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ABSTRACT: 

To address climate change, accurate and automated forest cover monitoring is crucial. In this study, we propose a Convolutional 

Neural Network (CNN) which mimics professional interpreters’ manual techniques. Using simultaneously acquired airborne images 

and LiDAR data, we attempt to reproduce the 3D knowledge of tree shape, which interpreters potentially make use of. Geospatial 

features which support interpretation are also used as inputs to the CNN. Inspired by the interpreters’ techniques, we propose a 

unified approach that integrates these datasets in a shallow layer in the CNN network. With the proposed CNN, we show that the 

multi-modal CNN works robustly, which gets more than 80 % user’s accuracy. We also show that the 3D multi-modal approach is 

especially suited for deciduous trees thanks to the ability of capturing 3D shapes. 
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1. INTRODUCTION 

The Paris Agreement, adopted at the COP21 in 2015, set out a 

global action plan to reduce greenhouse-gas emissions, which 

not only puts the world on track to avoid dangerous climate 

change but also accelerates the Carbon Disclosure Project 

(CDP). CDP requests companies and cities to disclose the status 

of environmental actions against climate change. Under these 

circumstances, remote sensing, which enables us to observe the 

planetary surface, is expected to monitor the forest owners’ 

effort such as sustainable forest management (e.g. organized 

logging, planting and thinning). To meet the purpose of carbon 

disclosure, not only monitoring but also frequent and low-cost 

monitoring is required. Since both these features would be 

difficult to achieve through manual work, it is urgent to 

establish an automated forest monitoring method.p  

 

Currently, there already exists automated forest monitoring 

systems. Global Forest Watch (World Resources Institutes, 

2014), a dynamic online forest monitoring and alert system, 

automatically produces annualized global tree cover change 

data based on Landsat satellite imagery. Global Forest/Non-

forest Maps (Shimada et al., 2014) also show the forest cover 

with certain thresholds. Due to medium-resolution images and 

limited number of classes, neither of the two systems is suitable 

to monitor the forest management. Aiming for specific targets, a 

number of different methods have been developed for different 

types of forests using various remote sensing data, whereas 

forest cover classification using high-resolution data remains 

challenging. 

 

To tackle the accurate forest cover classification, we propose a 

CNN (convolutional neural network) approach which is 

inspired by professional interpreters. Professional interpreters 

produce official forest maps by interpreting a forest from 

airborne images or satellite images. Interpreting requires the 

knowledge of forestry and in some cases geospatial features as 

well as RGB images. Inspired by that, we employ geospatial 

features in the proposed CNN. Following the interpreters’ 

techniques, where they not only consider the surface of forests 

but also recall the inside of forests, we propose to feed a 3D-

voxel data originated from LiDAR (Light Detection and 

Ranging) to the CNN. To combine the geospatial input data, we 

propose a multi-modal CNN, where the input data is integrated 

in a shallow layer, which is a closer layer to the input than 

output in the CNN.   

 

2. RELATED WORK 

In the following, we review recent advances in remote sensing 

tasks with CNNs. Driven by powerful deep neural networks 

(Krizhenvsky et al., 2012), remote sensing tasks, especially in 

land cover classification have started to make great progress. 

Using UC Merced Land Use Dataset (UCM) introduced by 

(Yang et al., 2010) which provides 21 land cover classes with 

100 images each, (Penatti et al., 2015) shows that their CNN 

obtained 99.5% class accuracy. (Nogueira et al., 2017) points 

out that features of fine-tuned networks tend to perform well on 

UCM through comparing popular CNN algorithms. CNNs are 

thus reported to perform quite well in the remote sensing field.  

 

Regarding forest cover classification, there is no public 

benchmark dataset yet. Researchers, therefore, explore the 

algorithms on their own datasets. (Lu et al., 2017) proposes a 

spatial-temporal-spectral data fusion framework over publicly 

available low-middle resolution images, leading to around 80% 

classification accuracy on seven-class classification task using 

support vector machine (SVM). (Kussul et al., 2017) reports 

around 85% class accuracy over 11 land cover and crop type 

classification using Landsat-8 and Sentinel-1A images. Thus, 

forest cover classification is a challenging task compared to 

land cover classification due to the similarity among classes.  

 

Deep learning architectures have been developed for LiDAR 

datasets as well given it avoids feature engineering phase where 

discriminating features are designed as is common in traditional 

classification algorithms. Point clouds classification algorithms 

are especially discussed for daily scene such as Voxnet 
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(Maturana et al., 2015) and PointNet (Qi et al., 2017). Although 

point clouds driven by airborne LiDAR is different from daily 

scene point clouds in a sense that it has tons of objects inside 

the dataset and not fine, several algorithms improves the result.  

(Yang e al., 2017) utilizes CNNs to transform from points to 

images and improves the urban objects classification on ISPRS 

3D semantic labeling contest (Niemeyer et al., 2014). (Boulch 

et al., 2017) utilizes 2D CNNs to classify urban city point 

clouds: semantic3d.net (Hackel et al., 2016) and shows the 

efficient labelling algorithm. On the other hand, most of 

algorithms are aimed for urban objects classification and not for 

tree species classification.  

 

As such, most of previous studies focus on images themselves 

or on standard indices such as NDVI (Normalized Difference 

Vegetation Index) to feed the classifier. However, LiDAR data 

can picture the characteristics inside the forest while remote 

sensing images only depict the surface of forests. As (Görgens 

et al., 2016) shows, some studies utilize airborne LiDAR data to 

classify forest cover yet images and LiDAR are not fed to the 

classifier simultaneously to extract information of both the 

surface and inside of forests.  

 

 

3. METHODOLOGY 

The basic principle of our methodology follows the traditional 

interpreters’ techniques. As mentioned by (Ng, 2012), CNN 

itself is biologically inspired from human beings’ brain system, 

meaning that the brain network is composed of neurons which, 

to interpret what we see from the sight, extract edges from 

pixels, primitive shapes from the edges, and object models from 

the several shapes. Accordingly, as (Russakovsky et al., 2015) 

shows, state-of-the-art CNN algorithms perform well for a 

general image such as a photograph taken at a close range. For 

forest classification from remote sensing images, on the other 

hand, not only picturing the shape of objects from a bird-eye 

view but also collecting geospatial information and capturing 

3D shapes are required to interpret. CNN with just remote 

sensing images can thus be not sufficient to reproduce the 

quality of professionals’ forest cover interpretation. Based on 

the assumption, in the following, we analyse how interpreters 

identify the tree species, and describe how the proposed CNN 

incorporates interpreters’ techniques. 

 

3.1 Knowledge to Interpret Forestry 

As we daily recognize objects in our sight, forest interpreters 

also utilize characteristics of images such as shape and colour as 

a key to classify forests. They, at the same time, recall how 

forest should appear from above and identify the tree species 

based on their knowledge of forestry. For instance, the 

difference between Hinoki (Chamaecyparis obutsusa) 

and Sugi (Cryptomeria japonica) appeared in remote sensing 

images is not always obvious depending on the season or 

location. However, interpreters can differentiate them relatively 

easily based on their knowledge. They infer that Hinoki and 

Sugi are likely to have a different shape of crowns given that 

their tree shape is different as shown in Figure 1. On top of that, 

although interpreters have no information about the inside of 

the forest, they know that Sugi avoids touching other trees 

while Hinoki grows mixed with others, leading the tree crown 

shape of Sugi to tend to be clear and the one of Hinoki to be 

vague. Thus, interpreters utilize their knowledge of forestry and 

compensate the lack of information (i.e. the information about 

the inside of the forest) to classify the forest. We propose, in an 

attempt to mimic the professional interpreters’ strategy, an 

approach to feed LiDAR data as 3D information as well as 

remote sensing images to our CNN. 

Sugi Hinoki

Tree
crown

Tree
form

© wood.co.jp

Deciduous tree

Figure 1. Knowledge of forestry for interpretation 

 

LiDAR transmits a light pulse and records the time that the 

pulse returns, which creates a 3D point cloud of targets. Since 

typical convolutional neural networks require a regular shape 

for input data such as a collection of images, deep learning 

architectures with 3D voxels have been explored (Maturana et 

al., 2015). Although (Qi et al., 2017) shows that raw point 

clouds perform better than voxelization architecture on 

classification and segmentation by selecting informative points 

through the network, they assume point clouds taken from a 

close range such as CAD model, Kinect data, and structure from 

motion in proximity photographing as the input dataset. The 

point density of airborne LiDAR taken over a forest area, on the 

other hand, is generally around 4 points/㎡ in Japan which is 

different in the sense that the shape derived from point clouds is 

not necessarily clear. We thus use a basic voxel format as input.  

 

3.2 Geospatial Features 

Since it is not practical for interpreters to check raw LiDAR 

data while examining images, geospatial features extracted from 

LiDAR have been developed to facilitate LiDAR data. As 

interpreters identify the tree species by attaching the 

observation on the geospatial features to their knowledge, we 

feed the geospatial features listed below to our CNN. 

 

Topographic openness: the topographic openness (Yokoyama 

et al., 1999) is normally calculated from digital terrain model 

(DTM), whose value indicates the dominance or enclosure of a 

certain place, and the underground openness similarly indicates 

how much underground space is spreading. We compute them 

using digital surface model (DSM), which emphasizes the 

shape of tree crowns and supports to differentiate Sugi and 

Hinoki as shown in Figure 2. 

Slope: slope of the ground is beneficial to classify trees which 

prefer a steep slope. For instance, Sugi tends to grow in the 

trough and Hinoki mainly grows in the ridge.  

Aspect: direction of a downhill slope can imply how forests 

grow. 

Tree height: tree height can imply the age of trees, and the 

appearance of trees varies according to the age. 
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High 120°

Low  0°

 

Figure 2. Topographic openness extracted from DSM 

 

3.3 Multimodal Learning for Geospatial Datasets 

With above analysis, we showed that interpreters empirically 

utilize features extracted from images, LiDAR which we 

consider is equivalent to our 3D reconstruction, and geospatial 

features properly. Accordingly, our classification algorithm, 

which mimics interpreters’ strategy, needs to be capable of 

handling different types of data (i.e. airborne image and 

LiDAR). CNN can handle different types of input data through 

what is called multi-modal learning. As human beings process 

information from five senses and unify them to understand 

circumstances, multi-modal learning handles different modals 

for a given task such as video scene understanding using visual 

and audio signal. The main concept of multi-modal learning is 

to extract abstract and common information from each modal, 

which is in the same representation domain, and unify them to 

process information (Li et al., 2016).  While handling geospatial 

datasets, on the other hand, interpreters associate data by 

overlaying over GIS since each data share its location. As such, 

we employ data fusion within a shallow layer in the CNN 

architecture where the layer is closer to the input and the spatial 

information has not been lost yet.  

 

Figure 3 illustrates the base architecture of our CNN, where we 

feed a patch of images around a targeted LiDAR point and get 

class predicted by the CNN. The main architecture is inspired 

by AlexNet (Krizhenvsky et al., 2012). AlexNet, which is a 

basic structure of deep learning with a small number of layers, 

suites this case since our input data size is small so that it is 

difficult to apply the deeper network such as ResNet (He et al., 

2015).  In case of voxels, 3D-CNN is additionally executed (i.e. 

the 3 dimension convolution over height, width and band) to 

extract features along z-axis, leading to dimension reduction 

along z-axis as well. 
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Ci-j : Convolution-BatchNorm-ReLU layer with j filters of which size is I x i

CDi-j : Convolution-BatchNorm-Dropout-ReLU layer with a dropout rate of 50%
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FC: Full connected layers. The last layer is connected to Softmax classification 
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Figure.3 Base architecture of multi-modal CNN 

 

 

4. EXPERIMENTS 

We evaluate our proposed method in this section on the dataset 

of Japanese planted forest from two perspectives: (1) the 

contribution from each modality (i.e. airborne images, LiDAR 

voxels, and geospatial features) to the forest cover classification, 

and (2) the effects of 3D information (i.e. 3D-CNN over voxel 

grids) driven from LiDAR.  

 

4.1 Dataset 

Since there are no publicly available datasets for forest cover 

classification with high resolution images, we at first create the 

labelled dataset.  

 

4.1.1 Data Acquisition 

The dataset is acquired over the forest in Tenryu area, a 

traditionally famous planted forest located in Shizuoka 

Prefecture, middle of Japan as shown in black lines of Figure 4. 

As a typical Japanese planted forest, there is a cycle of planting, 

growing, thinning, and logging, so that monitoring is crucial to 

evaluate the forest management. Given an area size of around 

2.5km2, we adopt airborne measurements to acquire RGB 

images and LiDAR data as listed in Table 1.  

 

 
Figure. 4 Acquired dataset for the experiments 

 

 

plarform airborne

date 13th March 2015

flying height 4500 ft

Aerial Imageries

band red, green, blue

data type unsigned integer 8

ground resolution 20cm

LiDAR

FOV 20 degrees

density 3.37 points/㎡

 
Table. 1 Data acquisition 

 

 

The label is allocated by a field survey. The yellow areas in 

Figure 4 are used for training and pink rectangles for testing, 

where we successfully conducted a field survey. The classes are 

determined by the basic inventory as shown in Figure 5: Sugi, 
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Hinoki, Deciduous trees, and Others. The number of samples is 

Sugi: 2500, Hinoki: 2475, and deciduous tree: 2499 

respectively. Note that class Others is not trained in the 

experiments since we can filter them just by DTM. 

 

Sugi

Hinoki

Deciduous

Others

RGB Imagery Label

50 10m

 
Figure. 5 Labels (ground truth) 

 

4.1.2 Data Pre-processing 

As Figure 6 describes, we extract geospatial features and voxels 

from LiDAR data. Geospatial features are composed of five 

elements: tree height, aspect, slope and underground/ground 

openness. Tree height is the subtraction of DSM and DTM, 

whose range is between 0m to 50m. Aspect and slope are 

computed by Esri ArcGIS Tools. Aspect is the orientation 

which shows the largest slope angle within 3 x 3 pixels, ranges 

from 0 to 360 degrees where 0 degree means the north and 180 

means the south. Slope is the maximum gradient of the 

elevation within 3 x 3 pixels, which ranges from 0 to 90 degrees. 

Topographic openness is calculated as the average of maximum 

angle of elevation for each orientation within the search range. 

An angle of elevation is replaced by an angle of depression in 

underground openness. The range is between 0 degree and 180 

degrees. As for voxels, we create 50cm grids given the LiDAR 

point density, and aggregate the number of points inside each 

grid, which is in the end transformed to 25 × 25 × 50 voxels 

around each LiDAR point through resampling.  Note that the 

input data fed in the CNN including images is cropped around a 

target LiDAR point since the proposed network is for 

classification. The cropping size is set to 5m which is likely to 

be equivalent to a crown size. 

 

Canopy

Laser 
radiation

Slope

Tree Height

Underground・
ground openess

Aspect

RGB Imagery:
info. of upper side of the forest 

Cropping

LiDAR voxel:
info. inside the forest

Geospatial Features:
info. of terrain/tree

Aggregating points

Processing DEM, DSM

Ground level

Imagery

 
Figure. 6 Data pre-processing flow 

(a) Single-modal: images

Sugi Hinok i Dec.
User's

Accuracy

Sugi 37081 5133 810 86.2%
Hinok i 17588 75081 1171 80.0%

Dec. 439 297 2856 79.5%

67.3% 93.3% 59.0% 81.9%

(b) Single-modal: geospatial features

Sugi Hinok i Dec.
User's

Accuracy

Sugi 32601 9338 799 76.3%
Hinok i 16290 52628 939 75.3%
Dec. 6217 18545 3099 11.1%

59.2% 65.4% 64.1% 62.9%

(c) Single-modal: voxels

Sugi Hinok i Dec.
User's

Accuracy

Sugi 31223 22580 1014 57.0%
Hinok i 20437 53359 952 71.4%
Dec. 3387 2627 2592 30.1%

56.7% 67.9% 56.9% 63.1%

(d) Multi-modal: images + voxels

Sugi Hinok i Dec.
User's

Accuracy

Sugi 39688 6652 1048 83.8%
Hinok i 15014 71771 871 81.9%
Dec. 345 143 2639 84.4%

72.1% 91.4% 57.9% 82.6%

(e) Multi-modal: images + geospatial features + voxels

Sugi Hinok i Dec.
User's

Accuracy

Sugi 38277 7682 1091 81.4%
Hinok i 16369 70779 913 80.4%
Dec. 401 105 2554 83.5%

69.5% 90.1% 56.0% 80.8%

(f) 3D Multi-modal: images + voxels

Sugi Hinok i Dec.
User's

Accuracy

Sugi 34800 15810 1079 67.3%
Hinok i 17612 61394 301 77.4%
Dec. 2635 1362 3178 44.3%

63.2% 78.1% 69.7% 71.9%

  ‘Single-modal' denotes a CNN with 2D convolution on single modality.

  ‘Multi-modal’ denotes a CNN with 2D convolution on multiple modalities.

   ‘3D Multi-modal’ denotes a CNN with 3D convolution on multiple modalities.

Reference

Pred ict ion

Producer's
Accuracy

Reference

Pred ict ion

Producer's
Accuracy

Reference

Pred ict ion

Producer's
Accuracy

Reference

Pred ict ion

Producer's
Accuracy

Reference

Pred ict ion

Producer's
Accuracy

Pred ict ion

Producer's
Accuracy

Reference

 
 

 
Table 2. Results 
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4.1.3 Data Transformation 

As CNNs require highly regulated input data formats (e.g. 

images with 3 bands whose pixels are corresponding over the 

bands), the dataset acquired above need to be transformed while 

keeping geospatial information. The geospatial features, 

therefore, are transformed to 20cm ground resolution which is 

the same size as the imagery, the highest ground resolution. 

Voxel grids are also transformed to 20cm × 20cm grids. The 

value range is normalized from 0 to 1 for all features. 

 

4.2 Implementation Detail 

Our implementation is based on the public platform Chainer 

(Tokui et al., 2015).We use the Adam optimization with base 

learning rate of 0.001 as a basic method, which adaptively 

arrange the learning rate and known to be converged relatively 

fast. The epoch number is set to 200 at a maximum, where we 

check the convergence of test data every experiment. The mini-

batch size is 126. 

 

4.3 Results 

To evaluate our methodology, we conduct experiments with 

several settings as listed in Table 2, including single-modal or 

multi-modal, and 2D or 3D convolution on multi-modal method. 

For evaluation, class accuracy is used. 

 

As for the contribution from each modality, the results with the 

single-modal CNN show that images contribute a lot to Sugi 

and Hinoki classification. Geospatial features work well for 

deciduous trees, which indicates images are not capable of 

identifying bared deciduous trees. As for the multi-modal CNN, 

the performance of classifying Sugi is improved when compared 

to each single modality, and the result of classifying Hinoki 

keeps as good accuracy as obtained in the single-modal CNN 

with images. The reason that the multi-modal CNN works 

robustly is that multi-modal datasets potentially compensate 

each modality which has a different kind of information. As for 

the 3D multi-modal CNN, the result shows a slightly decreased 

accuracy over Sugi and Hinoki classification, which implies that 

the 3D convolution over potentially different resolutions might 

weaken the performance. On the other hand, the performance of 

deciduous trees classification is improved, which indicates that 

the 3D multi-modal CNN can learn the shape of branches 

captured from LiDAR data.  

  

5. CONCLUSION AND FUTURE WORK 

In this study, we proposed a CNN which mimics professional 

interpreters’ manual techniques. Using simultaneously acquired 

airborne images and LiDAR data, we fed the 3D knowledge of 

tree shape (i.e. voxel) and geospatial features as well as RGB 

images to the proposed CNN. Inspired by the interpreters’ 

techniques, our network provides a unified approach that 

integrates these datasets in a shallow layer. The proposed CNN 

shows that the multi-modal CNN works robustly, and the 3D 

multi-modal approach is especially suited for deciduous trees. 

The results of this study suggest that the 3D multi-modal 

learning over voxels is a promising approach for forest cover 

classification tasks, especially those involving a forest with a 

complex 3D structure.  

 

As future work, we plan to improve the performance and 

robustness of the 3D multi-modal CNN by means of (1) 

optimization of the weight to integrate modalities and (2) 

ensemble learning to combine the effective models 

appropriately. Aside from that, we intend to use different 

cropping sizes and resolutions as input data to investigate the 

effect of information amount. To verify the ability of 3D feature 

extraction of the proposed method, it is also considerable to 

incorporate the complexity of 3D shapes such as TIN surface 

area which derived from point clouds. Finally, the experience 

on a different area is essential to show the robustness of the 

proposed approach. 

 

 

ACKNOWLEDGEMENTS 

We would like to thank Nakayama Forester for their help in a 

field survey. This work was supported by JST ACT-I Grant 

Number JPMJPR16UE, Japan. 

 

 

REFERENCES 

Boulch, A., Saux, B. L., and Audebert, N. 2017. Unstructured 

Point Cloud Semantic Labeling Using Deep Segmentation 

Networks. In Proceedings of Eurographics Workshop on 3D 

Object Retrieval. 

Görgens, E.B., Soares, C.P., Nunes, M.H., and Rodriguez, L.C. 

2016. Characterization of Brazilian forest types utilizing canopy 

height profiles derived from airborne laser scanning. Applied 

Vegetation Science. 

Guan, H., Yu, Y., Ji, Z., Li, J. and Zhang, Q. 2015. Deep 

Learning-Based Tree Classification using Mobile LiDAR Data, 

Remote Sensing Letters, Vol 6, pp.864-873 

Hackel, T., Savinov, N., Ladicky, L., Wegner, J., Schindler, K., 

Pollefeys, M., 2017. Semantic3d.net: A new large-scale point 

cloud classification benchmark. arXiv preprint 

arXiv:1704.03847. 

He, K., Zhang, X., Ren, S. and Sun, J. 2015. Deep Residual 

Learning for Image Recognition. Conference on Computer 

Vision and Pattern Recognition (CVPR). 

Krizhenvsky, A., Sutskever, I., and Hinton, G. 2012. ImageNet 

classification with deep convolutional neural networks. In NIPS, 

pp. 1097–1105. 

Kussul, N., Lavreniuk, M., Skakun, S., and Shelestov, A. 2017. 

Deep Learning Classification of Land Cover and Crop Types 

Using Remote Sensing Data. IEEE Geoscience and Remote 

Sensing Letters, 14(5), pp. 778-782. 

Li, Y., Yang, M., Zhang, Z. 2016. Multi-View Representation 

Learning: A Survey from Shallow Methods to Deep Methods, 

Conference on Computer Vision and Pattern Recognition 

(CVPR). 

Lu, M., Chen, B., Liao, X., Yue, T., Yue, H., Ren, S., Li, X., 

Nie, Z., and Xu, B. 2017. Forest Types Classification Based on 

Multi-Source Data Fusion. Remote Sensing. 9(11), 1153. 

Maturana, D., and Scherer, S. 2015. VoxNet: A 3D 

Convolutional Neural Network for real-time object recognition. 

IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS), pp.922-928. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-1091-2018 | © Authors 2018. CC BY 4.0 License.

 
1095



Niemeyer, J., Rottensteiner, F., Sorgel, U. 2014. Contextual 

classification of lidar data and building object detection in 

urban areas. ISPRS Journal of Photogrammetry and Remote 

Sensing, Vol. 87, pp 152-165 

Ng, A. 2012. Deep Learning, Self-Taught Learning and 

Unsupervised Feature Learning, 

https://www.youtube.com/watch?v=n1ViNeWhC24 (9 Jan. 

2018). 

Nogueira, K., Penatti, O.A.B., and Santos, J.A.D. 2017. 

Towards better exploiting convolutional neural networks for 

remote sensing scene classification. Pattern Recognition 61, 

pp.539-556. 

Penatti, O.A.B., Nogueira K., and Santos, J.A.D. 2015. Do 

Deep Features Generalize from Everyday Objects to Remote 

Sensing and Aerial Scenes Domains?. In Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR) Workshops, pp.44-51. 

Qi, C.R., Su, H., Mo, K., and Guibas, L.J. 2017. PointNet: 

Deep Learning on Point Sets for 3D Classification and 

Segmentation. Conference on Computer Vision and Pattern 

Recognition (CVPR). 

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, 

S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, 

A.C., and Fei-Fei, L. 2015. ImageNet Large Scale Visual 

Recognition Challenge. International Journal of Computer 

Vision. 115(3), pp.211-252. 

Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., 

Rajesh, T., and Lucas, R. 2014. New Global Forest/Non-forest 

Maps from ALOS PALSAR Data (2007-2010). Remote Sensing 

of Environment, 155, pp. 13-31. 

Tokui, S., Oono, K., Hido, S. and Clayton, J. 2015. Chainer: a 

Next-Generation Open Source Framework for Deep Learning, 

In Proceedings of Workshop on Machine Learning Systems 

(LearningSys) in The Twenty-ninth Annual Conference on 

Neural Information Processing Systems (NIPS). 

World Resources Institute, 2014. Global Forest Watch. 

http://www.globalforestwatch.org (9 Jan. 2018). 

Yang, Y., and Newsam, S. 2010. Bag-of-visual-words and 

spatial extensions for land-use classification. In Proceedings of 

the 18th SIGSPATIAL international conference on advances in 

geographic information systems, pp. 270-279. 

Yang, Z., Jiang, W., Xu, B., Zhu, Q., Jiang, S. and Huang, W. 

2017. A Convolutional Neural Network-Based 3D Semantic 

Labelling Method for ALS Point Clouds. Remote Sensing, Vol 

9, 936 

Yokoyama, R., Shirasawa, M. and Kikuchi, Y., 1999, 

Representation of topographica1 features by openness. Journal 

of the Japan Society of Photogrammetry and Remote Sensing, 

38(4), pp. 26-34. (In Japanese) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-1091-2018 | © Authors 2018. CC BY 4.0 License.

 
1096




