
Forest disturbance analysis with Landsat-8 OLI data related to a parametric wind field: A 
case study for Typhoon Rammasun (201409) 

 
 

Chenyan.Tan 1,2,  Weihua.Fang 1,2, * 

 
1 Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, 

China  
2 Faculty of Geographical Science, Academy of Disaster Reduction and Emergency Management, Beijing Normal University, 

Beijing 100875, China – weihua.fang@bnu.edu.cn 
 

Commission III/IVa 
 
 

KEY WORDS: Typhoon Rammasun, Forest disturbance, Wind field, Remote sensing index 
 
 
ABSTRACT: 
 
Forest disturbance induced by tropical cyclone often has significant and profound effects on the structure and function of forest 
ecosystem. Detection and analysis of post-disaster forest disturbance based on remote sensing technology has been widely applied. 
At present, it is necessary to conduct further quantitative analysis of the magnitude of forest disturbance with the intensity of 
typhoon. In this study, taking the case of super typhoon Rammasun (201409), we analysed the sensitivity of four common used 
remote sensing indices and explored the relationship between remote sensing index and corresponding wind speeds based on pre-and 
post- Landsat-8 OLI (Operational Land Imager) images and a parameterized wind field model. The results proved that NBR is the 
most sensitive index for the detection of forest disturbance induced by Typhoon Rammasun and the variation of NBR has a 
significant linear dependence relation with the simulated 3-second gust wind speed. 
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1. INTRODUCTION 

As a major part of terrestrial ecosystem, forest frequently 
suffers from dual influences of natural disasters and human 
activities and has dynamic changes at all time. Tropical cyclone 
(TC), as one of the most powerful and destructive 
meteorological disasters in the world, causes damage to forest 
structure, function and composition in the affected area and 
eventually affects terrestrial carbon cycle, vegetation phenology 
and biodiversity (Xi, 2015). High wind is one of the main 
hazards of TC, often causes extensive damage to the trees (e.g., 
breakage and uprooting) and brings about great property loss to 
forestry. Hence, detecting the forest disturbance and evaluating 
the loss caused by typhoon are of great significance for deeply 
understanding the dynamic changes of forest ecosystems and 
having sustainable management, conservation and development 
of forestry.    
 
The remote sensing image has been an important data source 
for forest multi-disaster loss assessment due to its advantages 
such as wide coverage and dynamic real-time monitoring. 
Using multispectral, relatively high space-time resolution and 
cloudless remote sensing images, it is able to rapidly obtain the 
satisfactory and reliable results of magnitude and extent of 
affected forest based on the specific vegetation index (Rossi et 
al., 2013). Currently, researches of forest disaster based on 
remote sensing data are limited to the quantitative detection of 
visual phenomena or the comparative analysis of vegetation 
indexes with environmental factors such as elevation, slope and 
aspect (Wang and Zhou, 2013; Guo et al., 2014). However, the 
relationship between variations of vegetation index and 
intensity of hazards is rarely mentioned. Although some 

progress has been made in several studies that the different 
wind speed interval durations (Ramsey et al., 2001) and the 
distance away from the centre of hurricane (Ayala - Silva and 
Twumasi, 2004) have good correlations with the variations of 
NDVI, there exists plenty of room to study the relationship of 
hazard and exposure based on the remote sensing technology 
and hazard analysis method. 
 
The objective of this study is to explore whether there is a 
correlation between typhoon wind field distribution and 
magnitude of forest disturbance. A super typhoon named 
Rammasun in 2014 is taken as an example to perform the 
analysis. 
 

2. DATA AND METHOD 

2.1 Study area 

As the main body of Hainan province, Hainan Island (108.6° ~ 
111.3° E, 18.1° ~ 20.2° N) is located in the southern end of 
China (Figure 1), covering more than 34 thousand square 
kilometres, and it ranks behind only the largest island Taiwan in 
China. Hainan Island is surrounded by coastal plains with high 
mountains in the central region, showing a clear ladder-like 
distribution. Since the island is in the tropics and surrounded by 
the sea, and it has the characteristic of tropical monsoon climate 
and tropical marine climate with high temperature and strong 
rain throughout the whole year. Hainan Island is one of the 
areas most vulnerable to typhoon generated over the western 
North Pacific (WNP) in history. Statistics show that a total of 
153 TCs had made landfall on Hainan Island from 1949 to 2017 
based on the historical best track dataset (Ying et al., 2014). 
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Figure 1 . Location (a) and elevation (b) of Hainan Island 

On July 18, 2014, Rammasun (International identification 
number: 201409), one of the strongest typhoons in the WNP 
ever recorded, made landfall on Hainan Island. The maximum 
wind speed (MWS) near typhoon centre reached 60 m/s at the 
time of landing, which made Rammasun become the strongest 
tropical cyclone landing in southern China since 1973. Multiple 
hazards such as high winds, heavy precipitation and strong 
storm surges brought by Typhoon Rammasun resulted in 
serious casualties and huge property losses in all affected 
countries, including China, the Philippines and Vietnam. 
Rammasun also caused severe deforestation in the affected 
areas, for example, survey results showed that the loss of living 
wood growing stock was 4.763 million m3 and the economic 
loss exceeded 1.3 billion Chinese Yuan in the landfall 
Wenchang city alone (Xue et al., 2015). Figure 2 shows the 
rubber tree damage taken on August 3, 2014 on Hainan Island. 
 

 
Figure 2. Broken rubber trees after Typhoon Rammasun (201409) 

 
Due to the extensive cloud contamination, there were limited 
remote sensing observation data before and after Typhoon 
Rammasun. Here, based on the screened Landsat-8 OLI images, 
we take the northeast part of Hainan Island as the study area, 
which is marked as yellow box and shown in Fig 1 (b). 
 
2.2 Data 

The track and intensity data of Rammasun were gathered from 
the China Meteorological Administration (CMA) (Ying et al., 
2014) (Figure 3). The forest distribution data of Hainan Island 
was derived from the 2010 GlobeLand30 (Chen et al., 2015).  
Landsat-8 OLI multi-spectral images (Path/Row 123/046 and 
123/047) were used in this study for the detection of forest 

disturbance induced by Typhoon Rammasun in Hainan Island. 
Although many areas were covered by clouds seen from the 
remote images nearly everyday in Hainan Island, however, for 
the accurate analysis, image acquisition time is the first thing 
that should be considered. After a careful comparison, four 
scenes of standard Level-2 terrain-corrected Landsat-8 OLI 
surface reflectance product from July 2nd, 2014 and August 3rd, 
2014 were selected as the pre- and post-typhoon images and 
were obtained from the United States Geological Survey 
(USGS) Earth Explorer website (http://earthexplorer.usgs.gov). 
After mosaicking and cropping, two Landsat-8 multispectral 
images covering from band 1 to band 7 were obtained for 
subsequent calculation and analysis (Figure 4). 
 

 
Figure 3. The track-intensity map of Typhoon Rammasun (201409) 

 

 
Figure 4. Natural color-image mosaics of study area before and after 

Typhoon Rammasun 
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2.3 Method 

Remote sensing detection method. In this study, the univariate 
image differencing (UID) method was carried to quantify 
magnitude and extent of forest disturbance induced by 
Rammasun. The method can be expressed as: 
 
   (1) 

Where  is the remote sensing index, the variation  

represents the difference between the pre-disaster  and the 

post-disaster . 

 
Remote sensing indices. Four commonly used normalized 
remote sensing indices were used for the detection of forest 
disturbance, they are normalized differential vegetation index 
(NDVI) (Rouse, 1973; Rouse et al., 1974), enhanced vegetation 
index (EVI) (Liu and Huete, 1995), normalized differential 
moisture index (NDMI) (Wilson amd Sader, 2002), and 
normalized burn ratio (NBR) (Key and Benson 1999), which 
can be expressed mathematically as follows: 

  (2) 

  (3) 

  (4) 

  (5) 

where NIR, Red, SWIR1 and SWIR2 are the reflectance values 
of near infrared band (B5), red band (B4), short wave infrared 
band 1 (B6) and short wave infrared band 2 (B7), and C1 = 6, 
C2 = 7.5, L = 1, G = 2.5. 
 
Wind field model. A complete parametric TC wind field model 
usually consists of two components: a gradient wind field model 
and a planetary boundary layer (PBL) model (FEMA, 2012). In this 
study, the gradient wind field model derivated from Georgiou et al. 
(1983) and the PBL model developed by Meng et al. (1997) were 
combined for simulating the wind field of Typhoon Rammasun. By 
considering the local factors such as topographic effects and surface 
roughness, the parametric wind field model can produce a fairly 
good simulation result when compared with actual wind 
observations. Detailed wind field calculation process were 
presented in Tan and Fang (2018). 
 

3. RESULTS AND ANALYSIS 

3.1 Spectral change characteristics 

According to the location information of typhoon, spectral 
changes of damaged forest sampling area in Wenchang city 
before and after Rammasun were drawn and shown in Figure 5. 
After Typhoon Rammasun, the surface reflectance of damaged 
forest for all seven bands of Landsat-8 had obvious changes. 
The surface reflectance in near infrared band (B5) reduced 
while others raised. In particular, reflectance of B5 had the 
maximum variation, the second and the third were B6 and B7 
respectively. In visible bands, variation was the most obvious in 
red band (B4) while the least in coastal band (B1).  
 
It can be predicted from Figure 5 that remote sensing indices 
based on short wave infrared bands probably better than the 
common used vegetation indices based on the red band for the 
detection of forest disturbance induced by tropical cyclones. 

 

 
Figure 5. The characteristics of different bands of Landsat-8 pre- and 

post-typhoon for the affected forest sampling area (Error bars represent 
positive and negative one standard deviation) 

 
3.2 Sensitivity of remote sensing indices 

We compared image differencing histograms of the four indices 
for selecting the most sensitive one (Figure 6). Unaffected 
forest sampling areas and affected forest sampling areas were 
delineated by ground investigation and remote sensing visual 
interpretation. The difference values had been normalized using 
unaffected forest values based on a re-scaling method proposed 
by Healey et al. (2005). Table 1 shows the mean normalized 
variations of the four indices for the affected forest. The offset 
value from the unaffected forest indicates the sensitivity. The 
larger the offset, the higher the sensitivity. 
 

 
Figure 6. Normalized variation histograms of remote sensing indices 

 
Table 1. Mean normalized variations of the affected forest 

Index     

Mean 4.7807 2.4221 5.2708 5.4114 
 
From Figure 6 and Table 1, we concluded that NBR and NDMI 
are better than NDVI and EVI for the forest disturbance 
detection induced by Typhoon Rammasun, and NBR is the best 
of the four. Hence, we used this index for the subsequent 
analysis. 
 
3.3 Wind field simulation results 

Based on the optimized parametric TC wind field model 
introduced in the previous section, we simulated the snapshots 
of Rammasun every 10 minutes and finally obtained two wind 
fields of 10-minute mean and 3-second gust at a resolution of 
one kilometre after a maximum-value composite procedure by 
combination of all snapshots, results are shown in Figure 7. 
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Figure 7. Simulated footprints of 10-minute mean wind (a) and 3-second gust wind (b) for Typhoon Rammasun (201409) 

 

3.4 Relationship of NBR and wind speed 

In order to explore the relationship between wind speed and 
variations of Remote sensing index, Scatter diagrams were 
drawn based on the simulated wind fields and NBR difference 
results before and after Typhoon Rammasun (Figure 8).   
 

 
Figure 8. Scatter diagrams between mean  and simulated wind 

fields of 10-minute mean (a) and 3-second gust (b) 

Because of the different resolutions between modeled wind 
fields and derivated from Landsat-8 surface reflectance 

data, mean variations of  corresponding to the same 

wind speed were calculated by zonal statistics based on wind 
field pixels. From Figure 8, two time intervals of simulated 
wind fields both have good linear correlations with , 

especially for 3-second gust wind speeds ( ).  When 

the gust wind is less than 17.2 m/s, forest is barely affected with 
an increased NBR after typhoon. When the wind is between 
17.2 ~ 24.5 m/s, NBR is reduced slightly, and then as the wind 
speeds up, NBR would be significantly reduced. Since high 
wind is one of the main hazards of typhoon, the degree of NBR 
change is directly related to forest damage, it can be estimated 
the magnitude and extent of affected forest based on the 
relationship established between wind and  in Figure 8 

(b). 
 

4. CONCLUSION AND FUTURE WORK 

In this study, we compared the sensitivity of four common used 
remote sensing indices based on image differencing histograms 
for the detection of forest disturbance induced by Typhoon 
Rammasun (201409) on Hainan Island and found that NBR is 
the most sensitive index. Then, by drawing scatter diagrams, it 
was found that NBR decreases linearly along with the increases of 
wind speed and a preferable linear fitting equation was obtained 
relating the simulated 3-second gust wind field with the mean 

 before and after Typhoon Rammasun.  

 
We suspect that there exist relations among the damge loss ratio, 
the intensity of TC and changes in remote sensing indices. In 
addition, geographical environmental elements also play a key 
role in forest disturbance induced by TCs. All of the above 
factors need further exploration. 
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