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ABSTRACT: 
 
During the last few years, there has been a huge methodological development regarding the automatic processing of 3D point cloud 
data acquired by both terrestrial and aerial mobile mapping systems, motivated by the improvement of surveying technologies and 
hardware performance. This paper presents a methodology that, in a first place, extracts geometric and semantic information 
regarding the road markings within the surveyed area from Mobile Laser Scanning (MLS) data, and then employs it to isolate street 
areas where pedestrian crossings are found and, therefore, pedestrians are more likely to cross the road. Then, different safety-related 
features can be extracted in order to offer information about the adequacy of the pedestrian crossing regarding its safety, which can 
be displayed in a Geographical Information System (GIS) layer. These features are defined in four different processing modules: 
Accessibility analysis, traffic lights classification, traffic signs classification, and visibility analysis. The validation of the proposed 
methodology has been carried out in two different cities in the northwest of Spain, obtaining both quantitative and qualitative results 
for pedestrian crossing classification and for each processing module of the safety assessment on pedestrian crossing environments.  

1. INTRODUCTION 

Nowadays, it is a fact that safety assessment is one of the key 
elements to take in consideration when infrastructures are 
designed or renovated. In urban environments, the most severe 
consequences of accidents are suffered by pedestrians and 
cyclists, who do not have protection against other vehicles. 
According to data from the European Road Safety Observatory 
(ERSO), pedestrian fatalities represent a 21% of all road 
fatalities (ERSO, 2016), and the number of fatalities has been 
reduced a 35% during the last decade. However, this positive 
trend has been stalled for the last couple of years. Pedestrian 
fatalities affect mainly to elder people, and according to a study 
about run overs carried out in Spain (AXA, 2014), a 55% of the 
fatalities involving elder people occur when they cross the road 
correctly, typically in pedestrian crossing areas. These crossing 
environments play an important role in urban areas as they 
should be accessible for wheelchairs and are related with the 
walkability (Kelly et al., 2007) of the environment. A proper 
location (Gitelman et al., 2017) and quality of different factors 
that influence the safety of the crossing areas (Basile et al., 
2010) are essential for the development of humanized cities.  
 
Another important factor that has an impact on the safety of a 
crossing area is the appropriate indication of the crossing areas 
for pedestrians and drivers, with visual cues such as road signs 
(both vertical and horizontal) or traffic lights. These elements 
should be assessed regularly, performing regular maintenance 
tasks. However, studies from the European Road Federation 
(ERF) state that the decline of expenditures for road 
maintenance is alarming, having this a clear impact on the road 
safety levels (European Union Road Federation (ERF), 2015a, 
2015b) and on the quality of the road network assets: According 
to the Spanish Road Association, the maintenance deficit for 
vertical signage and road markings in Spanish roads amounts to 

94 million € and 77 million € respectively (Asociación española 
de la carretera (AEC), 2016).  
 
It is necessary, therefore, to invest in research and innovation to 
develop new methods of road inspection that take advantage of 
the newest technologies and artificial intelligence techniques to 
tackle the road network preservation necessities while being 
economically efficient. Specifically, road inspection methods 
based on laser technology have caught the attention of 
researchers and authorities in the last decade. Mobile mapping 
systems (MMS) consist mainly of mapping sensors (laser 
scanners and RGB cameras) together with navigation and time 
referencing units deployed on a mobile platform (Puente et al., 
2013a). These systems are able to collect dense, accurate and 
three-dimensional representations of the surveyed environment 
called 3D point clouds. The research regarding the automatic 
interpretation of this kind of data has been a topic of interest for 
some years, and has proven to be useful for the inspection of 
road infrastructures and their assets, such as vertical traffic signs 
(Wen et al., 2015; Yu et al., 2016) and road markings (Cheng et 
al., 2017; Yu et al., 2015). Besides them, different supervised 
classification approaches can be applied to extract different 
objects such as cars, poles, façades, etc., from 3D point cloud 
data (Serna and Marcotegui, 2014; Yang et al., 2017).  
 
This work presents a methodology comprised of two main 
blocks, as depicted in Figure 1. The first one focuses on road 
marking detection and classification, and it is presented in 
Section 2. Then, the classified pedestrian crossings are 
employed to isolate crossing areas and perform an assessment 
of safety-related features, as shown in Section 3. The study case 
used for the validation of the methodology is presented in 
Section 4, and the results are depicted in Section 5. Finally, 
conclusions are outlined in Section 6. 
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Figure 1. Methodology workflow. 

2. ROAD MARKING EXTRACTION 

The first part of the presented methodology focuses on road 
marking detection and classification. First, a raw 3D point cloud 
is processed in order to obtain the position of a number of road 
markings. Then, a hierarchical classification in two levels of 
hierarchy classifies road markings in seven classes: Pedestrian 
crossings, stop lines and five types of arrow.  
 
2.1 Road marking detection 

Let 𝓟𝓟 = (𝒙𝒙,𝒚𝒚, 𝒛𝒛, 𝑰𝑰,𝜶𝜶, 𝒕𝒕𝒔𝒔) be a raw 3D point cloud where 
(𝒙𝒙,𝒚𝒚,𝒛𝒛) are a set of 3D coordinates which are referenced 
spatially with the positioning system of the mapping vehicle, 
and (𝑰𝑰,𝜶𝜶, 𝒕𝒕𝒔𝒔) are intensity, angle of the laser beam and time 
stamp respectively, all of them properties associated to each 
point. The trajectory of the vehicle, as recorded by its 
navigation system, is defined as a matrix 𝑻𝑻 = (𝒙𝒙,𝒚𝒚,𝒛𝒛, 𝒕𝒕𝒔𝒔), that 
is, a set of trajectory coordinates with associated time stamps. 
 
First, there are some processing steps that need to be carried out 
within the point cloud in order to obtain the position of the road 
markings. Points whose distance with respect to the trajectory is 
more than 10 meters are filtered out from the original point 
cloud, reducing its size. Then, a pavement segmentation 
algorithm is applied using a curb-based approach to filter out 
points of the ground that do not belong to the pavement. This 
segmentation is performed locally, selecting several sections of 
the road which are defined along the trajectory. Curbs and 
similar obstacles are detected using an approach based on 
(Wang et al., 2015) normal saliency analysis, that separates 
points that belong to horizontal planes from points that belong 
to non-horizontal planes (salient points). This way, a region 
growing algorithm can be applied, considering that the 
pavement is a group of points that belong to a horizontal plane 
and are delimited by salient points at both sides of the 
trajectory.  
 
Finally, an intensity filter is applied to the points in the 
pavement segment. Intensity is a key parameter for detecting 
road markings and traffic signs (González-Jorge et al., 2013) 

because they are reflective surfaces whose intensity parameter is 
higher than for points of the pavement or building façades 
(Figure 2a) For the pavement segment, two classes of points can 
be defined: Asphalt points (with low intensities) and road 
marking points (with high intensities). To distinguish them from 
each other, the distribution of intensities is fit to a Gaussian 
Mixture Model (GMM) (McLachlan and Peel, 2000) with two 
components. The component with lower intensity will 
correspond to asphalt points, that are filtered out from the point 
cloud.  
 
At this stage, only points on the pavement with high intensity 
are available for further processing (Figure 2b). It is important 
to note that all the relevant information about road markings is 
approximately contained in the same plane, so it is 
straightforward to rasterize the point cloud, that is, to project the 
point cloud on the horizontal plane and to define a square grid 
within it, annotating to which cell – or pixel – of the grid 
belongs each point (Soilán et al., 2016). Then, it is possible to 
visualize grayscale images based on any feature of the points 
within each pixel of the raster grid. Using the point intensity as 
feature, a grayscale image that highlights road markings can be 
obtained.  
 
Finally, the position and geometric parameters of a number of 
road markings can be extracted. The grayscale image is first 
binarized, defining an adaptive threshold that has into account 
the distance between each point and the trajectory (as the 
intensity parameter of a point is inversely proportional with 
respect to the distance between the laser beam origin and the 
position of the point, as stated in Höfle and Pfeifer (2007)) 
(Figure 2c).  A connected components algorithm is applied over 
the resultant binary image, performing a clustering operation 
over each group of connected pixels. This allows to isolate each 
binary element for further filtering (Figure 2d). As the 
geometric properties of road markings are standardized by 
national regulations, the area and the ratio between area and 
perimeter of each element are computed and used for filtering 
only a number of road markings, including mainly arrows and 
rectangular markings. Note that markings that delimit road lanes 
are not considered here, being the main goal of this process to 
obtain the location of pedestrian crossings.  
 
The position and geometric features of the binary elements that 
remain after the application of these filters will be stored, being 
the collection of semantic information the next step. 
 
2.2 Road marking classification 

Once each individual road marking is isolated, a hierarchical 
classification workflow in two levels of hierarchy is proposed.  
 
First of all, it is necessary to define a feature vector that defines 
each binary image in order to train a classification model. Here, 
a Geometry-Based Feature (GBF) is defined for each binary 
image as:  
 

𝐺𝐺𝐺𝐺𝐺𝐺 = (𝐴𝐴, 𝐼𝐼1, 𝐼𝐼2,𝑟𝑟,𝐸𝐸,𝑇𝑇,𝑅𝑅,𝒑𝒑𝒑𝒑𝒙𝒙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)  (1) 
 

Where A is the area of the road marking, (𝐼𝐼1 , 𝐼𝐼2 ,𝑟𝑟) are the 
length of major and minor axis, and the radius of the bounding 
ellipse, (𝐸𝐸,𝑇𝑇,𝑅𝑅) are the ellipticity, triangularity and 
rectangularity (Rosin, 2003), and 𝒑𝒑𝒑𝒑𝒙𝒙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 represents the 
distribution of pixels in the binary image across rows and 
columns gathered in two 20-bin histograms. That is, a 47-
element feature vector is obtained for every binary image.  
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Figure 2. Road marking detection. (a) The intensity feature 
discriminates pavement points and road markings. (b) Point 
cloud after the application of an intensity filter. (c) Binary 
image representing road markings. (d) Each individual road 
marking in the binary image can be isolated for further analysis. 

 

A training set of images was gathered using a portion of the 
available data (as stated in Section 4) and their correspondent 
feature vectors were fed to a two-layer neural network whose 
output layer distinguished three different classes, namely 
rectangular markings, arrows, and other markings / negatives. 
This model defines the first hierarchy level of the classification 
framework, and allows to classify, in a second level of 
hierarchy, different rectangular markings and arrows using 
separate approaches.  
 
Regarding rectangular markings, they are classified in stop lines 
or pedestrian crossings by analysing their contextual 
relationship. A pedestrian crossing is defined as a group of 
parallel rectangular markings whose centroids are close to each 
other (a threshold was set to 2.5 meters), and they are also 
parallel with respect to the trajectory of the vehicle. 
Furthermore, isolated rectangular markings which are 
perpendicular with respect to the trajectory can be defined as 
stop lines.  
 
Road markings defined as arrows in the first level of hierarchy 
can be classified in five different types: Left, Right, Straight, 
Straight-Left and Straight-Right. They are classified by 
comparing the binary image representing the arrow with 
templates which are defined for each arrow class. In order to 

standardize the comparison, the binary images are rotated 
according to the principal axis of the arrow, defining two 
possible orientations for each one (pointing upwards or 
downwards). The comparison is carried out using two 
parameters: Correlation (Equation 2) and Structural Similarity 
Index (SSIM), as defined in Wang et al. (2004).  
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  
∑ ∑ (𝐴𝐴𝑚𝑚𝑚𝑚 − 𝐴̅𝐴)(𝐵𝐵𝑚𝑚𝑚𝑚 − 𝐵𝐵�)𝑛𝑛𝑚𝑚

√(∑ ∑ (𝐴𝐴𝑚𝑚𝑚𝑚 − 𝐴̅𝐴)2)(∑ ∑ (𝐵𝐵𝑚𝑚𝑚𝑚 − 𝐵𝐵�)2𝑛𝑛𝑚𝑚 )𝑛𝑛𝑚𝑚
 

(2) 
 

 
where 𝑚𝑚,𝑛𝑛 are the number of rows and columns of images A, 
B; and  𝐴̅𝐴,𝐵𝐵�  are the mean of the images.  
 
The class of each arrow will be defined by the largest result 
among all the comparisons, if it is over an empirically defined 
threshold (0.4 for correlation, 0.987 for SSIM). 
 

3. SAFETY ASSESSMENT 

Once the road markings have been extracted, it is possible to 
employ the information about the location of pedestrian 
crossings to study their surrounding area, focusing on 
parameters related with pedestrian safety on the crossing 
environment. Here, four modules related with different features 
are considered: (1) Accessibility analysis, (2) traffic light 
classification, (3) traffic sign classification, and (4) Visibility 
analysis.   
 
The input data for this methodological block consists of a raw 
point cloud 𝓟𝓟 and a trajectory 𝑻𝑻 as defined in Section 2.1, 
together with a set of point cloud objects 𝓜𝓜 =
{𝑴𝑴𝟏𝟏, … ,𝑴𝑴𝒊𝒊, …𝑴𝑴𝒏𝒏}, 𝑖𝑖 = 1 …𝑛𝑛 representing the location of the 
pedestrian crossings within 𝓟𝓟. Before entering the first 
processing module, the point cloud is preprocessed. First, the 
surrounding area of each pedestrian crossing 𝑴𝑴𝒊𝒊 is isolated, 
defining a road section 20 meters long and centered in the 
pedestrian crossing, 𝑷𝑷𝒊𝒊  ⊂ 𝓟𝓟.  Then, the segments of points that 
belong to the ground 𝑷𝑷𝒈𝒈𝒈𝒈 ⊂ 𝓟𝓟𝒊𝒊 and points that do not belong to 
it 𝑷𝑷𝒏𝒏𝒏𝒏𝒏𝒏 ⊂ 𝓟𝓟𝒊𝒊 are separated in order to simplify the application 
of the different algorithms applied during the safety assessment.  
 
3.1 Accessibility analysis 

This processing module aims to get information about the 
accessibility of the crossing environment. On one side, it is 
important to ensure that the access to the crossing area does not 
have any obstacle that could impede a person in a wheelchair 
from crossing the road. On the other side, there exist regulations 
regarding the maximum slopes in an accessible crossing. In 
Spain, these regulations are given by the Ministry of Public 
Works and Transport (Ministerio de Fomento, 2010). 
 
To get this information for a given pedestrian crossing 𝑴𝑴𝒊𝒊, the 
ground point cloud 𝑷𝑷𝒈𝒈𝒈𝒈 is processed. First, the coordinates of 
the curbs in 𝑷𝑷𝒈𝒈𝒈𝒈 are obtained using the same approach than in 
Section 2.1, that is, applying a saliency analysis. To define a 
curb, salient points within 𝑷𝑷𝒈𝒈𝒈𝒈 are grouped using a Euclidean 
Clustering, and those groups of points that comply with certain 
elevation, horizontal length and distance to trajectory thresholds 
as defined in (Wang et al., 2015) are defined as curbs (Figure 
3a).  
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Figure 3. Accessibility analysis. (a) Curb definition within the 
ground point cloud. (b) A region growing algorithm is applied 
to divide the ground segment in slides, using the information of 
trajectory and curbs. (c) The length of the slides is analysed in 
order to find road entrances as peaks on the slice length plot.   

 
Then, in order to check whether or not the road is accessible in 
the crossing area, the ground segment is divided in slices 
perpendicularly with respect to the trajectory direction. For each 
slide, a region growing algorithm is applied at both sides of the 
trajectory: Starting from the closest point to the trajectory at 
each side, neighboring ground points are iteratively clustered 
together until a point previously defined as curb or obstacle is 
found (Figure 3b). This way, the length of each slide can be 
computed. Accessible road entrances can be finally defined 
comparing the length of neighboring slides, as a peak on the 
derivative of the slide length plot represents a road entrance as it 
is shown in Figure 3c. Finally, if the coordinates of the studied 
pedestrian crossing 𝑴𝑴𝒊𝒊 overlap with an accessible road 
entrance, then it will defined as an accessible pedestrian 
crossing, as long as the length of that overlap complies with the 
official regulations (in this case, the road entrance should be 
between 1.2 and 1.8 meters long).  
 
Furthermore, it is possible to calculate the transversal and 
longitudinal slopes of the crossing area. Given the coordinates 
of the points within the pedestrian crossing 𝑴𝑴𝒊𝒊, these slopes are 
obtained as:  
 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(%) =
𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) − 𝑧𝑧(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚))

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
· 100                (3) 

 

𝑙𝑙𝑙𝑙𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(%) =
𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) − 𝑧𝑧(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚))

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
· 100               (4) 

 
where 𝑧𝑧(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚), 𝑧𝑧(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) are the height of two points defining a 
line which approximates the trajectory of a pedestrian who is 
crossing the road, and 𝑧𝑧(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚), 𝑧𝑧(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) are the height of two 
points defining a line which approximates the trajectory of the 
driver. 
 
This processing module outputs two Boolean variables 
(defining whether or not the pedestrian crossing is accessible at 
both sides) and two numerical values representing transversal 
and longitudinal slopes on the crossing environment.  
 
3.2 Traffic light classification 

An important safety feature on pedestrian environments is the 
presence of street lights which control flows of pedestrians and 
vehicle traffic. This module aims to define if a crossing 
environment is regulated by traffic lights. For that purpose, an 
automatic classification workflow is proposed.   
 
For a given road marking 𝑴𝑴𝒊𝒊, the correspondent non-ground 
point cloud 𝑷𝑷𝒏𝒏𝒏𝒏𝒏𝒏 is processed. First, a pole-like object 
segmentation has to be carried out in order to filter out both 
noise and other objects such as façades or parked vehicles. It 
consist of three main steps: (1) Object clustering: Points in 
𝑷𝑷𝒏𝒏𝒏𝒏𝒏𝒏, which are originally unorganized, are grouped in a set of 
clusters following an Euclidean Clustering approach. (2) Object 
parametrization: A group of horizontal profiles are selected 
from each object and projected to a horizontal plane. A circle K 
is fit to the projected points within each profile (Figure 4a), and 
different parameters are stored for each circle, namely its radius, 
𝑟𝑟𝑘𝑘, the coordinates of its center 𝑶𝑶𝑘𝑘 and the mean-squared error 
of the fitting process 𝑀𝑀𝑀𝑀𝐸𝐸𝑘𝑘. (3) Object segmentation: A cluster 
of points will be defined as a pole-like object if the selected 
parameters comply with a series of empirically defined 
thresholds based on previous knowledge about the geometry of 
pole-like objects:  
 

�    

𝛼𝛼 < 10º  
max (𝑟𝑟𝑘𝑘) < 2𝑚𝑚
𝑀𝑀𝑀𝑀𝑀𝑀������ < 0.001
ℎ𝑖𝑖 < 10𝑚𝑚

                                                                 (5) 

 
where 𝛼𝛼 is the angle of the principal direction of the object with 
respect to the vertical, max (𝑟𝑟𝑘𝑘) is the maximum radius allowed 
for the circles that have been fit, 𝑀𝑀𝑀𝑀𝑀𝑀������ is the mean squared error 
averaged across the circles, and ℎ𝑖𝑖 is the height of the object.  
 
After the application of this segmentation algorithm, there are 
mainly four classes of pole-like objects that appear in the 
surrounding area of pedestrian crossings: Column traffic lights, 
mast arm traffic lights, street lights, and trees.  
 
The features selected for the classification of these objects are 
extracted from a binary image which is computed as follows: 
First, Principal Component Analysis (PCA) is applied to each 
object, and the coordinates of their points are transformed to the 
reference system defined by their three principal directions. 
Then, the points are rasterized, being projected on the plane of 
the two principal directions (correspondent to the two largest 
eigenvalues) and computing a binary image where raster cells 
containing at least one point are set to ‘1’, and empty cells are 
set to ‘0’ (Figure 4b). Finally, two different feature vectors are 
defined depending on the aspect ratio of the resulting image. 
For images whose aspect ratio is smaller than 3, they are resized 
to a [96 128] size and the pixel values are directly used as 
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classification feature. For images whose aspect ratio is larger 
than 3, they are resized to a [42 128] size, and a pixel 
distribution feature (appending the proportion of ‘1’ pixels in 
each row and column) is defined.  
 
Note that doing this distinction separates column traffic lights 
(whose images have large aspect ratios) from mast arm traffic 
lights (with smaller aspect ratio). Street lights and trees, though, 
can be present in both groups. Images with small aspect ratio 
are classified using a simple Neural Network model with two 
layers, with sigmoid activations in the hidden layer, and images 
with large aspect ratio are classified using a Cubic Support 
Vector Machine.  
 
This processing module outputs the objects classified as traffic 
lights, therefore defining if the vehicle flow in the pedestrian 
crossing environment is regulated. 
 

 
Figure 4. Traffic light classification. (a) Pole-like object 
segmentation. A number of sections are studied for each object, 
fitting circles to each one of them. (b) The objects are projected 
into a plane defined by their two principal components, and a 
binary image is defined from that projection. 

 
3.3 Traffic sign classification 

Another important element related with the safety on the 
surrounding area of a pedestrian crossing is the vertical signage. 
For a given marking 𝑴𝑴𝒊𝒊, traffic signs can be detected on the 
point cloud 𝑷𝑷𝒏𝒏𝒏𝒏𝒏𝒏 following the methodology from the previous 
work in Soilán et al. (2016), where traffic signs are detected 
using the intensity property of the point cloud together with 
previous knowledge about the geometry of the traffic sign 
panels.  Subsequently, semantic information is obtained using a 
deep convolutional neural network model as developed in Á. 
Arcos-García et al. (2017) on RGB images that are part of the 
data collected by the MMS during the survey.  
 
The traffic sign classification module outputs the position of the 
vertical traffic signs in the surroundings of 𝑴𝑴𝒊𝒊 together with the 
semantic description of each sign. Typically, traffic signs 
related with speed limit, and warning about the presence of 
pedestrian crossings or traffic lights will contribute to the safety 
of the crossing area.  
 

3.4 Visibility analysis 

The last module of the safety assessment focuses on the 
visibility between drivers and pedestrians in crossing areas. 
First, it is important to define the concept of visibility. Here, an 
object will be considered in the visible area of a driver when it 
is within its vision field, not occluded by any other object that 
may impede the visual contact, and located at a distance such 
that the vehicle can stop in safe conditions. This stopping 
distance (𝑆𝑆𝑑𝑑) is defined as: 
 

                        𝑆𝑆𝑑𝑑 = 𝑉𝑉
3.6

· 𝑡𝑡𝑝𝑝𝑝𝑝 + 𝑉𝑉2

254(𝜇𝜇𝑟𝑟±𝑖𝑖)
                        (6) 

 
where V and 𝑡𝑡𝑝𝑝𝑝𝑝 are the speed of the vehicle and the reaction 
time of the driver (which are set to 50 km/h and 2 seconds 
respectively), 𝜇𝜇𝑟𝑟 is a friction coefficient which is function of the 
speed, and 𝑖𝑖 is the longitudinal slope of the road as obtained in 
Section 3.1.  
 
This processing module aims to obtain a qualitative measure of 
the visibility of a pedestrian at each side of a pedestrian 
crossing. For that purpose, it is necessary to define, on one side, 
the stopping distance of the vehicle (Equation 6) and, on the 
other side, an object that will define the visibility. For this 
study, a point cloud of a pedestrian will be used as a template 
and placed at both sides of each road marking 𝑴𝑴𝒊𝒊 as shown in 
Figure 5a. 
 
The model that defines the visibility is based on the approach by 
González-Jorge et al. (2016). First, the vehicle trajectory is 
employed to approximate a number of points of view (PoV) that 
represent the position of the driver. Then, a set of lines of sight 
(LoS) is defined joining the PoV with each point of the 
pedestrian template (Figure 5b).  
 
The visibility analysis is carried out for each individual LoS. In 
the first place, it is necessary to check if the defined LoS is 
within the horizontal field of vision of the driver, which, for 
speeds in urban environments, can be approximated to 90 
degrees. Then, a sphere of diameter 𝑑𝑑𝑠𝑠𝑠𝑠ℎ = 0.25𝑚𝑚 whose 
center slides through the LoS is defined. A total of 100 
positions, equally spaced between the position of the driver and 
the considered pedestrian point, are defined for the sphere in 
order to look for occlusions (Figure 5c). An occlusion is defined 
whenever the point density within the sphere exceeds a 
predefined threshold based on the average density of the point 
cloud. For the study in this work, this threshold has been 
defined as 100 𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚2⁄ , which implies that a LoS is occluded 
when more than approximately 50 points are found within any 
of the defined spheres.  
 
Finally, the visibility of the pedestrian template with respect to 
the driver position is qualitatively defined as (1) Good visibility 
if more than the 75% of the template is visible, (2) Bad 
visibility if the percentage of visible points is between 25% and 
75%, and (3) No visibility if more than the 75% of the points 
are occluded.  
 
This visibility analysis can be employed not only for pedestrians 
but for other elements such as traffic lights which were 
classified in Section 3.3, being the output of this module a set of 
qualitative descriptions of the visibility of the considered 
objects with respect to a series of points of view of the driver.  
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Figure 5. Visibility analysis. (a) Pedestrian templates are located 
at both sides of the pedestrian crossing. (b) For a PoV of the 
driver, diferent LoS are defined to analyse the visibility of each 
point of the pedestrian point cloud. (c) A sphere that slides 
through each LoS is defined in order to search for occlusions.  

 
4. CASE STUDY 

 
The methodology presented in this work has been validated 
using MLS data acquired by a LYNX Mobile Mapper by 
Optech. This system consists of a set of mapping sensors, 
specifically two LiDAR heads (FoV of 360 degrees, with 90 
degrees between their rotational axes and 45 degrees with 
respect to the vehicle trajectory) and four 5-Mpix JAI cameras, 
together with a navigation system that comprises a two-antenna 
heading measuring system and an Inertial Measurement Unit 
(IMU). More insight about this system can be found in Puente 
et al. (2013b). 
 
MLS data from two different cities located in the northwest of 
Spain were employed for the evaluation of the presented 
methods: A centric and cluttered avenue in Lugo, and narrow 
streets and an avenue close to the port and coast respectively in 
Vigo (Figure 6). Data from Lugo and from the port area in Vigo 
were used for the validation of both road marking extraction and 
safety assessment, while data from the coast area in Vigo was 
exclusively employed for training the classification models 
described in Section 2.2.  
 

 
Figure 6. Case study data was acquired from three areas in two 
different cities located in the northwest of Spain.  

 
5. RESULTS AND DISCUSSION 

 
5.1 Road marking extraction 

This methodological block aims to detect and classify different 
types of road markings from MLS data. First, evaluating the 
road detection algorithm, two representative binary images 
resulting for the process in Section 2.1 were compared pixel by 
pixel with reference images which were manually collected. 
The evaluation metrics have been Precision, Recall and F-score, 
as defined in Equations (7)-(9) (were TP, FP and FN are true 
positives, false positives and false negatives respectively), and 
the obtained results, compared with (Guan et al., 2014) and (Yu 
et al., 2015) can be seen in Table 1.  
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹 (7) 
 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹  
(8) 
 

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ·
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 · 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

(9) 
 

  
Method Precision Recall Fscore 
Guan et al. [18] 0.905 0.875 0.89 
Yu et al. [21] 0.91 0.93 0.925 
Proposed 0.961 0.917 0.939 

Table 1. Results for road marking detection 

Regarding road marking classification, it was hierarchically 
carried out, classifying rectangles and arrows in a first level, and 
pedestrian crossings and five classes of arrows in a second level 
of hierarchy.  
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For the first level of hierarchy, binary images representing 
individual road markings were classified using a Geometry 
Based Feature (GBF) as feature vector and a two-layer Neural 
Network as classification model, as explained in Section 2.2. 
The trained model was evaluated in a test set and the results, in 
the form of a confusion matrix, are shown in Table 2.  
 
In the second level of hierarchy, rectangular markings are 
classified as pedestrian crossings relying on the contextual 
relationship among them, and arrows are classified by 
comparing their binary images with previously defined 
templates. Using SSIM as a metric for comparison, the final 
confusion matrix obtained can be seen in Table 3. 
 
GT/predict Rectangle Arrow Negative 

Rectangle 104 1 1 

Arrow 1 63 0 

Negative 8 3 10 

Table 2. Confusion matrix for the first level of hierarchy 

For these results, it can be seen that the classification system is 
quite robust for the proposed classes. Although the test set is 
limited, the totality of the pedestrian crossings has been 
correctly classified, motivating the safety assessment on their 
surroundings. Obviously, this classification framework is 
capable to distinguish only a small number of road markings. 
However, information about pedestrian crossings and arrows 
can be useful for developing applications related with the safety 
(Section 3) and retrieving information about the road network. 
Of course, all the information extracted can be gathered in 
objects whose properties should be easily exportable to 
geographic databases where this information would assist to 
inventory and maintenance processes.  
 
5.2 Safety assessment 

Information regarding the position of the pedestrian crossings is 
employed to obtain a set of safety-related features in the 
crossing environment. This processing block is divided in four 
modules, where quantitative or qualitative results are obtained. 
Here, results are shown for all modules but for the traffic sign 
detection module, where the reader is referred to previous work 
in Soilán et al. (2016) and Arcos-García et al. (2017). 
 
For the analysis of the accessibility as described in Section 3.1, 
a total of 54 road entrances were analysed. After a visual 
inspection it was found that all of them were accessible. The 
automatic accessibility analysis, though, got that 3 of them had 
accessibility issues. The main source of error was the presence 
of vehicles parked in the crossing area, creating occlusions that 
made the algorithm fail.  
 

Regarding the classification of traffic lights, there were a total 
of 36 of them on the test set (28 column traffic lights and 8 mast 
arm traffic lights) which were classified with remarkably good 
results. Specifically, for column traffic lights the classification 
model was able to classify them with a precision of 90%, recall 
of 96.4% and F-score of 93.1%. For mast arm traffic lights, the 
classification model classified all of them correctly without any 
false positive, being all three classification metrics 100%. Of 
course, the number of objects in the test set is too small to 
ensure generalization, but the classification feature as defined in 
Section 3.2 seems to highly discriminate this type of object 
from other pole-like objects. The average F-score for the 
classification of traffic lights is, therefore, 94.6%.  
 
Finally, qualitative results have been obtained for the visibility 
analysis module, where a set of points of view is defined for the 
driver along the stopping distance of the vehicle with respect to 
the pedestrian crossing, and the visibility of a pedestrian at both 
sides of the crossing is analysed for each point of view. For the 
54 road entrances that were considered, the vast majority of the 
points of view was labelled as good visibility points. Only for 2 
of the road entrances it was found that an object was causing an 
occlusion for the correct visibility of a pedestrian.  
 
 

6. CONCLUSIONS 

This work presents a processing framework for MLS data 
divided in two main blocks: Road marking extraction and safety 
assessment. First road markings can be detected and classified 
using only point cloud data, obtaining remarkable results for the 
classification of pedestrian crossings. This motivates the second 
processing block, which isolates the surrounding area of 
pedestrian crossings and extracts safety-related features 
regarding accessibility, visibility, presence of traffic lights and 
presence of traffic signs. This parameterization can be exported 
to Geographic Information Systems (GIS) were they can be not 
only visualized but also weighted in order to obtain a safety 
index to define the safety (globally or individually) of the 
crossing environment in the surveyed area. The definition of 
that safety index is out of the scope of this work, as there are a 
number of safety features that cannot be assessed with a Mobile 
Mapping System (as, for example, traffic light frequencies, or 
pedestrian / vehicle densities).  
 
As future work, the classification models may be optimized and 
improved. Although the classification results are globally good, 
the defined features and models may be too simple, so deeper 
neural networks could help to ensure a better performance and 
generalization. Furthermore, there is room for improvement on 
the visibility module, developing a vision model which 
approximates better the actual field of view of a driver.  
 

GT/ predict Ped. Crossing Straight Straight-right Straight-left Right Left Negative 

Ped. Crossing 16 0 0 0 0 0 0 

Straight 0 46 0 0 0 0 2 

Straight-right 0 0 5 0 0 0 0 

Straight-left 0 0 0 3 0 0 0 

Right 0 0 0 0 2 0 0 

Left 0 2 0 0 0 1 0 

Negative 0 0 0 0 0 0 6 

Table 3. Confussion Matrix in the second level of hierarchy.
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