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ABSTRACT:

Automatically extracting tie points (TPs) on large-size synthetic aperture radar (SAR) images is still challenging because the efficiency
and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on
differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric
distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers
of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation
(NCC) algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches
are removed by the differential constrained random sample consensus (DC-RANSAC) algorithm, which appends strong constraints in
azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local
bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images
validated the efficiency, correct ratio and accuracy of the proposed method.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is widely used in rapid terrain
mapping of cloudy, foggy and rainy areas because of its full-day,
all-weather imaging capabilities (Jin et al., 2015). In commonly
used terrain mapping techniques with SAR images, radargram-
metry technology is not limited by image coherence and has a
practical application value in some specific scenes. However, as
a fundamental step of radargrammetry, tie points (TPs) are mainly
extracted by the operator of human-computer interaction, which
seriously reduces the efficiency of SAR image terrain mapping
(Jin et al., 2014).

Automatic extraction of TPs is usually based on image matching
technology. However, it is challenging for SAR image match-
ing due to the multiplicative speckle noise and the nonlinear geo-
metric deformations. Broadly, researches on SAR image match-
ing can generally be classified into two types. The first type
makes some improvements in the scale-invariant feature transfor-
m (SIFT) operator (Fan et al., 2015). SIFT operator is capable of
overcome the effects of geometric distortions greatly. Thus, these
improvements focus on diminishing speckle influence. Typical
methods include the SIFT-OCT method, which skips the features
detected at the first octave of the scale space pyramid (Schwind
et al., 2010); the BFSIFT method, which builds scale space by a
bilateral filter (Wang et al., 2012); the ISIFT method, which trans-
forms the noise model using logarithmic transformation (Suri et
al., 2010); and the SAR-SIFT method, which defines a new gra-
dient obtained from the ratio of exponentially weighted averages
(ROEWA) algorithm (Dellinger et al., 2015, Zhu et al., 2016).
The second type uses the edge-feature-based matching method.
Although the extracted edges tend to be discrete and dubious
on SAR image, they are more robust compared with the fea-
ture points. Common methods of this type include the method
based on crossroad and road junction (Dell’Acqua et al., 2004);

the method based on the strength and direction of the edge points
(Chen et al., 2014, Chen and Chen, 2014); and the method based
on edge features described by the distance and orientation to the
center feature points (Zhang et al., 2015).

Although many of the aforementioned methods are effective to
some extent, most of them are not validated by large-size SAR
image experiments (Chen et al., 2007). As the image size increas-
es, the efficiency of the two types of methods will be significantly
reduced (Chen et al., 2008, Li et al., 2014). Moreover, the rela-
tive geometric distortions between large-size SAR images are not
globally uniform. Therefore, the interest points may not be clear-
ly distinguishable from one another, which results in mismatches.

To overcome these limitations, this paper mainly focuses on match-
ing large-size SAR images obtained from approximately parallel
tracks. This type of image is usually applied in radargrammetry
and has obvious relative geometric distortion characteristics. The
relative geometric distortions are small in azimuth direction and
large in range direction. Taking into account the characteristics,
this study proposes an automatic TPs extraction method based on
differential constraints. Image pyramids are built firstly, and then
corresponding layers of pyramids are matched from the top to
the bottom. In the process, some improved technologies includ-
ing normalized cross correlation (NCC) matching with rectangle
window, false matches removal with differential constrained ran-
dom sample consensus (DC-RANSAC) and matching point pre-
diction with local modeling are presented to weaken the effects of
geometry distortions. The efficiency, correct ratio and accuracy
of the proposed method are confirmed by experiments on various
types of SAR data obtained from platforms at different heights.

2. PROPOSED METHOD

The flow chart of the proposed method is shown in Fig. 1. The
image pyramids are built for the reference and the sensed SAR
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Figure 1. Flow chart of the proposed method.

image, respectively. In detail, the lower pyramid image is blurred
by the Gaussian filter, and then 9 (3 × 3) pixels of the image are
down sampled as 1 pixel of the upper pyramid image. Moreover,
we use Moravec operator to extract interest points on each layer
reference image since the proposed method only needs roughly
uniformly distributed points on the reference image. Obvious-
ly, Moravec operator is simple and efficient, and can obtain the
proper distribution and number of interest points with the local
non-maximum suppressed. After the pyramids are built, the top
layer is matched firstly, and then followed with the layer by layer
matching.

Top layer matching: the interest points are extracted on the top
layer reference SAR image. For each interest point, the corre-
sponding candidate matching point is searched globally on the
sensed image via the NCC with rectangle window. The principle
of searching is to achieve the maximum correlation coefficien-
t. After obtaining the candidate matches, the false matches are
removed by the DC-RANSAC algorithm, and then obtaining the
correct matches of the top layer.

Layer by layer matching: the interest points are extracted on the
corresponding layer reference SAR image. The correct matches
on the lower pyramid images are applied to establish the global
bilinear transformation model in azimuth direction and the local
bilinear transformation model in range direction, and then to pre-
dict the matching point of each interest point on the sensed image.
The search window is centered at the predicted matching point,
and the corresponding candidate matching point is searched lo-
cally in the search window via the NCC with rectangle window.
After obtaining the candidate matches, the false matches are re-
moved by the DC-RANSAC algorithm, and then obtaining the
correct matches of the corresponding layer. Following the above
steps, the pyramid images are matched layer by layer. Until the
original images (pyramid bottom images) are matched, the TPs
are obtained.

The key steps involved in the matching process include NCC with
rectangle window, false matches removal with DC-RANSAC, match-
ing point prediction with local modeling.

2.1 NCC with Rectangle Window

The normalized cross correlation measures the similarity between
the interest points of the reference image and the image points of
the sensed image by calculating the correlation coefficient of gray
values in the neighborhood of two points (Ye et al., 2017). The
correlation coefficient γ ranges from -1 to +1, and the closer γ is
to +1, the more similar the two points will be. Thus, if the corre-
lation coefficient γ is locally maximum and larger than a certain
threshold λ, the image point is the matching point of the corre-
sponding interest point. The neighborhood of the points is called

the matching window, which is generally rectangular. The length
(azimuth length) and the width (range length) of the window are
m and n, respectively. As we known, the relative geometric dis-
tortions are small in azimuth direction and large in range direc-
tion for two SAR images. In the proposed method, the side of the
matching window parallel to azimuth direction is larger than that
parallel to range direction, that is m > n.

The correlation coefficient γ is calculated as:

γ =

M∑
i=−M

N∑
j=−N

(
fi+x,j+y − f̄

) (
gi+x′,j+y′ − ḡ

)
√

M∑
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N∑
j=−N

(
fi+x,j+y − f̄

)2 M∑
i=−M

N∑
j=−N

(
gi+x′,j+y′ − ḡ

)2
(1)

Where, M = INT (m/2) , N = INT (n/2) , INT(•) round-
s the element of • to the nearest integer towards minus infinity.
fi+x,j+y is the intensity value of the reference image at the im-
age point (i+ x, j + y) . gi+x′,j+y′ is the intensity value of the
sensed image at the image point (i+ x′, j + y′). f̄ and ḡ are the
means of the intensity values in matching windows for the two
image, respectively.

2.2 False Matches Removal with DC-RANSAC

RANSAC algorithm is a general parameter estimation approach,
which is commonly used in the false matches removal of image
matching. The algorithm uses the candidate matches set that con-
tains a large number of false matches to estimate the transforma-
tion model of the two images.

The bilinear transformation model can be used in RANSAC:

x2 = a0 + a1x1 + a2y1 + a3x1y1 (2)

y2 = b0 + b1x1 + b2y1 + b3x1y1 (3)

(2) and (3) are the transformation model in range and azimuth
direction, respectively. where, x1 and x2 are the range coordi-
nates, y1 and y2 are the azimuth coordinates. ai and bi are the
parameters of the transformation model.

If ρ and ε are the thresholds in range and azimuth direction, re-
spectively, the criterions for determining the correct matches:

|a0 + a1x1 + a2y1 + a3x1y1 − x2| = xoff ≤ ρ (4)

|b0 + b1x1 + b2y1 + b3x1y1 − y2| ≤ ε (5)

Since the relative geometric distortions are small in azimuth di-
rection and large in range direction for two images, the correct
matches can accurately fit the bilinear transformation model in
azimuth direction, but are difficult to fit the low order polyno-
mial model (such as the bilinear transformation model) in range
direction. Therefore, there is a coordinate offset xoff between
the calculated range coordinate and the correct range coordinate.
The threshold ε in (5) is a small value, and the threshold ρ in (4)
is related to the coordinate offset.

The RANSAC algorithm, with the bilinear transformation mod-
el (strong constraint model) in azimuth direction and the bilin-
ear transformation model containing the coordinate offset (weak
constraint model) in range direction, is called the DC-RANSAC
algorithm. The algorithm is calculated as follows:
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1. Randomly select a sample (4 matches) in the candidate match-
es set to initialize the bilinear transform model according to
(2) and (3).

2. Determine whether each match in the candidate matches set
is correct, and form the correct matches set.

3. If the size of the correct matches set exceeds the threshold τ ,
re-estimate the model parameters with the set data and end
the algorithm.

4. Otherwise, select a new sample, and then repeat steps 1) to
3)K times. Update the correct matches set using the largest
correct matches set, and re-estimate the model parameters
with the set data. Then end the algorithm.

5. Calculate the coordinate offset of each correct matches in
range direction, and get the maximum coordinate offset of
all the correct matches xoffmax.

2.3 Matching Point Prediction with Local modeling

The purpose of predicting the position of the matching point on
the sensed image is to improve the matching efficiency. In this
step, firstly map the correct matches of the upper pyramid to
the lower pyramid. Then, establish the transformation model be-
tween the two images to complete the prediction.

The transformation model has been established when remove false
matches, namely (2) and (3). However, there is a coordinate off-
set when predict matching points with (3). In this case, to search
for the matching point in the neighborhood of the predicted point,
the local search window for the NCC:

{−kx′offmax ≤ x ≤ kx′offmax;−kε/2 ≤ y ≤ kε/2} (6)

Where, k is the multiple of the down sampling. ε is the azimuth
threshold of DC-RANSAC for the upper pyramid. x′offmax is the
maximum coordinate offset of all the candidate matches for the
upper pyramid, x′offmax ≥ xoffmax.

Since the range coordinates predicted by (2) are not accurate e-
nough, the local search window represented by (6) is oversize,
which reduces the matching efficiency. To overcome this prob-
lem, the local transformation model in range direction is need-
ed. For each feature point i , 4 correct matches closest to it is
searched on the lower reference image. These matches can esti-
mate the parameters of a local bilinear transformation model, that
is:

x2 = ai0 + ai1x1 + ai2y1 + ai3x1y1 (7)

The global bilinear transformation model (2) and the local bilin-
ear transformation model (7) can predict the matching point more
accurately. Therefore, we set the local search window:

{−kxoffmax ≤ x ≤ kxoffmax;−kε/2 ≤ y ≤ kε/2} (8)

3. EXPERIMENTS AND RESULTS

3.1 Test Datasets

To evaluate applicability, three different types of SAR datasets
obtained from platforms at different heights are tested. Dataset
1 is the spaceborne SAR data of the Henan Dengfeng mountain

Table 1. Parameters of three datasets.

Parameter Dataset 1 Dataset 2 Dataset 3
Type Ground Slant Slant
Band C X Ka

Aps (m) 12.5 2.049 0.141
Rps (m) 12.5 1.999 0.134

As (pixel) 8868 3276 13440
Rs (pixel) 8420 8192 8192

Table 2. Parameters of layer by layer matching.

Dataset Layer λ ρ ε Window

Dataset
1

1 0.5 20 3 7×23
2 0.5 kxoffmax1 5 11×35
3 0.5 kxoffmax2 5 17×53
4 0.5 kxoffmax3 3 25×79

Dataset
2

1 0.4 20 3 23×43
2 0.4 kxoffmax1 5 35×65
3 0.4 kxoffmax2 5 53×97
4 0.4 kxoffmax3 3 79×145

Dataset
3

1 0.4 20 3 7×39
2 0.4 kxoffmax1 5 11×59
3 0.4 kxoffmax2 5 17×89
4 0.4 kxoffmax3 5 25×133
5 0.4 kxoffmax4 3 37×199

area obtained by European Space Agency ENVISAT ASAR sys-
tem. Dataset 2 is the airborne SAR data of the Shanxi Weinan
hilly area obtained by the airborne SAR System of Chinese A-
cademy of Surveying and Mapping (CASM). Dataset 3 is the air-
borne SAR data of the Shanxi Yanliang hilly area obtained by
the airborne SAR system of 23rd Institute, China Aerospace Sci-
ence & Industry Corp. The parameters of the three datasets (the
reference and sensed images) including the image type, the wave
band, the azimuth pixel spacing (Aps), the range pixel spacing
(Rps), the azimuth size (As) and the range size (Rs) are shown in
table 1.

3.2 Experiments and Results

Experiments on three datasets were designed. In the experiments,
4-layer pyramid was built for Dataset 1 and 2, and 5-layer pyra-
mid was built for Dataset 3. In addition, all the following exper-
iments were carried out on a laptop with Intel Core i5 2.40GHz
processor and 1 GB RAM.

The threshold of NCC matching λ, the range and azimuth thresh-
olds of DC-RANSAC (ρ and ε) as well as the size of match-
ing window were shown in table 2. The range threshold of DC-
RANSAC was obtained by extending the maximum coordinate
offset xoffmaxj by k times (j was the layer number, j = 1, 2, 3, 4).
The length and width of the each layer matching window were 1.5
times of the upper layer matching window. The size and shape of
the top layer matching window was given directly here and would
be discussed in section 3.4.

The matching results of the proposed method were analyzed quan-
titatively and shown in table 3. The correctness of each match
was identified by artificially comparing the corresponding points
on the reference and the sensed SAR images. The evaluation
criterion includes the total time (Tt), the total time by parallel
computation (Ttpc), the number of matches (Nm), the number
of correct matches by artificial comparison (Ncmac) and the cor-
rect ratio by artificial comparison (Crac). The positions of the
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Table 3. Matching results for three datasets.

Dataset Tt (s) Ttpc (s) Nm Ncmac Crac (%)
Dataset 1 309 47 50 50 100.0
Dataset 2 358 39 38 38 100.0
Dataset 3 585 72 18 17 94.4

Figure 2. Matching results for three datasets.

matches (TPs) for the three datasets were shown in Fig. 2 and the
randomly selected 6 matches (TPs) were shown in Fig 3.

In table 3, the correct ratio of Dataset 1 and 2 was 100.0%, and of
Dataset 3 was 94.4%, where a false match appeared. Therefore,
the correct ratio of the proposed method was high. However, the
method could not ensure that all matches were correct, especially
for Dataset 3, because the local texture of Dataset 3 was similar
in some areas. After multi-thread parallel computing, the total
time was reduced from over 5 minutes to about 1 minute indicat-
ing that the proposed method could achieve high computational
efficiency through parallel computing.

In Fig. 2, the correct matches or TPs were uniformly distributed
in the overlapping area because the interest points were extracted
with the local non-maximum suppressed. Fig. 3 showed the de-
tails of 6 matches. The TP ”Tm121” in Fig. 3 (c) was the false
match.

Figure 3. Six matching points on enlarged pictures for three
datasets.

Figure 4. The distribution of GCPs and ICPs for Dataset 3.

Table 4. Errors and RMSE of ICPs for Dataset 3.

Item X (m) Y (m) Z (m)
ICP1 -0.127 -0.086 0.134
ICP2 0.074 -0.175 -0.097
ICP3 -0.056 -0.127 0.054
ICP4 0.110 0.074 -0.103
ICP5 0.049 0.343 -0.020

RMSE 0.089 0.188 0.091

3.3 Accuracy Analysis

To objectively evaluate the accuracy of the extracted TPs, the
stereoscopic orientation experiments were curried out for Dataset
3. In the experiment, we constructed the error equations using
the range-Doppler (r-D) model. r-D model is a rigorous geo-
metric model widely used in geometric processing of SAR im-
ages (Schmitt et al., 2013). There were 5 ground control points
(GCPs) on the reference image and 6 GCPs on the sensed image.
2 of them were conjugate GCPs, which were in overlapping ar-
eas between the image pair. 5 independent check points (ICPs),
named ICP1, ICP2, ICP3, ICP4 and ICP5, were also collected.
The ground coordinates of GCPs and ICPs were measured by d-
ifferential GPS. The distribution of them was shown in Fig. 4.
Subsequently, GCPs, ICPs and extracted TPs were used as input
data for the stereoscopic orientation. The root mean square error
(RMSE) of ICPs was computed to evaluate the accuracy of the
stereoscopic orientation and it could also reflect the accuracy of
TPs.

In table 4, the RMSE of ICPs was less than 0.2 m, which was a
smaller value. It indicated that the accuracy of the extracted TPs
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(a) DC-RANSAC correct ratio (b) NCC matching time

Figure 5. Top layer matching with square matching window.

was high, which can meet the needs of SAR image geometric
processing.

3.4 Discussion on Optimal Matching Window

To determine the size and shape of the NCC matching window,
the top layer matching experiments were performed under dif-
ferent size and shape of matching window. In the process, the
DC-RANSAC correct ratio of matches P , which was the ratio of
the correct matches to the candidate matches, was obtained after
the false matches were removed.

Then, we could give the principle of selecting the optimal match-
ing window (OMW). If P was higher than 50%, the matching
window with the minimum matching time was OMW. If P was
lower than 50% and greater than 25%, the matching window with
the maximum correct ratio was OMW. If P was lower than 25%,
there was no OMW.

The matching time included the time of NCC matching and DC-
RANSAC calculation. Compared to the NCC matching time T ,
the DC-RANSAC calculation time was expected to be very small,
so the matching time here only included T .

The square matching windows with side lengths of 7, 11, 15, 19,
23, 27, 31, 35 and 39 as well as the rectangular matching win-
dows with widths of 7, 11, 15, 19, 23 and lengths of 11, 15, 19,
23, 27, 31, 35, 39, 43, 47 were designed for the top layer match-
ing. The results were shown in Fig. 5 and 6.

From Fig. 5, we could find the optimal square matching windows
for the three datasets. For Dataset 1, P could exceed 50%. The
optimal square matching window was 15×15 where the mini-
mum matching time happened. For Dataset 2, P did not exceed
50% but greater than 25%. The optimal square matching window
was 31×31 where P reaches the maximum value of 40.2%. For
Dataset 2, P was less than 25%, so there was no optimal square
matching window. From Fig. 6, we could also get the optimal
rectangular matching windows for the three datasets, which was
7×23, 23×43 and 7×39, respectively, according to the principle
of selecting OMW.

We could compare the optimal square matching window and the
optimal rectangular matching window for the three datasets ac-
cording to Fig. 5 and 6. For Dataset 1, when the matching win-
dow was 15×15 or 7×23, P exceeded 50%, and T was 335
seconds and 262 seconds, respectively. Hence, the rectangular
window had higher matching efficiency. For Dataset 2, when
the matching window was 31×31 or 23×43, P was 40.2% and
43.8%, respectively, and T was 249 seconds and 202 seconds,
respectively. Hence, the rectangular window had higher match-
ing accuracy and efficiency. For Dataset 3, there was no optimal
square matching window, but there was an optimal rectangular

(a) DC-RANSAC correct ratio of
Dataset 1

(b) NCC matching time of Dataset 1

(c) DC-RANSAC correct ratio of
Dataset 2

(d) NCC matching time of Dataset 2

(e) DC-RANSAC correct ratio of
Dataset 3

(f) NCC matching time of Dataset 3

Figure 6. Top layer matching with rectangular matching window.

matching window of 7×39. The above comparison showed that
the rectangular window was more suitable for matching, and the
improvements in the matching accuracy and efficiency were more
obvious for Dataset 2 and 3. The reason was that the airborne
SAR images used in the experiment were slant images. The rel-
ative geometric distortions in azimuth direction were larger than
those in range direction.

Experiments on different size and shape of matching windows
showed that the top layer matching window for the three datasets
should be 7×23, 23×43 and 7×39, respectively.

4. CONCLUSION

This paper focuses on matching large-size SAR images obtained
from approximately parallel tracks to extract TPs. The character-
istics of the relative geometric distortion of such images are em-
phasized. In view of these characteristics, an automatic TPs ex-
traction method based on normalized cross correlation matching
with rectangle window, false matches removal with DC-RANSAC
and matching point prediction with local modeling is proposed.
The related experiments are performed on spaceborne and air-
borne, respectively. The proposed approach weakens the effects
of geometry distortions. Hence, it can achieve high matching cor-
rect ratio and efficiency and accuracy under the optimal match-
ing windows. In addition, it can extract TPs with high accuracy
which can meet the needs of SAR image geometric processing.
Also, it is suitable for various types of SAR data obtained from
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platforms at different heights. However, the DC-RANSAC algo-
rithm in this paper does not completely remove false matches,
and poor results will be obtained especially for local texture-like
SAR images because there is only a strong constraint model in
azimuth direction. This will be the subject of further work.
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