \frac{nh}{n}$
代入上式,得	$2\pi mr_n$
$r_n = \frac{\varepsilon_0 h^2 n^2}{\pi m e^2} = n^2 r_1$	$(n = 1, 2, 3, \cdot$

玻尔半径(Bohr radius):

$$r_1 = \frac{\varepsilon_0 h^2}{\pi m e^2} = 0.529 \times 10^{-10} \text{ m}$$

从而,电子的轨道半径:

 r_1 , 4 r_1 , 9 r_1 , …

原子的总能量应为: 电子的动能+电子和核间的库仑势能

$$\frac{1}{2} \operatorname{m} v^{2} + \left(-\frac{e^{2}}{4\pi \varepsilon_{0} r}\right)$$

则轨道能量:

...)

$$E_n = \frac{1}{2}mv_n^2 - \frac{e^2}{4\pi\varepsilon_0 r_n}$$

$$E_{n} = -\frac{me^{4}}{8\varepsilon_{0}^{2}h^{2}n^{2}} = \frac{E_{1}}{n^{2}}$$

量子物理 PSS

$$E_{n} = -\frac{me^{4}}{8\varepsilon_{0}^{2}h^{2}n^{2}} = \frac{E_{1}}{n^{2}}$$

氢原子的基态(ground state)能量:

$$E_1 = -\frac{me^4}{8\varepsilon_0^2 h^2} \approx -13.6 \text{ eV}$$

氢原子的激发态(excitation state)能量:

$$E_{1}/4, E_{1}/9, \cdots$$

2009-5-12

氢原子能级图

$$E_{n} = -\frac{me^{4}}{8\varepsilon_{0}^{2}h^{2}n^{2}} = \frac{E_{1}}{n^{2}}$$

氢原子的基态(ground state)能量:

$$E_1 = -\frac{me^4}{8\varepsilon_0^2 h^2} \approx -13.6 \text{ eV}$$

氢原子的激发态(excitation state)能量:

 $E_1/4, E_1/9, \cdots$ 氢光谱的解释:

$$\nu = \frac{E_n - E_m}{h} = \frac{me^4}{8\varepsilon_0^2 h^3} (\frac{1}{m^2} - \frac{1}{n^2})$$
$$\widetilde{\nu} = \frac{me^4}{8\varepsilon_0^2 h^3 c} (\frac{1}{m^2} - \frac{1}{n^2})$$

里德伯常数的理论值:

$$R_{\rm H} = rac{me^4}{8arepsilon_0^2 h^3 c} = 1.097373 imes 10^{-7} \, {
m m}^{-1}$$

里德伯常数的实验值:
 $R_{\rm H} = 1.096776 imes 10^7 \, {
m m}^{-1}$
四、玻尔量子理论的缺陷
玻尔量子理论成功地解释了原子
的稳定性、大小及氢原子光谱的规

近代量子理论打下了基础。 玻尔理论是经典与量子的混合物,它保留了经典的确定性轨道, 另一方面又假定量子化条件来限制 电子的运动。它不能解释稍微复杂 的问题,正是这些困难,迎来了物 理学的大革命。

律性。为人们认识微观世界和建立

例13-6. 如用能量为12.6 eV的电子轰击氢原子,将产生年哪些谱线?

fif: $\Delta E = E_n - E_1$ 12.6 eV = $\frac{-13.6 \text{ eV}}{r^2} - (-13.6 \text{ eV})$ $n = \sqrt{\frac{13.6}{13.6 + 12.6}} \approx 3.69$ \mathbb{R} n = 3可能的轨道跃迁: $3 \rightarrow 1$, $3 \rightarrow 2$, $2 \rightarrow 1$ $h\frac{c}{\lambda} = \frac{E_1}{3^2} - \frac{E_1}{1^2}$ $\lambda_1 = 1.025 \times 10^{-7} \text{ m}$ $h\frac{c}{\lambda} = \frac{E_1}{3^2} - \frac{E_1}{2^2}$ $\lambda_2 = 6.579 \times 10^{-7} \text{ m}$ $h\frac{c}{\lambda_2} = \frac{E_1}{2^2} - \frac{E_1}{1^2}$ $\lambda_3 = 1.216 \times 10^{-7} \text{ m}$

例13-7.氢原子中把 n = 2 状态下的电子移离原子需要多少能量?

$$\begin{array}{ll}
\mathbf{M}: & n=2, & m \to \infty \\
\end{array}$$

$$\Delta E = E_{\infty} - E_2 = 0 - \frac{-13.6 \text{ eV}}{2^2} = 3.4 \text{ eV}$$

§14-5 德布罗意假设与电子衍射实验

一、德布罗意假设

Louis de Broglie1924年在巴黎大学完成的博士论文《量子理论的研究》中提出德布罗意波(de Broglie wave),五年后因这篇论文而获得诺贝尔物理奖。

---整个世纪以来,在辐射理论上,比 起波动的研究方法来,是过于忽视了粒 子的研究方法;在实物理论上,是否发 生了相反的错误呢?是不是我们关于粒 子图象想得太多,而过分地忽略了波的 图象呢?---

爱因斯坦提出:

光的粒子性(corpuscular property)与 波动性(undulatory property)的关系式

Louis de Broglie 1892-1987

$$\varepsilon = hv$$
 $p = \frac{h}{\lambda}$

爱因斯坦提出:

光的粒子性(corpuscular property)与 波动性(undulatory property)的关系式

$$\varepsilon = hv$$
 $p = \frac{h}{\lambda}$
德布罗意假设

自然界是对称统一的。实物粒子 和光子一样,也具有波粒二象性。 如果用能量 E 和动量 p 来描述实物 粒子的粒子性,则可用频率 ν和波 长 λ 来表征实物粒子的波动性。

德布罗意公式
$$E = h\nu$$
 $p = \frac{h}{\lambda}$

注意: 实物粒子的波动既不是机械波 也不是电磁波, 它被称为"物质 波"(matter wave)或"德布罗意波" (de Broglie wave)。

德布罗意波波长的数量级 地球 $m_0 = 5.98 \times 10^{24} \text{ kg}$ $v = 29.8 \text{ km} \cdot \text{s}^{-1}$ $\lambda = - m_0 v$ $=\frac{6.63\times10^{-34}}{5.98\times10^{24}\times2.98\times10^4}=3.72\times10^{-63} \text{ m}$ 子弹 $v = 300 \,\mathrm{m} \cdot \mathrm{s}^{-1}$ $m_0 = 0.01 \, \text{kg}$ $\lambda = \frac{h}{2.21 \times 10^{-34}}$ m $m_0 \mathcal{V}$

宏观物质的德波罗意波长均太小, 难以观察其波动特性。

量子物理

徳布罗意波波长的数量级
地球

$$m_0 = 5.98 \times 10^{24} \text{ kg} \quad v = 29.8 \text{ km} \cdot \text{s}^{-1}$$

 $\lambda = \frac{h}{m_0 v}$
 $= \frac{6.63 \times 10^{-34}}{5.98 \times 10^{24} \times 2.98 \times 10^4} = 3.72 \times 10^{-63} \text{ m}$
子弾
 $m_0 = 0.01 \text{ kg}$ $v = 300 \text{ m} \cdot \text{s}^{-1}$
 $\lambda = \frac{h}{m_0 v} = 2.21 \times 10^{-34} \text{ m}$
 $\lambda = \frac{h}{m_0 v} = 2.21 \times 10^{-34} \text{ m}$
电子
 $f = m_0 = 9.1 \times 10^{-31} \text{ kg}, \text{ m速e}$
 $f = m_0 = 9.1 \times 10^{-31} \text{ kg}, \text{ mixe}$
 $f = m_0 = 9.1 \times 10^{-31} \text{ kg}, \text{ mixe}$
 $f = m_0 v = \sqrt{\frac{2eU}{m_0}}$
 $\lambda = \frac{h}{200} v^2 = eU$ $v = \sqrt{\frac{2eU}{m_0}}$
 $\lambda = \frac{h}{\sqrt{2m_0eU}} \approx \frac{12.25}{\sqrt{U}}$ Å
 $U = 150 \text{ V}$ $\lambda = 1 \text{ Å}$
 $U = 150 \text{ V}$ $\lambda = 1 \text{ Å}$
 $U = 10000 \text{ V}$ $\lambda = 0.122 \text{ Å}$
 $f = 10000 \text{ V}$ $\lambda = 0.122 \text{ Å}$
 $f = 10000 \text{ V}$ $\lambda = 0.122 \text{ Å}$
 $f = 10000 \text{ V}$ $\lambda = 0.122 \text{ Å}$
 $f = 10000 \text{ V}$ $\lambda = 0.122 \text{ Å}$
 $f = 10000 \text{ V}$ $\lambda = 0.122 \text{ Å}$
 $f = 10000 \text{ V}$ $\lambda = 0.122 \text{ Å}$
 $f = 10000 \text{ V}$ $\lambda = 0.122 \text{ Å}$

宏观物质的德波罗意波长均太小, 云 难以观察其波动特性。

1927年Davisson和Germer以电子射线代替x射线进行了镍单晶体的衍射实验。

二、电子衍射实验

1927年Davisson和Germer以电子射线代替 x射线进行了镍单晶体的衍射实验。

由布拉格公式

由布拉格公式

$$2d\sin\theta = k\lambda \quad \lambda = \frac{12.25}{\sqrt{U}} \quad \mathring{A}$$
$$\sqrt{U} = k \cdot \frac{12.25}{2d\sin\theta} \quad k = 1, 2, \cdots$$

固定 θ =80°, d=2.03 Å, → 改变电压U, θ 方向上接受 到的光子数。

Thomson的电子衍射实验

屏

The Nobel Prize in Physics 1937

George Paget Thomson 1892-1975

例13-8. 求一动能为 13.6 eV 的电 子的德布罗意波波长。 解:因为

$$m_0 c^2 = \frac{9.1 \times 10^{-31} \times (3 \times 10^8)^2}{1.6 \times 10^{-19}}$$
$$= 1.71 \times 10^5 \text{ eV}$$

例13-8. 求一动能为 13.6 eV 的电 子的德布罗意波波长。

解: 因为

$$m_0 c^2 = \frac{9.1 \times 10^{-31} \times (3 \times 10^8)^2}{1.6 \times 10^{-19}}$$

= 1.71×10⁵ eV
fit $E_k = 13.6 \text{ eV} << m_0 c^2$
 $\lambda = \frac{h}{\sqrt{2m_0 E_k}}$
= $\frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 13.6 \times 1.6 \times 10^{-19}}} \text{ m}$
= 3.32×10⁻¹⁰ m

问

题

2009-5-12

波函数的统计解释 § 14-6

一、关于粒子和波的分析 1. 波包说: 认为粒子实为波包。

● 波包在媒质界面上要反射和折射。

波包说夸大了波动性一面, 抹杀了粒子性一面。

2. 疏密波说: 认为波动是大量粒 子分布在空间的一种疏密分布。

疏密波说夸大了粒子性一面, 抹杀了波动性一面。

§14-6 波函数的统计解释

一、关于粒子和波的分析

1. 波包说: 认为粒子实为波包。

不同波长的波在媒质中的群速度
 不同,波包在传播中的会扩散,使
 粒子"发胖";

● 波包在媒质界面上要反射和折射。

波包说夸大了波动性一面, 抹杀了粒子性一面。

2. 疏密波说: 认为波动是大量粒子分布在空间的一种疏密分布。

疏密波说夸大了粒子性一面, 抹杀了波动性一面。

二、波函数(wave function)的统计解释

1. 概率波 (probability wave)

1926年Born提出粒子在空间位 置出现的概率具有波动性的分布 - 概率波。

2. 波函数 (wave function)

比较单色平面简谐波函数

$$\Psi = A\cos 2\pi(vt - \frac{x}{\lambda})$$

问

题

二、波函数(wave function)的统计解释

1. 概率波 (probability wave)

1926年Born提出粒子在空间位 置出现的概率具有波动性的分布 - 概率波。

2. 波函数 (wave function)

比较单色平面简谐波函数

$$\Psi = A\cos 2\pi(vt - \frac{x}{\lambda})$$

用复指数形式表示:

$$\Psi = A e^{-i2\pi(v t - x/\lambda)}$$

微观粒子具有波动性,其运动 状态应该用波函数来描写。

一个沿Ox轴方向运动的自由粒 子有动能E和动量p。对应的德布罗 意波具有频率和波长:

 $v = \frac{E}{h} \qquad \lambda = \frac{h}{p}$ 一维方向运动的自由粒子的波函数:

$$\Rightarrow \Psi = \Psi_0 \mathrm{e}^{\frac{\mathrm{i}}{\hbar}(px - Et)}$$

量子物理

用复指数形式表示:

 $\Psi = A e^{-i2\pi(\nu t - x/\lambda)}$

微观粒子具有波动性,其运动 状态应该用波函数来描写。

一个沿Ox轴方向运动的自由粒 子有动能E和动量p。对应的德布罗 意波具有频率和波长:

$$\nu = \frac{E}{h} \qquad \lambda = \frac{h}{p}$$
一维方向运动的自由粒子的波函数:

$$\Rightarrow \Psi = \Psi_0 \mathrm{e}^{\frac{\mathrm{i}}{\hbar}(px - Et)}$$

2009-5-12

推广: 三维自由粒子波函数:
$$\Psi(\vec{r},t) = \Psi_0 e^{\frac{i}{\hbar}(\vec{p}\cdot\vec{r}-Et)}$$

能量为E,动量为 \vec{p} 的自由粒子波函数

波函数的强度

 $|\Psi|^2 = \Psi \cdot \Psi^*$

波函数在某一点的强度 | 4² 和 该点找到电子的概率成正比,它是大 量粒子形成总分布的一种统计规律。 波函数乃是概率波。

玻恩对波函数的统计解释:

波函数模的平方 $|\Psi(\vec{r},t)|^2$ 代表 时刻t, 在 \vec{r} 处**粒子出现的概率密度** (probability density)。

时刻t粒子出现在 F 附近dV体积 内的概率为:

 $|\Psi(\bar{r},t)|^2 \mathrm{d}V$

波函数必须满足的条件

- ① 标准条件
 - 单值性、连续性、有限性
- ② 归一化条件(normalizing condition) $\int_{V} |\Psi|^{2} dV = 1$

粒子在整个空间出现的概率为1

态叠加原理(principle of superposition of states):

 $\psi = c_1 \psi_1 + c_2 \psi_2 + \dots + c_n \psi_n$

波函数不仅把粒子与波统一起 来,同时以概率波(概率密度波)的 形式描述粒子的运动状态。

§13-7 不确定关系 (uncertainty relation) (测不准关系)

由于微观粒子具有波粒二象性, 用经典概念(坐标、动量、能量、轨 道等)描述其状态会受到限制。

以衍射极小值的的位置进行估算:

以衍射极小值的的位置进行估算:

$$\Delta p_x \approx psin\theta = p \frac{\lambda}{\Delta x}$$
用德布罗意公式 $\lambda = \frac{h}{p}$ 代入,可得
 $\Delta p_x \approx \frac{h}{\Delta x}$ 或 $\Delta x \Delta p \approx h$
严格推导可以证明:在平均意义上
 $\Delta x \Delta p \ge \frac{h}{2}$
—海森伯不确定关系
继续分析可得 $\Delta t \cdot \Delta E \ge \frac{h}{2}$

给论:对丁佩观拉丁,不能问时/ 确定的位置和动量来描述。

旦了咖啡

$\Delta p_x \approx psin\theta = p \frac{\lambda}{\Delta x}$ 用德布罗意公式 $\lambda = \frac{h}{n}$ 代入,可得 $\Delta p_x \approx \frac{h}{\Delta r} \qquad \vec{x} \quad \Delta x \Delta p \approx h$ 严格推导可以证明: 在平均意义上 $\Delta x \Delta p \ge \frac{\hbar}{2}$ -海森伯不确定关系 继续分析可得 $\Delta t \cdot \Delta E \ge \frac{\hbar}{2}$

结论:对于微观粒子,不能同时用 确定的位置和动量来描述。

The Nobel Prize in Physics 1932

W. Heisenberg (1901-1976)

1) 不确定关系是微观粒子波粒二象性的必然结果。

不确定性不是实验误差,而是量
 子系统的内禀性质。它通过与实验
 装置的相互作用而表现出来。

3)不能同时准确确定位置和动量。
4)作用量子 h 给出了宏观与微观的界限。

量子物理 PSS

The Nobel Prize in Physics 1932

W. Heisenberg (1901-1976) 1) 不确定关系是微观粒子波粒二

象性的必然结果。

不确定性不是实验误差,而是量
 子系统的内禀性质。它通过与实验
 装置的相互作用而表现出来。

3)不能同时准确确定位置和动量。
4)作用量子 h 给出了宏观与微观的界限。

例15-9. 试比较电子和质量为10 g的 子弹位置的不确定量,假设它们在*x* 方向都以速度200 m/s运动,速度的不 确定度在0.01%内。

解:

$$\Delta x \cdot \Delta p_x \ge \frac{\hbar}{2} \qquad \Delta x = \frac{\hbar}{2\Delta p_x} = \frac{\hbar}{4\pi\Delta p_x}$$

电子:

 $\Delta p_x = 0.01\% mv_x$ = 10⁻⁴ × 9.1×10⁻³¹ × 200

$$= 1.8 \times 10^{-32} \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$$

$$\Delta x = \frac{6.63 \times 10^{-34}}{4\pi \times 1.8 \times 10^{-32}} = 2.93 \times 10^{-3} \,\mathrm{m}$$

例15-9. 试比较电子和质量为10 g的 子弹位置的不确定量,假设它们在*x* 方向都以速度200 m/s运动,速度的不 确定度在0.01%内。

解:

$$\Delta x \cdot \Delta p_x \ge \frac{\hbar}{2} \qquad \Delta x = \frac{\hbar}{2\Delta p_x} = \frac{\hbar}{4\pi\Delta p_x}$$

电子:

$$\Delta p_x = 0.01\% mv_x$$

= 10⁻⁴ × 9.1×10⁻³¹ × 200
= 1.8×10⁻³² kg · m · s⁻¹
$$\Delta x = \frac{6.63 \times 10^{-34}}{4\pi \times 1.8 \times 10^{-32}} = 2.93 \times 10^{-3} m$$

子弹:

$$\Delta p_x = 0.01\% mv_x \\ = 10^{-4} \times 10 \times 10^{-3} \times 200$$

$$= 2.0 \times 10^{-4} \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$$

$$\Delta x = \frac{6.63 \times 10^{-34}}{4\pi \times 2.0 \times 10^{-4}} = 3.3 \times 10^{-30} \text{ m}$$

量子物理 Pass

§13-8 薛定谔方程

Erwin Schrödinger,奥地利理论物 理学家。在德布罗意物质波思想的基 础上,引入波函数来描述微观客体, 提出了薛定谔方程(Schrödinger equation)作为量子力学的又一个基本 假设来描述微观粒子的运动规律,并 建立了微扰的量子理论——量子力学 的近似方法。他是量子力学的创始人 之一。

一、薛定谔方程的引入

自由粒子的波函数:

$$\Psi(\vec{r},t) = A e^{\frac{i}{\hbar}(\vec{p}\cdot\vec{r}-Et)}$$

对时间t求偏导数

Erwin Schrödinger 1887—1961

The Nobel Prize in Physics 1933

$$\frac{\partial \Psi(\vec{r},t)}{\partial t} = -\frac{i}{\hbar} EAe^{\frac{i}{\hbar}(\vec{p}\cdot\vec{r}-Et)}$$
$$= -\frac{i}{\hbar} E\Psi(\vec{r},t)$$

一、薛定谔方程的引入

(一)自由粒子的波函数:

$$\Psi(\vec{r},t) = A e^{\frac{i}{\hbar}(\vec{p}\cdot\vec{r}-Et)}$$

对时间t求偏导数

$$\frac{\partial \Psi(\vec{r},t)}{\partial t} = -\frac{i}{\hbar} EAe^{\frac{i}{\hbar}(\vec{p}\cdot\vec{r}-Et)}$$
$$= -\frac{i}{\hbar} E\Psi(\vec{r},t)$$

$$i\hbar \frac{\partial}{\partial t} \Psi(\vec{r},t) = E \Psi(\vec{r},t)$$

$$\Psi(\vec{r},t) = Ae^{\frac{1}{\hbar}(\vec{p}\cdot\vec{r}-Et)}$$
$$= Ae^{\frac{i}{\hbar}(p_xx+p_yy+p_zz-Et)}$$

对座标x求两次偏导数

$$\frac{\partial}{\partial x}\Psi(\vec{r},t) = \frac{i}{\hbar} p_x A e^{\frac{i}{\hbar}(\vec{p}\cdot\vec{r}-Et)}$$
$$= \frac{i}{\hbar} p_x \Psi(\vec{r},t)$$
$$\frac{\partial^2}{\partial x^2}\Psi(\vec{r},t) = -\frac{p_x^2 A}{\hbar^2} e^{\frac{i}{\hbar}(\vec{p}\cdot\vec{r}-Et)}$$
$$= -\frac{p_x^2}{\hbar^2}\Psi(\vec{r},t)$$

同理, 分別对y和z求偏导数可得: $\frac{\partial^2}{\partial y^2} \Psi(\vec{r},t) = -\frac{p_y^2}{\hbar^2} \Psi(\vec{r},t)$ $\frac{\partial^2}{\partial z^2} \Psi(\vec{r},t) = -\frac{p_z^2}{\hbar^2} \Psi(\vec{r},t)$

则

量子物理 Pros

$$\frac{\partial^2}{\partial x^2} \Psi(\vec{r},t) = -\frac{p_x^2 A}{\hbar^2} e^{\frac{i}{\hbar}(\vec{p}\cdot\vec{r}-Et)}$$
$$= -\frac{p_x^2}{\hbar^2} \Psi(\vec{r},t)$$

同理,分别对y和z求偏导数可得:

$$\frac{\partial^2}{\partial y^2}\Psi(\vec{r},t) = -\frac{p_y^2}{\hbar^2}\Psi(\vec{r},t)$$

$$\frac{\partial^2}{\partial z^2}\Psi(\vec{r},t) = -\frac{p_z^2}{\hbar^2}\Psi(\vec{r},t)$$

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \Psi(\vec{r}, t) = -\frac{p^2}{\hbar^2} \Psi(\vec{r}, t)$$

引入拉普拉斯算符

$$\nabla^{2} = \nabla \cdot \nabla = \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}}\right)$$

$$\nabla^{2} \Psi(\vec{r},t) = -\frac{p^{2}}{2} \Psi(\vec{r},t)$$

由粒子动能定义
 $E = \frac{1}{2}m\tau^{2} = \frac{p^{2}}{2m}$
得: $p^{2} = 2mE$
则 $-\frac{h^{2}}{2m} \nabla^{2} \Psi(\vec{r},t) = E \Psi(\vec{r},t)$
比较 $i\hbar \frac{\partial}{\partial t} \Psi(\vec{r},t) = E \Psi(\vec{r},t)$

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(\vec{r},t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\vec{r},t)$$

——自由粒子的薛定谔方程

2009-5-12

则

量子物理 // 1000

则
$$-\frac{h^2}{2m}\nabla^2\Psi(\bar{r},t) = E\Psi(\bar{r},t)$$

比较 $i\hbar\frac{\partial}{\partial t}\Psi(\bar{r},t) = E\Psi(\bar{r},t)$
 $i\hbar\frac{\partial}{\partial t}\Psi(\bar{r},t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\bar{r},t)$
——自由粒子的薛定谔方程
(二) 处于势场 $V(\bar{r})$ 中的非自由粒
子的薛定谔方程

力学量的算符

能量算符:
$$i\hbar \frac{\partial}{\partial t} \rightarrow$$

 \hat{E}

由
$$\frac{\partial}{\partial x}\Psi(\vec{r},t) = \frac{i}{\hbar}p_x A e^{\frac{i}{\hbar}(\vec{p}\cdot\vec{r}-Et)}$$

 $= \frac{i}{\hbar}p_x\Psi(\vec{r},t)$
动量算符: $-i\hbar\nabla \rightarrow \hat{\vec{p}}$
 $-\hbar^2\nabla^2 \rightarrow \hat{\vec{p}}^2$

处于势场 $V(\bar{r})$ 中的非自由粒子 经典关系式: $E = \frac{p^2}{2m} + V(\bar{r})$ 则 $\hat{E} = \frac{\hat{p}^2}{2m} + V(\bar{r})$ i $\hbar \frac{\partial}{\partial t} \psi(\bar{r},t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\bar{r})\right] \psi(\bar{r},t)$

—非自由粒子的薛定谔方程

处于势场 V(r)中的非自由粒子

经典关系式:
$$E = \frac{p^2}{2m} + V(\bar{r})$$

则 $\hat{E} = \frac{\hat{p}^2}{2m} + V(\bar{r})$

$$i\hbar \frac{\partial}{\partial t} \psi(\vec{r},t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r})\right] \psi(\vec{r},t)$$

——非自由粒子的薛定谔方程
令
$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(\bar{r})$$

——哈密顿算符
*多粒子体系的薛定谔方程
 $E = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + V(\bar{r}_1, \bar{r}_2, \dots, \bar{r}_N)$

$$i\hbar\frac{\partial}{\partial t}\Psi(\vec{r},t) = \left(-\sum_{i=1}^{N}\frac{\hbar^{2}}{2m_{i}}\nabla_{i}^{2} + V\right)\Psi(\vec{r},t)$$

二、定态 不含时间的薛定谔方程

在薛定谔方程中, V(r)通常也是时间的函数。现考虑V不显含时间的情况: 可令粒子的波函数为:

 $\Psi(\vec{r},t) = \psi(\vec{r})f(t)$

i $\hbar \frac{\partial}{\partial t} [\psi(\bar{r})f(t)] = [\frac{\hbar^2}{2m} \nabla^2 + V(\bar{r})][\psi(\bar{r})f(t)]$ 分离变量可得

 $\frac{\mathrm{i}\hbar}{f(t)}\frac{\partial f(t)}{\partial t} = \frac{1}{\psi(\vec{r})}\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right]\psi(\vec{r})$

要使该式恒成立,左右两边必须同等一个 常数E。

二、定态 不含时间的薛定谔方程

在薛定谔方程中, V(F)通常也是时间的函数。现考虑V不显含时间的情况: 可令粒子的波函数为:

 $\Psi(\vec{r},t) = \psi(\vec{r})f(t)$ ih $\frac{\partial}{\partial t}[\psi(\vec{r})f(t)] = [\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})][\psi(\vec{r})f(t)]$ 分离变量可得

$$\frac{\mathrm{i}\hbar}{f(t)}\frac{\partial f(t)}{\partial t} = \frac{1}{\psi(\bar{r})}\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\bar{r})\right]\psi(\bar{r})$$

要使该式恒成立,左右两边必须同等一个常数E。

 $\longrightarrow f(t) = Ce^{-\frac{h}{\hbar}t}$ 薛定谔方程的解为 $\Psi(\vec{r},t) = \psi(\vec{r})e^{-\frac{\mathrm{i}E}{\hbar}t}$ (任意常数C放入Ψ中) 等式右边=E $\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right]\psi(\vec{r}) = E\psi(\vec{r})$ -定态薛定谔方程 (stationary Schrödinger equation) $\psi(\vec{r})$ —— 定态波函数 (stationary wave function)

定态波函数描述的粒子具 有的性质:

 $\left[-\frac{\hbar^2}{2}\nabla^2 + V(\vec{r})\right]\psi(\vec{r}) = E\psi(\vec{r})$

——定态薛定谔方程 (stationary Schrödinger equation) $\psi(\bar{r})$ —— 定态波函数 (stationary wave function)

定态波函数描述的粒子具 有的性质:

- 空间各处的几率密度不随时 间变化。
- 2) 一切力学量(不含时间t)的 平均值不变。

定态(stationary state):

能量不随时间变化的状态。

定态Schrödinger方程的讨论:

- Schrödinger方程是描述微观粒子运动的基本方程,若ψ(r)是方程的一个解,则ψ(r)就对应一个粒子运动的稳定态;
- 2) 方程的每一个解必有一个相应的能量*E*;
- 3) 波函数的单值、有限、连续的要求,能量E只能取某些分立值——能级或能带;
- 4) Schrödinger方程的局限性:

未反映电子自旋; 未满足相对论要求(相对论量子力学); 未考虑粒子的产生和湮灭(量子场论)。

§13-9 一维定态

一、一维无限深方势阱(Infinite potential well)问题(理想模型) 1. 势函数 $V(x) = \begin{cases} 0 & 0 < x < a \\ \infty & x \le 0, x \ge a \end{cases}$

2. 定态辟足時方柱

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V(x) \end{bmatrix} \psi(x) = E\psi(x)$$
(1)阱内:
$$-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E\psi(x)$$
令: $k^2 = \frac{2mE}{\hbar^2}$
 $\psi''(x) + k^2 \psi(x) = 0$

六十世 <u>一</u>10

(2)阱外: $\left| -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \infty \right| \psi(x) = E \psi(x)$ (3) 分区求通解 阱内: $\psi(x) = C \sin kx + D \cos kx$ C和D是待定常数 阱外: 波函数的有界性 $\psi(x)=0$

2009-5-12

(4) 由波函数自然条件和边界条件 定特解 $\psi(0) = 0 \implies D = 0$ $\psi(a) = 0 \implies \sin ka = 0, C \neq 0$ $ka = n\pi$, $(k \neq 0)$ $k = \frac{n\pi}{n}, n = 1, 2, 3, \cdots$ 10可得能量的可能值为: $E_n = n^2 \left(\frac{\pi^2 \hbar^2}{2ma^2} \right) = \frac{n^2 h}{8ma^2}$ ——*E*,称为能量的本征值 显然,

(4) 由波函数自然条件和边界条件 定特解

 $\psi(0) = 0 \implies D = 0$ $\psi(a) = 0 \implies \sin ka = 0, \ C \neq 0$ $ka = n\pi, \ (k \neq 0)$ $k = \frac{n\pi}{a}, \ n = 1, 2, 3, \cdots$

10可得能量的可能值为:

$$E_n = n^2 \left(\frac{\pi^2 \hbar^2}{2ma^2}\right) = \frac{n^2 h}{8ma^2}$$

—— E_n称为能量的本征值

显然,

* 能量取分立值(能级)——能量量子化(quantization);

* 当
$$n \rightarrow \infty$$
时,量子化 → 连续;
令 $n=1$ $E_1 = \frac{h}{8ma^2} > 0$
* 最低能量:基态能量
(零点能,zeropoint energy)
—波动性的表现;
* 相邻两能级间隔
 -2 ± 2

$$\Delta E_n = \frac{\pi^2 \hbar^2}{2ma^2} (2n+1)$$

▶n增大,相邻两能级间隔增大;
 ▶a增大(宏观尺度),则 △E_n→0,
 能量连续变化——经典情况;反之,
 出现量子尺寸效应。

* 当 $n \to \infty$ 时,量子化 → 连续; 令n=1 $E_1 = \frac{h}{8ma^2} > 0$

*最低能量:基态能量 (零点能, zeropoint energy) ——波动性的表现;

*相邻两能级间隔

$$\Delta E_n = \frac{\pi^2 \hbar^2}{2ma^2} (2n+1)$$

 >n增大,相邻两能级间隔增大;
 >a增大(宏观尺度),则 △E_n→0 , 能量连续变化——经典情况;反之, 出现量子尺寸效应。

20与各能级相对应的波函数 ——本征函数(eigenfunction)系 由归一化条件: $\int_{0}^{a} |\psi_{n}(x)|^{2} dx = 1$ $\int_{0}^{a} C_{n}^{2} \sin^{2} \frac{n\pi x}{a} dx = \frac{1}{2} C_{n}^{2} a = 1$ $C_n = \sqrt{\frac{2}{2}}$ $\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi}{a} x \quad (n = 1, 2, 3, \cdots)$ n = 3n = 2 $\Psi_n(x)$ n = 1

a/2

一维无限深势阱的能量本征函数

2009-5-12

 α

一维无限深势阱的能量本征函数

- n≠0, 否则ψ=0;
- 主量子数±n, ψ代表同一状态,
 取正值;
- 一个n对应一个波函数ψ_n,即对 于粒子的一个可能态——个"轨 道"。

30 概率密度

$$|\psi_n(x)|^2 = \frac{2}{a} \sin^2 \frac{n\pi}{a} x$$
当n → ∞时, 量子 → 经典
在坐标x处找到粒子的概率密度 $|\psi_n(x)|^2$
在 $x_1 - x_2$ 区间内找到粒子的概率
 $P = \int_{x_1}^{x_2} |\psi_n(x)|^2 dx$

量子物理 PM

30概率密度

$$\left|\psi_n(x)\right|^2 = \frac{2}{a}\sin^2\frac{n\pi}{a}x$$

当n → ∞时, 量子 → 经典在坐标x处找到粒子的概率密度 $| \psi_n(x) |^2$ 在 $x_1 - x_2$ 区间内找到粒子的概率

例14-10.设在一维无限深方势阱中, 运动粒子的状态用

 $\psi(x) = \frac{4}{\sqrt{a}} \sin \frac{\pi x}{a} \cos^2 \frac{\pi x}{a}$

描述,求粒子能量的可能值及相应 的概率。

解:已知无限深方势阱中粒子的本征函数和能量本征值为

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi}{a} x$$
 $E_n = \frac{\pi^2 \hbar^2}{2ma^2} n^2 = n^2 E_1$

将波函数用本征波函数展开

量子物理 PSS

例14-10.设在一维无限深方势阱中, 运动粒子的状态用

$$\psi(x) = \frac{4}{\sqrt{a}} \sin \frac{\pi x}{a} \cos^2 \frac{\pi x}{a}$$

描述,求粒子能量的可能值及相应 的概率。

解:已知无限深方势阱中粒子的本征函数和能量本征值为

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi}{a} x$$
 $E_n = \frac{\pi^2 \hbar^2}{2ma^2} n^2 = n^2 E_1$

将波函数用本征波函数展开

$$\psi(x) = \frac{4}{\sqrt{a}} \sin \frac{\pi x}{a} \cos^2 \frac{\pi x}{a}$$
$$= \frac{2}{\sqrt{a}} \sin \frac{\pi x}{a} \left(1 + \cos \frac{2\pi x}{a} \right)$$

 $= \frac{1}{\sqrt{a}} \left(\sin \frac{\pi x}{a} + \sin \frac{3\pi x}{a} \right)$ $= \frac{1}{\sqrt{2}} \left[\psi_1(x) + \psi_3(x) \right]$

- 二、隧道效应
- 1. 势垒 (potential barrier)

$$V(x) = \begin{cases} 0 & x < x_1, \ x > x_2 \\ V_0 & x_1 < x < x_2 \end{cases}$$

2. 定态薛定谔方程

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right]\psi(\vec{r}) = E\psi(\vec{r})$$

3. 分区求通解

IZ
$$x < x_1$$
: $-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} \psi(x) = E \psi(x)$

令
$$k^2 = \frac{2mE}{\hbar^2}$$
 得

$$\psi''(x) + k^2 \psi(x) = 0$$

 $V = V_0$ I I V = 0 V = 0 V = 0 x_1 x_2

 $\psi_{\rm I}(x) = A \sin(kx + \alpha)$

II 区 $x_1 < x < x_2$: $\begin{bmatrix} -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V_0 \end{bmatrix} \psi(x) = E \psi(x)$ 令 $\lambda^2 = \frac{2m}{\hbar^2} (V_0 - E)$ 得 $\psi''(x) - \lambda^2 \psi(x) = 0$ $\psi_{II}(x) = Be^{\lambda x} + Ce^{-\lambda x}$

 $\psi_{\rm I}(x) = A \sin(kx + \alpha)$

II 区 $x_1 < x < x_2$: $\begin{bmatrix} -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V_0 \end{bmatrix} \psi(x) = E \psi(x)$ 令 $\lambda^2 = \frac{2m}{\hbar^2} (V_0 - E)$ 得 $\psi''(x) - \lambda^2 \psi(x) = 0$ $\psi_{II}(x) = Be^{\lambda x} + Ce^{-\lambda x}$

: I 区域出现粒子的概率一定比III大 上式中第一项与事实不符,故令

B = 0 $\mathcal{U}_{II}(x) = Ce^{-\lambda x}$

III区 $x > x_2$: 与I区情况类似 $\psi_{III}(x) = D \sin(kx + \beta)$

可见 $\psi_{III} \neq 0$

表示x < x₁内的粒子可以通过势垒区进入x > x₂区域。

4. 隧道效应(tunnel effect)

4. 隧道效应(tunnel effect)

穿透势垒的概率

$$P = \frac{|\psi_{\rm III}(x_2)|^2}{|\psi_{\rm I}(x_1)|^2}$$

根据波函数的连续性

$$P = \frac{|\psi_{III}(x_2)|^2}{|\psi_{I}(x_1)|^2} = \frac{|\psi_{II}(x_2)|^2}{|\psi_{II}(x_1)|^2}$$
$$= \frac{C^2 e^{-2\lambda x_2}}{C^2 e^{-2\lambda x_1}} = e^{-2\lambda(x_2 - x_1)}$$

$$= e^{-\frac{2a}{\hbar}\sqrt{2m(V_0 - E)}}$$

$$\pm \mathbf{P} \ a = x_2 - x_1 \quad \lambda^2 = \frac{2m}{\hbar^2}(V_0 - E)$$

可见: 势垒厚度a越大,粒子通过的概率 越小;

势全高度V₀超过粒子能量E越大,粒 子穿透势垒的概率越小。

量子物理 🎮

可见:

势垒厚度a越大,粒子通过的概率 越小;

势全高度V₀超过粒子能量E越大,粒 子穿透势垒的概率越小。

三、一维线性谐振子 (linear harmonic oscillator), 宇称(parity) **1.** 势函数 $V(x) = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 x^2$ m -振子质量, $\omega -$ 固有频率, x — 位移 2. 定态薛定谔方程 $-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) + \frac{1}{2}m\omega^2 x^2\psi(x) = E\psi(x)$ (1) 能量本征值 $E_n = (n + \frac{1}{2})\hbar\omega = (n + \frac{1}{2})hv$ (n=0,1,2,...)

能量量子化 能量间隔 $\Delta E = \hbar \omega$ 最低能量(零点能) $E_0 = \frac{1}{2} \hbar \omega > 0$

$$E_n = (n + \frac{1}{2})\hbar\omega$$

(2) 本征函数和几率密度

(2) 本征函数和几率密度

3. 与经典谐振子的比较 (1) 基态位置几率分布

- 量子: 在 x = 0处概率最大;
- 经典: 在 x = 0处概率最小。

(2)符合玻尔对应原理
 当n→∞时
 量子概率分布 > 经典概率分布;
 能量量子化 > 能量取连续值。

4. 宇称

4. 宇称

对于本征波函数 $\Psi_n(x)$

 $\psi_{n}(-x) = (-1)^{n} \psi_{n}(x)$

n的奇偶性决定了本征函数的奇偶性。

一般,把由偶函数描述的量子态称 为偶宇称态(even parity state);

把由奇函数描述的量子态称为奇 宇称态(odd parity state)。

对于一维束缚定态,如果势能函数 是对称的,则本征函数具有确定的宇称。

四、应用举例

- 1. 核聚变
- 势垒高度 $\frac{(Ze)^2}{4\pi\varepsilon_0 r_{max}}$ ~MeV
- 热能(T=107 K)~keV

设动能按 Boltzmann分布, $P(E) \propto e^{-E/kT}$

具有MeV能量核子的概率为 e^{-1000} 核子通过隧道效应穿透库仑势垒进入。

2. 解释放射性 α 衰变

2. 解释放射性α衰变

a粒子从放射性核中逸出——衰变。

 $^{238}U核:$ 库仑势垒 $V_0 = 35$ MeV α 粒子能量 $E_a = 4.2$ MeV **理论计算表明:** α粒子是通过隧道效应穿透库仑势垒 而跑出的。

3. 扫描隧道显微镜 (Scanning tunneling microscopy, STM)

Omicron 低温超高真空STM

3. 扫描隧道显微镜

(Scanning tunneling microscopy, STM)

Omicron 低温超高真空STM

1981年,第一台扫描隧道显微镜诞生。

STM是根据电子穿过表面势垒的 隧道效应制成的。

它利用针尖扫描样品表面,通过隧 道电流(tunnel current)获得样品表面 的图像。

1986 Nobel Prize in Physics

G. Binnig 1947-

H. Rohrer 1933-

主要贡献:发明隧道扫描显微镜

STM是根据电子穿过表面势垒的 隧道效应制成的。

它利用针尖扫描样品表面,通过隧 道电流(tunnel current)获得样品表面 的图像。

1986 Nobel Prize in Physics

G. Binnig 1947-

H. Rohrer 1933-主要贡献: 发明隧道扫描显微镜

硅表面硅原子的排列

砷化镓表面砷原子的排列

量子物理 🂦

48个Fe原子围成一个平均半径为7.13 nm的圆圈——"量子围栏",围栏中的电子形成驻波。

通过移走原子构成的图形

4. Bose-Einstein凝聚

Einstein预言气态玻色系统在某一临 界温度以下将有宏观数量的粒子共同 占据量子力学的基态---BEC。

2001 Nobel Prize in Physics

F.A. Cornell 1961-

W. Ketterle 1957-

Carl E. Wieman 1951-

主要贡献: 实现Bose-Einstein凝聚

- 图1: BEC形成之前,原子程现均匀球 对称分布;
- 图2: BEC形成之后,中心突出部分为 BEC,其边缘部分为热原子分布,
- 呈对称分布: 图3: 接近纯BEC, 边缘几乎没有热原 子。

§14-10 原子中的电子 原子的壳层结构

一、**氢原子中电子的波函数及其概率分布** 1.氢原子的定态薛定谔方程

■势函数
$$U(r) = -\frac{e^2}{4\pi\varepsilon_0 r}$$

■球坐标下的定态薛定谔方程

■ 分离变量法求解定态方程
将
$$\psi(r,\theta,\varphi) = R(r)\Theta(\theta)\Phi(\varphi)$$

代入方程,得
 $\frac{d\Phi^2}{d^2\varphi} + m_l^2\Phi = 0$
 $\frac{1}{\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) + \left(\lambda - \frac{m_l^2}{\sin^2\theta}\right)\Theta = 0$
 $\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial R}{\partial r}) + \left[\frac{2m}{\hbar^2}\left(E + \frac{e^2}{4\pi\varepsilon_0 r}\right) - \frac{\lambda}{r^2}\right]R = 0$
2. 三个量子数
■ 能量量子化和主量子数

(principle quantum number)

$$\frac{\hbar^2}{2m} \left[\frac{\partial^2 \psi}{\partial r^2} + \frac{2}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2 \sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2\theta} \frac{\partial \psi^2}{\partial \varphi^2} \right] + \left(E + \frac{e^2}{4\pi\varepsilon_0 r} \right) \psi = 0$$

P.87/133

■ 分离变量法求解定态方程

将 $\psi(r,\theta,\varphi) = R(r)\Theta(\theta)\Phi(\varphi)$ 代入方程,得 $\frac{d\Phi^2}{d^2\varphi} + m_l^2\Phi = 0$ $\frac{1}{\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) + \left(\lambda - \frac{m_l^2}{\sin^2\theta}\right)\Theta = 0$ $\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial R}{\partial r}) + \left[\frac{2m}{\hbar^2}\left(E + \frac{e^2}{4\pi\varepsilon_0 r}\right) - \frac{\lambda}{r^2}\right]R = 0$

2. 三个量子数

■ 能量量子化和主量子数 (principle quantum number)

$$E_n = -\frac{1}{n^2} \left(\frac{me^4}{8\varepsilon_0^2 h^2} \right) = -\frac{13.6}{n^2} eV$$

 $n = 1, 2, 3, \cdots$
能量是量子化的;
当主量子数n → ∞ 时, E_n →连续值。

■角动量量子化和角量子数 (orbital quantum number)

轨道角动量大小: L = √l(l+1)ħ 轨道量子数: l = 0, 1, 2, ···, (n-1) 处于l = 0, 1, 2, 3, ...状态的电子分别 称为s, p, d, f, ...电子。

■角动量的空间量子化和磁量子数 (Magnetic quantum number)

轨道角动量z分量: $L_z = m_l \hbar$ 磁量子数: $m_l = 0, \pm 1, \pm 2, \dots, \pm l$

■角动量的空间量子化和磁量子数 (Magnetic quantum number)

轨道角动量z分量: $L_z = m_l \hbar$ 磁量子数: $m_l = 0, \pm 1, \pm 2, \cdots, \pm l$

轨道角动量空间"量子化"示意图

- 对于同一L,它在z方向的投影可以
 取2l+1个值,因此L与z方向的夹角θ
 也只可能是2l+1个确定值;
- L在空间的取向是量子化的。

- 电子状态

 ¹/₁₀(2l+1)=n²

 能级简并:

 一个能级对应一个以上状态(波函数)
 简并度(degeneracy): ∑¹/₁₀(2l+1)=n²
 能级简并产生的原因:
 电子所处的势能具有球对称;
 - 库仑力具有比一般有心力场更高的对称性。
- 3. 氢原子中电子的概率分布

电子在氢原子内部各点出现的 概率:

 $w_{nlm_{i}}(r,\theta,\varphi) dV = |\psi_{nlm_{i}}(r,\theta,\varphi)|^{2} dV$ $= |R_{nl}(r)|^{2} |Y_{lm_{i}}(\theta,\varphi)|^{2} r^{2} \sin\theta dr d\theta d\varphi$

3. 氢原子中电子的概率分布

电子在氢原子内部各点出现的 概率: $w_{nlm}(r,\theta,\varphi) dV = |\psi_{nlm}(r,\theta,\varphi)|^2 dV$ $= \left| R_{nl}(r) \right|^2 \left| Y_{lm}(\theta, \varphi) \right|^2 r^2 \sin \theta dr d\theta d\varphi$ ■ 电子径向概率分布 $w_{nl}(r)dr = R^2_{nl}(r)r^2dr$ 在r→∞和r→0时, 概率为零。最概然半径(most propable radius) 概率取极大值的位置。 y x Z 2009-5-12

3. 氢原子中电子的概率分布

电子在氢原子内部各点出现的 概率: $w_{nlm_1}(r,\theta,\varphi) dV = |\psi_{nlm_1}(r,\theta,\varphi)|^2 dV$ $= |R_{nl}(r)|^2 |Y_{lm}(\theta,\varphi)|^2 r^2 \sin\theta dr d\theta d\varphi$ ■ 电子径向概率分布 $w_{ml}(r)\mathrm{d}r = R^2{}_{nl}(r)r^2\mathrm{d}r$ 在r→∞和r→0时, 概率为零。最概然半径(most propable radius) 概率取极大值的位置。

■ 概率的角分布

p电子的几率角分布

■氢原子的电子云

量子物理 P

二、电子的自旋 施特恩-盖拉赫实验 1.电子自旋提出的实验基础

1925年Uhlenbeck和Goudsmit 提出**电子自旋**(electron spin)。

- (1) 反常Zeeman效应
- Zeeman效应

G.E. Uhlenbeck 1900-1988

S.A. Goudsmit 1902-1979

Pieter Zeeman 1865-1943

The Nobel Prize in Physics 1902

二、电子的自旋 施特恩-盖拉赫实验 1. 电子自旋提出的实验基础

1925年Uhlenbeck和Goudsmit

提出电子自旋(electron spin)。

- (1) 反常Zeeman效应
- Zeeman效应

● 反常Zeeman效应

1897年,T.Preston发现,在弱 磁场中,原子光谱分裂可以不是三 条,其间隔也不尽相同。

- (2) 碱金属光谱的精细结构 碱金属的每一条光谱线是由两 条或三条线组成。
- (3) Stern-Gerlach实验(1922年)

S态的银原子经过狭缝和不均 匀磁场后,分裂成上下对称的两 束。

● 反常Zeeman效应

1897年, T. Preston发现, 在弱 磁场中, 原子光谱分裂可以不是三条, 其间隔也不尽相同。

Otto Stern 1888-1969 **1943年获Nobel**奖

Walter Gerlach 1889-1979

Photographic plate Classical pattern Actual pattern

Stern-Gerlach实验示意图

- (2) 碱金属光谱的精细结构 碱金属的每一条光谱线是由两 条或三条线组成。
- (3) Stern-Gerlach实验(1922年)

S态的银原子经过狭缝和不均 匀磁场后,分裂成上下对称的两 束。

反常Zeeman效应

1897年, T. Preston发现, 在弱 磁场中,原子光谱分裂可以不是三 条,其间隔也不尽相同。

(2) 碱金属光谱的精细结构 碱金属的每一条光谱线是由两

条或三条线组成。

(3) Stern-Gerlach实验(1922年)

S态的银原子经过狭缝和不均 匀磁场后,分裂成上下对称的两 束。

2. 电子自旋

(1) 电子自旋角动量S的大小

$$S = \sqrt{s(s+1)}\hbar = \sqrt{\frac{3}{4}}\hbar$$

自旋量子数(spin quantum number)

(2)每个电子具有自旋角动量S,它 在空间的任何方向的投影只可能 有两种取值。

 $S_{z} = m_{s}\hbar$

自旋磁量子数(spin magnetic quantum number)

$$m_s = \pm \frac{1}{2}$$

(3) 每个电子具有自旋磁矩μ_s, 它和 自旋角动量S的关系:

$$\mu_s = \frac{-e}{m}S$$

μ。在空间中任意方向的投影:

$$\mu_{s_z} = \pm \frac{e\hbar}{2m} = \pm \mu_B$$

玻尔磁子 $\mu_B = 0.927 \times 10^{-23} \text{ A·m}^2$ 。

自旋角动量和轨道角动量的区别

$$S = \sqrt{s(s+1)}\hbar = \sqrt{\frac{3}{4}}\hbar, \quad s = \frac{1}{2}$$

自旋磁量子数(spin magnetic quantum number)

$$m_s = \pm \frac{1}{2}$$

(3)每个电子具有自旋磁矩µ_s,它和 自旋角动量S的关系:

$$\mu_s = \frac{-e}{m}S$$

μ。在空间中任意方向的投影:

$$\mu_{s_z} = \pm \frac{e\hbar}{2m} = \pm \mu_B$$

玻尔磁子 $\mu_B = 0.927 \times 10^{-23} \text{ A·m}^2$ 。

自旋角动量和轨道角动量的区别

• 自旋角动量的大小

$$S = \sqrt{s(s+1)}\hbar = \sqrt{\frac{3}{4}}\hbar, \quad s = \frac{1}{2}$$

- 轨道角动量的大小
 L = √l(l+1)ħ l为正整数
- 自旋磁矩与自旋角动量之比为

т

• 轨道磁矩与轨道角动量之比为

 $\frac{-e}{2m}$

3. Stern-Gerlach实验的解释

考虑质量为M,处于s态的银原子 以速度v经过狭缝后进入z方向的磁 场,则通过距离d所经历的时间t = d/v。 磁矩与磁场的作用能: $W = -\mu B$ 作用力:

$$f = -\frac{\partial W}{\partial z} = \frac{\partial \mu \cdot B}{\partial z} = \mu_{s_z} \frac{\partial B}{\partial z} = \pm \mu_B \frac{\partial B}{\partial z}$$
$$m \neq \underline{B}: \qquad a = \frac{f}{M} = \pm \frac{\mu_B}{M} \frac{\partial B}{\partial z}$$

3. Stern-Gerlach实验的解释

考虑质量为M,处于s态的银原子 以速度v经过狭缝后进入z方向的磁 场,则通过距离d所经历的时间t = d/v。 磁矩与磁场的作用能: $W = -\mu B$ 作用力:

 $f = -\frac{\partial W}{\partial z} = \frac{\partial \mu \cdot B}{\partial z} = \mu_{s_z} \frac{\partial B}{\partial z} = \pm \mu_B \frac{\partial B}{\partial z}$ $m \pm \mathcal{E}: \qquad a = \frac{f}{M} = \pm \frac{\mu_B}{M} \frac{\partial B}{\partial z}$ $\underbrace{\mathbf{a} = \frac{f}{M} = \pm \frac{\mu_B}{M} \frac{\partial B}{\partial z}}{\mathbf{a} = \frac{f}{M} = \pm \frac{\mu_B}{M} \frac{\partial B}{\partial z}}$ $\mathbf{b} = \frac{1}{2} at^2 = \pm \frac{\mu_B}{2M} \frac{\partial B}{\partial z} \left(\frac{d}{v}\right)^2$

三、泡利原理 多电子原子的壳层结构

W. Pauli 1900-1958

The Nobel Prize in Physics 1945

 1. 描述原子中电子状态的四个量子数 电子运动由四个量子数决定
 主量子数n: n =1,2,3,...
 轨道角量子数l: l = 0, 1, 2, ..., (n-1)
 轨道磁量子数m_l: m_l=0,±1,±2,...,±l
 自旋磁量子数m_s: m_s=±1/2

晶子物理

三、泡利原理 多电子原子的壳层结构

W. Pauli 1900-1958

The Nobel Prize in Physics 1945

 1. 描述原子中电子状态的四个量子数 电子运动由四个量子数决定
 主量子数n: n =1,2,3,...
 轨道角量子数l: l = 0, 1, 2, ..., (n-1)
 轨道磁量子数m_l: m_l = 0,±1,±2,...,±l
 自旋磁量子数m_s: m_s = ±1/2

2. 泡利不相容原理(Pauli exclusion principle)

在同一原子中,不可能有两个或 两个以上的电子处在完全相同的量 子态,即不可能具有完全相同的四 个量子数(*n*, *l*, *m*_{*i*}, *m*_{*s*})。

3. 原子的壳层结构

- ■同一能级电子占据的最大数 $z_n = \sum_{l=0}^{n-1} 2(2l+1) = 2n^2$
- n = 1, 2, 3, 4, ...売层(shell)用K, L, M, N, ...表示;
- *l*=0,1,2,3,...,*n*支壳层(subshell)用*s*, *p*,*d*,*f*,...表示。
 - 电子组态(electron configuration)

如Ca的电子排布

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

2. 泡利不相容原理(Pauli exclusion principle)

在同一原子中,不可能有两个或 两个以上的电子处在完全相同的量 子态,即不可能具有完全相同的四 个量子数(n, l, m_l , m_s)。

3. 原子的壳层结构

■同一能级电子占据的最大数
$$z_n = \sum_{l=0}^{n-1} 2(2l+1) = 2n^2$$

n = 1, 2, 3, 4, ...壳层(shell)用K, L, M, N, ...表示;
l = 0, 1, 2, 3, ..., n支壳层(subshell)用s, p, d, f, ...表示。
■ 电子组态(electron configuration) 如Ca的电子排布

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

■能量最低原理 能量最低原理:原子处于正常稳定 状态时,每个电子总是趋向占有能 量最低的能级。

徐光宪 1920-原子的外层电子的 n+0.71 越 大,能级越高。 电子填充次序: 1s,2s,2p,3s,3p,4s,3d,4p, 5s,4d,5p,6s,4f,5d,6p…

■能量最低原理

能量最低原理:原子处于正常稳定 状态时,每个电子总是趋向占有能 量最低的能级。

徐光宪 1920-原子的外层电子的 n+0.71 越 大,能级越高。 电子填充次序: 1s,2s,2p,3s,3p,4s,3d,4p,

5s,4d,5p,6s,4f,5d,6p...

在同一亚层中排布的电子,总是尽 先占据不同的轨道,且自旋方向相同。 半满的开壳层p³、d⁵、f⁹的电子组态 能量最低,最稳定。

四、元素周期表

量子物理 PSS

四、元素周期表

【阅读材料 14】 激光及其原理

Laser(Light Amplification by Stimulated Emission or Radiation)

1960年T.H. Maiman 研制出第一激光器

T.H. Maiman 1927-

1961年中科院 长春光机所由 王大珩领导, 王之江、邓锡 铭等人研制出 第一激光器。

王大珩 1915 -

王之江 **1930 -**

邓锡铭 1930 - 1997 ▲►P.104/133

激光的特点:

- 1. 相干性好; 2. 方向性好;
- 3. 能量集中; 4. 单色性好。
- 一、自发辐射和受激辐射
- 1. 吸收(light absorption)

 $h \nu = E_2 - E_1$

2. 自发辐射 (spontaneous radiation)

 $h\nu = E_2 - E_1$

3. 受激辐射(stimulated radiation)过程

2. 自发辐射 (spontaneous radiation)

 $h v = E_2 - E_1$

3. 受激辐射(stimulated radiation)过程

受激辐射的特点: 受激辐射产生的光子与原来的光 子具有完全相同的状态。 受激辐射而得到的光是相干光。 二、激光原理 1. 粒子数反转 (population inversion) $n_k \propto \mathrm{e}^{-\frac{E_k}{kT}}$ $N_1 > N_2$ 粒子数反转

产生激光的必要条件:实现粒子数反转。

 E_2

 E_1

量子物理 PSS

产生激光的必要条件:实现粒子数反转。

泵浦(pumping): 实现粒子数反转的过程。

具有亚稳态(metastable state)的原子结构,才能实现粒子数反转。

量子物理

(2) He-Ne激光器(四能级系统)

- (1) 维持光振荡,起到光放大作用;
- (2) 使激光产生极好的方向性;
- (3) 使激光的单色性好。

三、激光应用

(1) 工作物质;
(1) 激励源;
(3) 光学谐振腔。

2. 激光器分类

半导体激光器

LQ系列脉冲纳秒Nd:YAG激光器 3. 激光应用 (1) 工业加工、信息科学等; (2) 生物医学,激光刀、育种; (3) 激光武器、科学研究等。

可调谐染料激光器

量子物理

3. 激光应用

(1) 工业加工、信息科学等;
(2) 生物医学,激光刀、育种;

(3) 激光武器、科学研究等。

美军波音747 Block 2004机载激光器

英国《简氏防务周刊》2004年7月7日报道, 美国下一代飞机上发射激光拦截弹道导弹目 标将会在两年内实现。

美国Livermore的Nova 高功率激光系统 30 kJ, 30 TW (点火装置)

2009-5-12

