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ABSTRACT:

This paper presents a method to register photogrammetric point clouds generated from optical images acquired by UAV and aerial
LIDAR point clouds. Normally, the registration of two airborne scans of the same scene is solved by the use of control points and
the direct registration using GNSS and INS information. However, the registration of multi-sensor point clouds without control points
is more complicated and challenging. For the scene of non urban areas, the registration task gets even more complicated, because it
is hard to extract sufficient geometric primitives from the building structures. For our proposed method, an outdoor scene is tested
providing almost no man-made objects. Therefore, it is nearly impossible to search for planar objects and use them for registration.
With no geometric primitives extracted, the proposed method utilizes the structure of the 2.5D DEM created from the ground points of
the point cloud. Besides, instead of using control points or key points, the method automatic detect key planes from the 2.5D DEM as
correspondences. These key planes are detected on a regular grid by the use of a predefined mask. To mark a DEM grid cell as key
plane the histogram of sums of the angles between the center cell is used. Afterwards, similarity values between two key planes are
calculated based on the histogram differences and a RANSAC based strategy is adopted to find corresponding key planes and estimate
the transformation parameters. Experiments conducted in this paper indicate that it is feasible to register multi sensor point clouds with
a big difference in their ground sampling distances with respect to the used cell size of the 2.5D DEM.

1. INTRODUCTION

Airborne Laser Scanning (ALS) is currently used to cover the 3D
information of a large region (e.g., several km2) in a reasonable
time. Since there is a GNSS and INS used during the flight, the
registration of ALS data can be done in a direct manner by using
the GNSS and INS information to georeference the point cloud.
Misalignments resulting from measure errors of the GNSS an-
tenna and IMUs can be solved with a fine registration (e.g., ICP).
In the case of using a UAV, multiple images are relative registered
to each other with an aereotriangulation approach. A georefer-
encing of the adjusted image block is limited by the accuracy of
the UAV mounted GNSS sensor. The resulting point cloud there-
fore needs to be georeferenced by using control points. There-
fore, the registration is simple inside the same sensor system and
not considered as an subject of research. Instead, the research
question could be: how to register datasets of two different sen-
sor systems without using any markers.

By comparing a photogrammetric point cloud captured with im-
ages taken from an UAV and a LIDAR point cloud taken from an
airplane, two main differences are obvious: One is the big dif-
ference in the ground sampling distance of the two point clouds.
The other difference is that photogrammetric point clouds have
more noise and outliers than LIDAR point clouds. Both the dif-
ference in the ground sampling distance and the noise makes the
point based registration of the different data difficult. There are
some approaches in the field of point cloud registration which
use geometric primitives like planes or congruent points to solve
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the registration. This can be independent on ground sampling
distances and noise but assumes that there are primitives inside
the scene. However, this is not always the case, especially by
considering non urban outdoor scenes which show no man made
objects. For these scenes the landscape itself has to be used for
registration which is done by the proposed approach by using the
2.5D DEM of the ground points.

The proposed approach aims for a combination of the advantages
of UAV taken data and ALS data. The method is clustered in the
following steps (see figure 1): the surface fitting, the detection
of key planes, the matching of key planes, and the estimation of
the transformation parameters. Possible applications would be
the enrichment of 3D data with additional data with higher tem-
poral and spatial resolution. Therefore, a registration approach
is needed which is independent on the point cloud ground sam-
pling distance or the sensor type used to capture the point cloud.
Furthermore, in the case of capturing landscapes it is likely to get
scenes without any man made objects and an approach is needed
which uses the landscapes itself. The proposed method creates
results for a coarse registration and the accuracy depends on the
chosen cell size for surface reconstruction but the mentioned con-
ditions above are fulfilled.

Section 2 gives an overview of the state of the art approaches in
the context of point clouds registration. Section 3 explains the
proposed method and section 4 shows the used data to challenge
the proposed method. The results are shown in section 5 and
the stated ideas for future work and applications are explained in
more detail in section 6.
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Figure 1. Scheme of the proposed approach. The arrows show
the different steps for the registration, with start at the input

point cloud: 1: surface reconstruction; 2: search for key planes;
3: the calculation of transformation parameters based on

matched key planes and registration of input point clouds.

2. RELATED WORK

Currently, plenty of marker less registration approaches have
been developed for aligning different scans by using geometric
characteristics of given point clouds. According to the geomet-
ric features used, these registration methods can be grouped into
two major categories: the point-based and the primitive-based ap-
proaches.

For the point-based approaches, their basic idea is to find cor-
responding point pairs in different scans. The Iterative Closest
Point (ICP) and its variants minimize point-to-point distances in
overlapping areas of two different point clouds (Besl and McKay,
1992; Habib et al., 2010). For decades, ICP-like methods have
been proven to be effective in terms of accuracy in plenty of appli-
cations. However, the matching of corresponding points requires
a time-consuming iterative process if no good initial alignment
obtained. Besides, instead of using all the points as candidates
selecting key points from the raw point cloud is also an alterna-
tive that can largely reduces the computation cost, for instance
the SIFT key points (Weinmann et al., 2011), DoG key points
(Theiler et al., 2014), FPFH key points (Weber et al., 2015), and
semantic feature points (e.g., intersecting points) (Yang et al.,
2016; Ge, 2017). Although all these methods are generally able
to align point clouds, the point-based methods are sensitive to
point density and noise and have problems in terms of efficiency
when dealing with large-scale datasets.

For the primitive-based approaches, instead of using points, the
geometric primitives formed by points (e.g., lines (Habib et al.,

2005), planes (Xiao et al., 2013), or surfaces (Ge and Wunder-
lich, 2016)) are adopted as geometric features for the registra-
tion. Theoretically, the use of higher level geometric features
can increase the robustness of identifying corresponding feature
pairs. Lines, planes, and curved surfaces are the representatives
of geometric features. Large numbers of investigations using
line features to register point clouds have been reported. For
examples, the intersecting lines of neighbouring planes (Stamos
and Leordeanu, 2003), 3D straight-lines (Habib et al., 2005) ,
and spatial curves (Yang and Zang, 2014) are used as match-
ing primitives. Plane correspondences (Dold and Brenner, 2006;
Von Hansen, 2006; Xiao et al., 2012) and surface correspon-
dences (Ge and Wunderlich, 2016) are frequently used as geo-
metric primitives for alignment as well. Compared with the point-
based methods both line- or plane-based methods require abun-
dant linear objects or smooth surfaces as candidates which largely
depends on the content of scanned scenes. For scenes with only
few buildings they may meet problems when finding appropriate
candidate features of lines and planes and the accuracy of ex-
tracting lines and planes will affect the registration result at same
time. Besides, for the plane-based methods the extraction of pla-
nar surfaces with region growing or model-fitting algorithm can
be rather time consuming and unreliable, which largely limits the
performance of the registration as well (Wang et al., 2016), (Xu et
al., 2017). For efficiency matters the voxel structure is frequently
used for processing point clouds. For segmentation plenty of
studies have illustrated the advantages of using voxel structures:
constructing a rasterized representation of points which simpli-
fies the dataset and can overcome the uneven distributed point
density. Nevertheless, selecting an appropriate resolution of vox-
els for the raw point cloud is a trade-off between the efficiency of
processing and the preservation of details. Normally, the smaller
the voxel, more details will be kept. With respect to the regis-
tration using voxel structures, in the work of (Wang et al., 2016)
the EGI features formed by the clusters of voxels are utilized as
correspondences for coarse registration, demonstrating effective
results for aligning indoor scenes. Moreover, in related work (Xu
et al., 2017) , planar surfaces are extracted from the voxel repre-
sentation of the raw point cloud, largely increasing the process of
extracting planar surfaces which also reveal a promising potential
for coarse orientation of scans of urban scenes.

However, for the majority of the aforementioned primitive-based
cases, they focus on residential or other urban areas which can
provide sufficient geometric features like lines, planes, or inter-
secting points but when it comes to more general outdoor scenes
like agricultural fields, forest or river valleys, it will be hard to
find enough salient features. Therefore, how to generate reli-
able primitives for finding enough correspondences becomes a
key point when registering point clouds of the large-scale general
outdoor scene.

3. METHOD

The proposed method consists of three major steps, namely the
surface fitting to generate a 2.5D surface on a regular grid. This
surface consists of smaller planes which approximate the scanned
area. The next steps of the proposed approach are the key plane
detection (i.e. detection of surface planes which are considered as
key features for the next steps), key plane matching, and the es-
timation of transformation parameters (see figure 1). Key planes
are searched where the surface shows distinctive curvatures. For
the detection of key planes, a defined neighbourhood on the reg-
ular 2.5D DEM is used. A histogram of the angles between nor-
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mals is defined by using the normal vectors of the center cell and
all neighboured cells. Afterwards, the histogram is used to mark
a center cell as key plane if the histogram shows a step func-
tion with minimal step width. The matching of key planes uses a
Ransac based approach and the calculation of a similarity value
based on the histogram. Related work of the authors reached
good results in estimating the rotation between two scenes (Xu
et al., 2017). However, the estimation of translation shows some
problems because no corresponding planes are used so far. There-
fore, this paper focuses on the estimation of translation parame-
ters but the proposed approach can be extended to estimate rota-
tion parameters, too.

3.1 Surface fitting

The proposed approach works on a regular grid surface which
is fitted on the input point cloud with a least squares approach.
One key feature of this surface is the generalisation of different
resolutions of input point clouds. Even if the calculation of the
grid parameters needs more processing time, the regular grid has
several advantages in contrast to the Delaunay triangulation: It
can be estimated with smoothing regularization and gets therefore
less noisy. The output of this least squares estimation is shown
in comparison of a Delaunay triangulation in figure 2. The given
coordinates of a 3D point can be translated very fast to a grid
cell by calculating the index of the raster cell in the regular grid.
Therefore, the estimation of the point to grid distance is faster
as with a Delaunay mesh. Furthermore, the regular grid is more
appropriate to work with defined masks like in an image.

The surface is reconstructed with a least squares estimation where
the height components of each edge of the regular grid cells are
the estimated parameters. The input point cloud is the point cloud
of the ground points which are filtered on the ALS data with the
author’s voxel based approach (Boerner et al., 2017). In the case
of the UAV data the ground points are segmented manually to
avoid errors because of misclassification. The least squares esti-
mation of the surface is done like described in Förstner and Wro-
bel (2016)[758-760]. For each point of the input point cloud the
observation to the least squares estimation is the bilinear interpo-
lation of the parameters:

z =(1− s)(1− t) · ai,j
+ (1− s)t · ai,j+1

+ (1− t)s · ai+1,j

+ s · t · ai+1,j+1 (1)

with:
z = z-coordinate of the current point on the grid
s = x− xi : difference of the x coordinate of the current point

to the x coordinate of the anchor edge(xi) on the grid
inside the range [0,1]

t = y − yj : analog to s with the y coordinates
of the current point

a = parameters of the grid
(i.e. the z coordinate of each edge of the current grid cell)

i,j = coordinates of the anchor edge of the current grid cell

The smoothing regularization is defined with the fictitious obser-
vations:

0 = δi,i = ai−1,j − 2ai,j + ai+1,j (2)

0 = δj,j = ai,j−1 − 2ai,j + ai,j+1 (3)

0 = δi,j = ai−1,j−1 − ai−1,j − aj,i−1 + ai,j (4)

The surface is reconstructed using the optimization of:

Ω =
1

σ2
n

∑
m

(lm − zm)2 +
1

σ2
δ

∑
i,j

δ2i,i + 2δ2i,j + δ2j,j (5)

with:
lm = z-coordinate of observation point m
zm = z-coordinate of point m on the grid
σ2
n = variance of observation point
σ2
δ = variance of the regularisation term

(a)

(b)

Figure 2. Comparison of a Delaunay triangulation (a, done with
the software Cloud Compare1) and the reconstruction of a

regular 2.5D DEM (b)

3.2 Key plane detection

The decision whether a center cell should be marked as a key
plane is based on the following consideration: If the local neigh-
bourhood represents a planar region the angles between the nor-
mals of grid cells (equation 3.2) will be near zero. If the local

1http://www.danielgm.net/cc/ (visited on 11.01.2018)
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neighbourhood is non planar the normals point in different di-
rections. In case of the local neighbourhood representing a cone
there will be a continuous change of angle directions up to a local
maximum. The key planes are marked in areas where the local
neighbourhood shows the characteristics of a non planar region
and in the best case of a cone-like region. The local neighbour-
hood has to be chosen large enough to include enough cells for
the statistical evaluation of the normal directions. The descriptor
becomes rotation invariant by choosing the differences of the nor-
mal directions in the local neighbourhood instead of the normal
vectors themselves.

cos(α) = ~nc · ~nn (6)

with:
~nc = normal vector in the center
~nn= normal vector for a neighbour
α = angle between center normal and the neighbour normal

Each angle inside the mask (eq. ) is used to calculate a histogram
of sums which is used as the mask descriptor. The histogram is
defined with:

h(i) = h(i− 1) +
count(αi)

n
(7)

αi = i · 180 deg

bins
(8)

with:
i = index of the histogram bin starting at zero
h() = the value of the histogram bin
count() = count of angles which are round off to the given value
n = count of halve cells inside the mask
bins = count of bins in the histogram

A schematic visualization of the descriptor mask and the his-
togram is shown in figure 3 where figure 3a shows a non planar
neighbourhood with its corresponding angles (3c) and the result-
ing histogram (3e) and figure 3b a planar neighbourhood with
normals (3d) and histogram (3f).

If the local neighbourhood represents a very flat region the his-
togram shows a flat curve. If the local neighbourhood is non flat
the histogram shows a step function. If the local neighbourhood
represents a cone the histogram will sum up from zero to one in a
small step. In other words, the latter case is represented by a his-
togram with a step width of a low bin count. Key planes should
be found where the local neighbourhood shows strong curvatures
like for example in a cone-like structure. Therefore, searching
for key planes means to search for histograms which have a small
step width, excluding a step width of zero (in case of a planar
neighbourhood). The detection uses two thresholds which filter
the cone like histograms from others: A two side threshold to de-
fine minimal and maximal values in the histogram and a one side
threshold to define the bit count between the minimal and maxi-
mal value. If the bit count is fulfilled with respect to the chosen
minimal and maximal values, the center cell is marked as key
cell.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Principle of the key plane descriptor in comparison of
a cone like area (a,c,e) and a plane like area (b,d,f), top (a,b): the

area itself, middle (c,d): shematic drawing descriptor mask
(blue) with the center normal (blue) and the neighbour normals
(red), bottom (e,f): the histogram of angles with normed relative

sums

3.3 Key Plane matching

The matching of key planes uses the descriptor defined in section
3.2 to find corresponding key planes for the coregistration of two
DEMs.

s = 1− 1

n · max(| ~h1− ~h2|)

∑
i

|h1(i)− h2(i)| (9)

with:
s = similarity inside the range [0,1]
n = count of bins,

have to be the same for both histograms
~h1, ~h2 = the whole histograms

To avoid a division by zero, the maximum value is set to one if
all histogram values are equal. This similarity is normed to be
between zero and one, with a similarity of one showing that the
two histograms show the same graph. Several neighbourhoods
could look the same, therefore the output of a similarity match
has to be filtered to exclude false matchings. Such a filtering is
done by firstly conducting all matches with a similarity above
a threshold as a match and filter these fully connected matches
with a RANSAC approach. To speed up the RANSAC process,
an initial position is given which is used to conduct only matches
within this initial model as potential fully connected matches.
This matching process is summarized with:

1. Conduct key planes as match where s( ~h1, ~h2) > ts and
~x1 − [R|t] ~x2 < acc, where acc is the accuracy threshold
for the initial model and ts is the similarity threshold and
x1, x2 are the center points of the halve cell.
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2. Take a match at random

3. Calculate transformation (for testing in the context of this
paper its the difference of the center points of halve cells)

4. Count matches which fulfil ~x1−[R|t] ~x2 < matchD, where
matchD is the threshold which decides if a match should
be considered or not

5. If current count is higher than current best: adjust best
model

6. After iteration n reached: return best model

4. DATA

As testing site, a part of approximately 3500 m2 of the river
Mangfall in Bavaria of Germany was chosen (see figure 4). The
UAV flight was done on May 2016 and the ALS data was cap-
tured on April 2017. For the ALS data a Riegl VQ 880G scan-
ning system was used and the point cloud have a ground sampling
distance of approximately 40 cm between two scan lines and ap-
proximately 10 cm between two points in the same scan line. The
UAV taken images were captured using a Sony NEX-7 and a Fal-
con UAV. The photogrammetric point cloud generated from the
UAV taken images was calculated using the software Pix4D2 and
the resulting point cloud has a ground sampling distance of about
6 cm.

The test site shows no man made objects like buildings, only the
landscape and some vegetation. The landscape itself is flat which
makes the marker less registration challenging. The 2.5D DEM
was calculated with a cell size of 80 cm. Figure 5 shows the used
two point clouds. The resulting 2.5D DEM are shown in figure 6.

In comparison of the two point clouds (i.e., photogrammetric and
ALS), it is obvious that the photogrammetric point cloud has a
higher resolution but contaminated with more noise and outliers.

Figure 4. The Mangfall area, in the background: the map of
Germany from Google maps, in the marked area: green marked

area: the testing side located in the Mangfall area.

As described above, the test side is a multi temporal data of a
river area. Therefore, there are two aspects which make a regis-
tration complicated. Firstly, the riverside can have changed over
the time which creates more outliers by searching for correspon-
dences. Then, the influence of different light reflection character-
istics has to be corrected for the river ground points. Since the
two point clouds are showing the same riverside which shows no
visible changes, the aspect of possible changes is ignored. The
ALS data, which is acquired via a bathymetric scanning system,

2https://pix4d.com/ (visited on 11.01.2018)

(a)

(b)

Figure 5. The used point cloud data, a) ALS data b)
photogrammetric point cloud generated from the UAV taken

images.

shows only single returns in the river area, because of low water
depth and suspendent matter in the water. These single returns are
considered as water points and therefore not corrected consider-
ing different light reflection characteristics. This consideration is
also closer to the photogrammetric point cloud which shows only
water points in the river area. These considerations may create
errors in the final output but the correction of these errors is not a
subject of this paper.

5. RESULTS

The first question to answer is what cell size should be used to
reconstruct the surface. If the cell size is chosen to be smaller,
the calculation of the parameters takes more computation time
and memory. However, if the size of cells is chosen to be big-
ger, the level of details gets lower and the naturally flat landscape
will result in an even more flat surface representation. Further-
more, since the matching of key planes is limited to a halve cell
the resulting registration is expected to be limited to a halve cell
accuracy, too. As shown in section 4 the photogrammetric point
cloud consist of more noise than the ALS one. Therefore, for
choosing the cell size the focus will be on the photogrammetric
point cloud.
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(a)

(b)

Figure 6. Corresponding 2.5D DEM to the shown point cloud
data (see figure 5) a) DEM for the ALS data, b) DEM for the

photogrammetric point cloud.

5.1 Choosing the cell size

There are two different ways to change the resolution for the
DEM in the case of photogrammetric point clouds. The first
is changing the point density for the input point cloud and the
second is changing the cell size for the DEM. Both variants are
shown in the figures 7 and 8. Figure 7 illustrates the influence
of the point density to the surface reconstruction. In comparison
figure 8 shows the influence of the chosen cell size for the surface
reconstruction.

The maximal resolution is a ground sampling distance of 6 cm but
there was also two additional outputs created, one with a ground
sampling distance of 40 cm which is corresponding to the sam-
pling distance between two scan lines of the ALS data, the other
with a sampling distance of 80 cm to show the influence of sparse
point clouds. A comparison of the output DTM shows that the
noise as well as the level of details is lower by using a higher
resolution. Furthermore, the riverside gets smaller when using a
higher resolution. The riverside is the only area which gives the
structure in the otherwise flat landscape. Therefore, a resolution
of 80 cm seems to be to big to create suitable key planes for this
scene. Thus, the chosen point cloud resolution are the maximal
resolution of 6 cm and 40 cm.

The cell size for the 2.5D DEM is chosen to be the same for
the ALS data and the photogrammetric point cloud. There are
three different cell sizes considered, one to be 0.8 m which holds
enough details and results in a suitable accuracy for a coarse reg-
istration. The other is a cell size of 1.6 m to evaluate the effect of
doubling the cell size. First results are generated by using the cell
size of 0.8m because this cell size on one hand eliminate noise
but keeps small surface structures. The cell size of 1.6m is then
used for comparison.

(a) (b)

(c) (d)

Figure 7. The photogrammetric point cloud with lower
resolution(a: 40cm, c: 80 cm) and the corresponding DEMs (b,d)

(a) (b)

(c) (d)

Figure 8. DEMs with different cell sizes top: cell size of 0.8 m
a) DEM for the ALS data and b) DEM for the photogrammetric
point cloud, bottom: cell size of 1.6 m c) DEM for the ALS data

and d) DEM for the photogrammetric point cloud

By comparing the two ways of changing the resolution it turns out
that the changing of the sampling distance have a higher impact
of changing noise and details as the changing of the cell size for
the surface reconstruction.

5.2 Detected key planes

The decision to consider a cell as key plane depends on two val-
ues. First the size of the mask and second the maximum step
size of a key plane histogram. The latter is set to a fixed value
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of 10 bins inside a histogram of 100 bins. This is a value which
gives some room for noise but is not to big to create to much key
planes. The size of the mask is tested with different values on the
different resolution DEMs. The best mask size is chosen with a
visual interpretation of the results. There are more normals taken
inside the mask when using a higher mask size. Therefore, also
more normals with a different direction than the center normal
are considered. In case of a flat area, considering more normals
results in a higher potential to create a step in the otherwise flat
graph. Therefore, a higher mask size detects more key planes in
the area of the riverside which shows the most changes of the sur-
face normals. Figure 9 shows the detected key planes for the two
point clouds. The used mask size for the descriptor was chosen
to be 5 m x 5 m for the cell size of 0.8 m. For the cell size of 1.6
m a mask size of 16 m x 16 m was used, a smaller one creates no
suitable count of key planes.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Detected key planes on the DEMs with different
resoultions, key planes are drawn in gray. First row: DEMs for
the ALS data a: cell size of 0.8 m b: cell size of 1.6 m; middle

row: DEMs for the photogrammetric point cloud with a
resolution of 40 cm with cell size of 0.8 m (c) and 1.6 m (d); last

row: photogrammetric point cloud with a resoultion of 6 cm
with cell size of 0.8 m (e) and 1.6 m (f)

By looking on the photogrammetric point cloud, it is obvious that
noise also creates key planes. The reconstructed surface of the
potogrammetric point cloud shows more hills than the ALS sur-
face. The surface normals changes in the area around these hills
and therefore they create some key planes. In both cases (the
ALS point cloud and the photogrammetric one) there are lots of
detected key planes in the area of the river side which have po-
tential to create true matches.

5.3 Registration

(a)

(b)

Figure 10. Registration output, shown are the overlayed two
point clouds a: output of the proposed method with left

misalignement of 3 m b) ground truth.

The Registration output is evaluated in two ways. First by the use
of already registered data sets which are for example two pho-
togrammetric point clouds with different resolution. And second
by the use of the multi sensor dataset which was manually reg-
istered to create ground truth. The initial values for the transfor-
mation are set to be around 25 m false and the accuracy threshold
was set to be 50 m. This values simulate the measurement of a
UAV mounted GNSS antenna with low accuracy.

Using two photogrammetric point clouds with different resolu-
tions shows that the calculated translation have a left error of
about 1 m. Considering the used cell size of 80 cm and the fact
that the key planes are matched with halve cell accuracy this re-
sulting transformation is expectable. Using the cell size of 1.6 m
results in a misalignment of up to 3 m. Furthermore, this shows
that the proposed method is independent of high difference in the
point cloud resolutions. In comparison with the use of multisen-
sor data the left transformation error is bigger. Considering the
ground truth for the registration of the ALS to the photogram-
metric point cloud the misalignement is about 3 m instead of the
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1 m mentioned above. This result is also shown in figure 10. One
reason for a lower accuracy in this case could be the mentioned
aspects in section 4. Another reason could be the influence of the
noise of the photogrammetric point cloud. But the use of a lower
resolution of the photogrammetric point cloud with lower noise
creates the same result. Therefore, the misalignement seems to
be more connected to the difference of the reconstructed surface
cells. Therefore, the proposed method seems to have the follow-
ing pros and cons: It seems to be robust against noise and point
cloud resolutions, works with the landscape itself and is therefore
independent of man made objects and works with multi sensor
data as well. At the other hand the accuracy is directly limited by
the used cell size for the surface reconstruction.

6. SUMMARY

This paper shows an approach for coarse registration between
point clouds from different sensors of non urban scenes. For this
a regular DEM is used and a descriptor for key cells on this DEM
is defined. All potential similar descriptors are matched and the
final correspondences are searched with a RANSAC based ap-
proach. With the proposed approach it is possible to register two
point clouds with an accuracy depending on the cell size of the
2.5D DEM. However, this accuracy needs to be improved for
fine registration approaches, and the proposed approach works
also well for landscapes which would be hard to register without
markers.

Future work could be to adapt the Förstner operator to the cell
descriptor instead of using the histogram and evaluate if a more
complex descriptor creates better results. After the coarse reg-
istration using the key-cells, the correspondences for all cells in
both DEMs are estimated with a nearest neighbour approach and
the fine registration result could be calculated by minimizing the
cell distances. Another future adaptation would be to use a to-
tal least square approach to register a point cloud to a DEM by
minimizing point to DEM distances. This could provide a multi
sensor registration in real time by considering each new measured
point for the calculation of transformation parameters. Possible
applications of such real time coarse registration would be for ex-
amples an online densification or online detection of changes of
a reference ALS data.
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