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ABSTRACT: 

 

Dense stereo matching has been extensively studied in photogrammetry and computer vision. In this paper we evaluate the 

application of deep learning based stereo methods, which were raised from 2016 and rapidly spread, on aerial stereos other than 

ground images that are commonly used in computer vision community. Two popular methods are evaluated. One learns matching 

cost with a convolutional neural network (known as MC-CNN); the other produces a disparity map in an end-to-end manner by 

utilizing both geometry and context (known as GC-net). First, we evaluate the performance of the deep learning based methods for 

aerial stereo images by a direct model reuse. The models pre-trained on KITTI 2012, KITTI 2015 and Driving datasets separately, 

are directly applied to three aerial datasets. We also give the results of direct training on target aerial datasets. Second, the deep 

learning based methods are compared to the classic stereo matching method, Semi-Global Matching(SGM), and a photogrammetric 

software, SURE, on the same aerial datasets. Third, transfer learning strategy is introduced to aerial image matching based on the 

assumption of a few target samples available for model fine tuning. It experimentally proved that the conventional methods and the 

deep learning based methods performed similarly, and the latter had greater potential to be explored. 

 

1. INTRODUCTION 

Dense stereo matching is a classic topic in photogrammetry and 

computer vision, through which 3D scenes can be further 

reconstructed. Conventional stereo methods could be grouped 

into four stages: matching cost calculation, matching cost 

aggregation, disparity calculation and disparity refinement 

(Scharstein and Szeliski, 2002). The differences between pixel 

values or gradients, correlation coefficients and mutual 

information are typical matching costs. However, these costs are 

inevitably impacted by texture-less areas, reflective surfaces, 

thin structures and repetitive patterns (Kendall et al., 2017).  

Matching cost aggregation is the strategy to integrate votes 

(usually measured by the disparity difference between current 

points and neighbourhood points) from a given neighbourhood 

and possibly correct the current matching point. SGM 

(Hirschmüller, 2007) and Graph Cut (Boykov and Jolly, 2001) 

are two classic stereo methods that employ different aggregation 

strategy. The latter uses graph model to minimum energy in a 

2D neighbourhood region.  The former utilizes several 1D cost 

aggregations to simulate a 2D optimization problem, and greatly 

improves efficiency.  However, both of the solutions assume 

that every pixel (and disparity) is independent within the 

neighbourhood. However, it may be not the case as the context 

and geometric information could be more complicated.  

From 2015, the deep learning based methods have been 

gradually introduced to stereo matching and have shown to be 

promising. Deep neural convolutional networks (CNN) 

automatically learn multi-level representations that map the 

original input to the designated binary or multiple labels (a 

classification problem), or consecutive vectors (a regression 

problem). The powerful representation learning ability of CNN 

has made it gradually replacing the conventional feature 

handcrafting strategies in detection, classification and stereo 

applications. 

The MC-CNN (Žbontar and Lecun, 2014) is an early attempt to 

replace the empirical matching cost by multi-layer 

representations automatically learned by a CNN structure. With 

proper pre-training for the challenging cases as reflective 

surface and sharp disparity change, more robust matching cost 

could be expected. It experimentally proved that MC-CNN 

obtained better results compared to other matching costs as 

absolute difference of brightness, census and normalized 

correlation (Žbontar and Lecun, 2014). 

Other CNN networks produce disparity map directly from 

original stereo pair in an end-to-end manner (Kendall et al., 

2017; Pang et al., 2017; T.Brox, 2016). GC-Net (Kendall et al., 

2017) learns to incorporate contextual information using 3-D 

convolutions over a cost volume of cross-disparity feature 

representations and pack the volume to 2D map to regress 

disparity values. (Pang et al., 2017) propose a cascade CNN 

architecture composing of two stages. The first stage utilizes 

DispNet (T.Brox, 2016) and the second stage rectifies the 

disparity initialized by the first stage and generates residual 

signals across multiple scales. (Shaked and Wolf, 2016) 

Improved Stereo Matching with Constant Highway Networks 

and Reflective Confidence Learning] presents an three-step 

pipeline based on a highway network architecture for the stereo 

matching problem including computing matching cost, cost 

aggregation and parallax refinement. These end-to-end methods, 

especially GC-Net which integrates geometric and contextual 

information in higher dimension, greatly alleviate the 

assumptions that pixels of a neighbourhood are independent in a 

traditional matching cost aggregation. 

Basically, in the open-source KITTI 2012 and 2015 Datasets 

(Geiger, 2015), the deep learning based methods achieve top 

scores and conventional methods appear uncompetitive. 

However, deep learning based methods have some challenges. 

First, the deep learning methods require samples to train their 

models. Whether a model pretrained on an open dataset could 
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be directly applied to a target dataset requires further inspection. 

Second, the KITTI and other Datasets as Driving (T.Brox, 2016) 

are close-range images, whether the deep learning based 

methods could well function on aerial dataset should be further 

checked. 

In this paper, we attempt to answer two questions: 1) Does the 

deep learning based stereo methods have enough generalization 

ability which guarantees transfer learning from trained models 

on some open-source dataset to target dataset, and 2) if they 

could be used in aerial images and outperform traditional 

methods? 

 

2. METHODOLOGY 

2.1 SGM and SURE 

SGM (Hirschmüller, 2007) is a classic stereo method that have 

been widely studied and applied on photogrammetry and 

computer vision communities. Many variants are developed 

from SGM, and the SURE software utilizes a multi-view SGM 

strategy to generate DSM with high accuracy. 

The greatest contribution of SGM is the aggregation is achieved 

by several 1D summing other than 2D summing in 

neighbourhood like Graph Cut stereo method (Boykov and Jolly, 

2001) that results in a very slow processing. SGM utilizes cross-

entropy information for matching cost, and shows better than 

the difference of pixel values. 

SURE (Rothermel et al., 2012) firstly generate stereo pairs that 

are especially convenient for multi-view matching and for 

multi-view geometry recovering. Then, for each stereo pair in a 

multi-view group, SGM is applied to obtain the parallax map, 

separately. At last, the redundant depth estimations across single 

stereo models are merged through a fusion step. Image pyramid 

strategy is also utilized to limit the searching area and improve 

the efficiency.  

 

2.2 MC-CNN 

MC-CNN (Žbontar and Lecun, 2014) utilizes a simple Siamese 

CNN network to extract high-level feature representations from 

stereo images separately and compare their similarity by a cross 

product. In Figure 1, image patches are convoluted with 

convolution kernels and activated with ReLU layer by layer till 

the last layer with no activation. The last layer features are then 

packed to 1D and normalized for computing similarity score by 

dot product.   

 

Figure 1. Learning similarity score by MC-CNN (cited from 

(Žbontar and Lecun, 2014)) 

The rest process of MC-CNN, i.e., cost aggregation, consistency 

tests, is similar to SGM.  

 

2.3 GC-Net 

GC-Net (Kendall et al., 2017) is an end-to-end strategy that 

produce disparity maps from inputs of rectified stereo images. 

First, the stereo images are convoluted by 2D convolution 

kernels several times to extract feature maps, with shared 

weights between stereo inputs. The feature maps are then 

concatenated cross each disparity to form a 3D tensor of 

width×height×disparity. The 3D feature maps are further 

abstracted by a multiscale 3D convolution and deconvolution. 

At the last layer, the 3D features, with the same size of original 

input are flattened to disparity maps by a soft argmax operation. 

The maps are finally compared to the ground truth by L1 norm 

to train the network iteratively. 

 
Figure 2. the network structure of GC-Net (cited from (Kendall 

et al., 2017)) 

Although there are many novel architectures proposed for stereo 

matching recently, GC-Net shows its robustness and accuracy, 

and occupies one of the top scores of the KITTI benchmarks 

(Geiger, 2015). 

 

2.4 Transfer learning 

Transfer learning is a strategy that utilizes the pre-trained model 

on a source dataset, to apply on a target dataset with a few or 

without new samples. A case is to predict from the target dataset 

without parameter tuning. A good result demands for the model 

is robust and has good generalization ability; otherwise, the 

sample space of the source and target datasets is expected to be 

similar. Another case is to leverage the parameters of the pre-

trained model as initial state and update them in fine tuning 

stage with new target samples. In this case, one could freeze the 

backbone of the network and only train the parameters of the 

last several layers; or could train all the parameters of the model. 

The depth of the network structure and the number of target 

samples usually determine which one to choose.  

In our case, to evaluate the generalization ability of a CNN, we 

firstly directly applied the pre-trained models on source 

ground/aerial datasets to a target aerial dataset. Then, we tuned 

all parameters (for MC-CNN and GC-Net are both narrow 

networks) through new samples. 

 

3. DATASETS 

We prepare 5 datasets to thoroughly evaluate the performances 

of the CNN based methods on aerial stereo images. Two of 

them are open and close-range datasets: KITTI and Driving 

datasets. The rest consists of aerial images.  

 

3.1 Close-range datasets 

KITTI stereo dataset: The KITTI dataset was produced in 

2012 and extended in 2015 (Geiger, 2015). KITTI 2012 dataset 

contains 194 training images and 195 test images while KITTI 

2015 contains 200 training and 200 test images with a size of 

1242× 375 pixels. The epipolar rectified image pairs were 

acquired by two video cameras mounted on a car. The ground 

truth, i.e., the depth maps, was acquired by a rotating laser 

scanner. As similar to the settings of many other studies, we 

utilize 80% of the images for training and the rest for test. 

Driving stereo dataset: The Driving dataset was produced 

from a virtual street scene from the viewpoint of a virtual 
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driving car, which is similar to the KITTI dataset. It contains 

more than 4k image pairs with different focal length, scene 

direction, driving speed with corresponding ground truth maps. 

We only select 300 image pairs for experiment within which 80% 

of the images are used for training and the rest for test. Each 

image has the size of 960×540 pixels. 

 

3.2 Aerial datasets 

Hangzhou stereo dataset: The Hangzhou dataset consists of 

aerial images with 80% overlap in strip and 60% overlap 

between strips, acquired from a UAV. After all images are epi-

rectified, we cropped them into tiles of 1325×354 pixels, which 

is suitable for the capacity of a Titan Xp GPU video card. The 

ground truth was acquired by a laser scanner. After removing a 

few images with undesirable disparities by manual check, we 

select 328 image tile pairs as training set and 40 pairs as testing 

set. 

München and Vaihingen dataset: Similar to Hangzhou dataset, 

the München and Vaihingen dataset were acquired from aerial 

images with 80% and 60% overlaps respectively. The ground 

depth maps were acquired from a given DSM, which was 

generated by the median values of the DSM products from 

several photogrammetric commercial software. We also 

cropped the whole image to tiles to suit the capacity of a 

mainstream video card. Finally, The München dataset consists 

of 260 stereo pairs with size of 1150×435 pixels while the 

Vaihingen dataset consists of 730 stereo pairs with size of 

955×360 pixels. The ratio between training and test data is also 

set to 4:1. 

Due to the capacity (6G) of our Titan Xp GPU video card, we 

trained the networks on the three aerial datasets with half pixel 

resolution. 

 

4. RESULTS 

4.1 CNN methods on aerial datasets 

We evaluate the deep learning based methods for aerial stereo 

images by a direct model reuse. The models, as well as all of the 

parameters, pre-trained on virtual/real street scene datasets, 

KITTI 2012, KITTI 2015 and Driving datasets, are directly 

applied to the three aerial datasets, Hangzhou, München and 

Vaihingen datasets. The MC-CNN and GC-net separately pre-

trained on the street scene benchmarks are applied to our aerial 

datasets. The performance of training on target aerial dataset set 

are also given for comparison. The results are presented in 

Table 1 and Table 2. 

  

           Training set 

Test set   

KITTI2012 KITTI2015 Hangzhou Munchen Vaihingen 

KITTI2012 0.963 0.957 

(-0.006) 

0.941 

(-0.022) 

0.945 

(-0.018) 

0.946 

(-0.017) 

KITTI2015 0.958 

(-0.002)  

0.960 0.951 

(-0.009) 

0.955 

(-0.005) 

0.953 

(-0.007) 

Hangzhou 0.944 

(-0.009) 

0.942 

(-0.011) 

0.953 0.948 

(-0.005) 

0.940 

(-0.013) 

Munchen 0.960 

(-0.005) 

0.960 

(-0.005) 

0.960 

(-0.005) 

0.965 0.959 

(-0.006) 

Vaihingen 0.988 

(-0.004) 

0.987 

(-0.005) 

0.987 

(-0.005) 

0.989 

(-0.003) 

0.992 

Driving 0.889 0.888 0.880 0.886 0.872 

Table 1. Test results (parallax error < 3pixels considered a correct match) on the different training datasets based on MC-CNN. The 

numbers in bracket are the difference between the current number and the diagonal number of the current row, indicating the 

decreasing degree of accuracy when training with extern dataset. 

 

 

         Training set 

Test set   

Driving Munchen Vaihingen 

Driving 0.926 0.895 

(-0.031) 

0.895 

(-0.031) 

Munchen 0.969 

(-0.015) 

0.984 0.964 

(-0.020) 

Vaihingen 0.980 

(-0.017) 

0.979 

(-0.018) 

0.997 

KITTI2015 0.934 0.881 0.942 

Hangzhou 0.911 0.940 0.949 

Table 2. Test results (parallax error < 3pixels) on the different 

training datasets based on GC-net. The numbers in bracket are 

the difference between the current number and the diagonal 

number of the current row, indicating the decreasing degree of 

accuracy when training with extern dataset. KITTI2015 and 

Hangzhou datasets lack of dense disparity map and are only 

used for test in GC-net. 

 

Table 1 shows the test accuracy of MC-CNN and Table 2 shows 

that of GC-net. The test accuracy is valued by the percent of 

pixels whose difference to true disparity is within 3 pixels. 

When the training set and test set are from the same dataset, the 

test accuracy (the bold diagonal elements) can reach 95% 

(except for Driving dataset). The generalization ability of MC-

CNN and GC-net is evaluated by the non-diagonal elements, 

which are obtained with the model pretrained by different 

training sets. The red numbers in bracket show the differences 

between training on target set and using pre-trained model with 

other datasets. If without new training samples, the accuracy of 

stereo matching will drop about 0.5~2% (except the virtual 

Driving dataset) using pre-trained models. It can be concluded 

that even without target training set, deep learning based stereo 

methods show high performance and excellent generalization 

ability. Nevertheless, large training samples of various scenes 

could be good complementary for a commercial application of 

deep learning based stereo methods. 

 

4.2 Comparison of CNN and classic methods 

The deep learning based methods are compared to SGM, SURE 

software on the aerial datasets. In Table 3, the results show the 

deep learning based methods are similar to (or slightly better 

than) the conventional methods. When the ground is flat and 

buildings are low, as the case of Vaihingen dataset, all methods 
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including SGM can get a very high accuracy up to 98% and 

shows no obvious difference of performances between them. On 

the München dataset, the accuracy of SURE is 93.2% while the 

accuracy of MC-CNN is 96.5% trained on the target dataset 

(and 96.0% using model pre-trained on KITTI 2015 directly), 

and GC-net is 98.4% (96.9% with model transfer from the 

Driving dataset). However, On the Hangzhou dataset, the 

accuracy of MC-CNN and GC-net is about 95% whereas the 

accuracy of SURE is 96.8%. It experimentally proves that the 

deep learning based methods and conventional methods perform 

quite equivalent in current stage. 

 

 KITTI2015 Driving Hangzhou Munchen Vaihingen 

SGM 0.893 0.713 0.896 0.921 0.987 

SURE - - 0.968 0.932 0.990 

MC-CNN 0.960/0.958 -/0.889 0.953/0.944 0.965/0.960 0.992/0.988 

GC-Net -/0.942 0.926/0.895 -/0.949 0.984/0.969 0.997/0.980 

Table 3. The results of SGM and SURE on the aerial datasets (parallax error < 3 pixels). 

 

Figure 1 displays the 3D scenes recovered from disparity maps 

that were generated by different methods. In Hangzhou dataset, 

GC-Net performed the best in visual effect and SURE showed 

some distortion in buildings. In München dataset, MC-CNN, 

GC-Net and SGM almost perform the same while SURE could 

produce more details. In Vaihingen dataset, SURE also show 

more details than the others, however, compared to the 

reference map, there might be some tiny errors in the flat 

farmland. 
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Figure 1. 3D scene recovered from dense disparity maps. 

 

Although now deep learning based methods perform almost the 

same level as conventional methods, it should be addressed that 

deep learning based methods only leverage stereo information 

up-to-now and is extremely faster than conventional methods if 

pre-trained, while SURE utilizes multi-view geometry. It is 

expected the deep learning based methods could benefit largely 

from the introduction of the multi-view geometry constraints.  

 

4.3 Transfer learning on aerial datasets 

Transfer learning strategy is introduced to aerial image 

matching based on the assumption of only a few new samples 

available for training. We divide the datasets into a small 

training set and a large testing set. The pre-trained models are 

used as base network. All parameters are tunable with pre-

trained parameters as initial values.  

we tested the Hangzhou dataset using the models pretrained on 
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KITTI2015.  We tune all parameters in the MC-CNN model and 

gradually increase the number of training samples from 25 

stereo pairs to 300 pairs. Table 4 shows the changes of test 

accuracy on different sizes of training samples for direct 

training (DT) only on the available training set (with initial 

random weights) and a fine-tuning strategy with transfer 

learning (TL) from KITTI 2015. The accuracy of TL is 94.89% 

on 25 training samples, compared to 94.39% for DT. As the size 

of training set increases, the gain of TL slows down up to 0.1%. 

Table 5 is the test accuracy on different size of training samples 

on München dataset based on GC-Net. DT means directly 

training on the target dataset with random initial weights, while 

TL means transfer learning with pre-trained parameters on the 

Driving dataset. The accuracy of TL on 25 training samples is 

96.5%, compared to 78.3% of DT. As the size of training set 

increases, the gain of TL slows down up to 0.61% when 250 

pairs are used for training. 

 

Dataset size 25 pairs 50 pairs 100 pairs 200 pairs 300 pairs 

Method DT TL DT TL DT TL DT TL DT TL 

Accuracy 0.9439 0.9489 0.9448 0.9485 0.9467 0.9481 0.9514 0.9526 0.9526 0.9537 

Improvement 0.50% 0.37% 0.14% 0.12% 0.11% 

Table 4. The test accuracy on different size of training samples. DT means directly training on the dataset with random initial weights, 

while TL means transfer learning. 

 

Dataset size 25 pairs 50 pairs 100 pairs 200 pairs 250 pairs 

Method DT TL DT TL DT TL DT TL DT TL 

Accuracy 0.7832 0.9650 0.9024 0.9476 0.9288 0.9612 0.9593 0.9775 0.9723 0.9784 

Improvement 18.1% 4.52% 3.24% 1.82% 0.61% 

Table 5. The test accuracy on different size of training samples based on GC-net. DT means directly training on the dataset with 

random initial weights, while TL means transfer learning. 

 

 

5. CONCLUSIONS 

The paper evaluates the performance of two deep learning based 

stereo methods, MC-CNN and GC-Net on three aerial datasets. 

It was experimentally proved that the two methods both can 

generate high accurate disparity maps both in the case of 

training models on target dataset and in the case of using pre-

trained models on other open-source datasets. Compared to 

SGM and SURE, we could conclude that conventional methods 

and deep learning based methods perform almost the same level 

up-to-now whereas the latter has better potential. 
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