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ABSTRACT:

Hyperspectral images (HSIs) denoising is a critical research area in image processing duo to its importance in improving the quality of
HSIs, which has a negative impact on object detection and classification and so on. In this paper, we develop a noise reduction method
based on principal component analysis (PCA) for hyperspectral imagery, which is dependent on the assumption that the noise can be
removed by selecting the leading principal components. The main contribution of paper is to introduce the spectral spatial structure and
nonlocal similarity of the HSIs into the PCA denoising model. PCA with spectral spatial structure can exploit spectral correlation and
spatial correlation of HSI by using 3D blocks instead of 2D patches. Nonlocal similarity means the similarity between the referenced
pixel and other pixels in nonlocal area, where Mahalanobis distance algorithm is used to estimate the spatial spectral similarity by
calculating the distance in 3D blocks. The proposed method is tested on both simulated and real hyperspectral images, the results

demonstrate that the proposed method is superior to several other popular methods in HSI denoising.

1. INTRODUCTION

Hyperspectral image (HSI) is produced with high spectral reso-
lution, providing contiguous or noncontiguous bands throughout
the 400-2500 nm region. HSI is capable of supporting various im-
portant application in the field of remote sensing (Wang and Niu,
2009), such as environmental monitoring, discriminating differ-
ent land cover types, mineral identification and so on. However,
the existence of noise changes the spectral curve of HSI, which
has a negative impact on various HSI processing tasks, classifi-
cation, unmixing, subpixel mapping, target detection, and so on.
Therefore, how to reduce the noise influence in HSI is an essen-
tial step to improve the image quality.

In recent years, image denoising based on principal component
analysis (PCA) model has been attracting more attention, and it
has been proved that PCA algorithm is very effective and effi-
cient denoising approach because PCA can separate the signal
and noise well by converting the data into the PCA domain. Ex-
amples include the adaptive PCA denoising scheme (Muresan
and Parks, 2003) and SAR image denoising via clustering-Based
PCA (Xu et al., 2014). However, in hyperspectral denoising
method, PCA denoising algorithm exists only as an auxiliary al-
gorithm. Chen and Qian (Chen and Qian, 2008, Chen and Qian,
2009) proposed to perform dimension reduction and HSI denois-
ing based on wavelet shrink and PCA. Chen ef al. (Chen and
Qian, 2011) proposed a new HSI denoising algorithm, where
PCA is first used to decorrelate the data, and then wavelets are
used to perform denoising in low energy in low-energy PCA out-
put channels.

Traditionally, HSI denoising techniques are based on band-by-
band or pixel-by-pixel processing, i.e., which lead the losss of
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correlation between bands and pixels. In recent years, there-
fore, more and more HSI denoising algorithms tend to exploit
the characteristics of high spatial correlation and spectral corre-
lation of hyperspectral data. Yuan er al (Yuan et al., 2012) has
proposed spectral-spatial adaptive total-variation (TV) model for
HSI denoising, which is capable of accounting for the noise in-
tensity difference between different bands and spatial property
differences between different pixels. Karami et al (Karami et al.,
2011) proposed genetic kernel Tucker dencomposition (GKTD)
algorithm for HSI denoising, which exploits both the spectral and
spatial information in the image. Linlin xu (Xu et al., 2017) pro-
posed a method using spatial spectral monte carlo sampling ap-
proach, which based on posterior probability in a nonparametric
manner. Besides in field of HSI noise reduction, spectral-spatial
joint structure is also used in HSI data compression (Christophe
et al., 2008) and classification (Qian and Ye, 2013). In PCA-
based HSI algorithms, although spectral PCA has been proposed
for the segmentation of hyperspectral images (Yoshino, 2007),
spatial domain information has not been well integrated into the
PCA model. Therefore, establishing a PCA denoising model that
combine spatial and spectral information is a necessary work.

Most noise reduction methods rely on the local information of
signals, the main drawback of which is that the information pro-
vided by the neighborhood is too limited to preserve the true
structure, details and texture of an image. To deal with this
problem, nonlocal algorithm was proposed for image denoising
(Buades et al., 2005). Nonlocal apporach is based on the assump-
tion that every pixel in image has many similar pixels in the same
image. A nonlocal spare representation based noise reduction
algorithm is introduced (Dong et al., 2011), where spare rep-
resentation of the similar patches are recovered by a regularized
linear regression model with shared constraint of sparsity. For
HSI, nonlocality also exists in spectral-spatial space, which sug-
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gests that the similarity must be considered in every 3D block
in HSI. Therefore, the nonlocal similarity is not the distance be-
tween two points, but the similarity of two correlation matrix.
The Mahalanobis distance (Jr et al., 2010) takes into account the
correlation of the dataset and is scale invariant, i.e., not dependent
on the scale of measurements. Therefore, Mahalanobis distance
can calculate the nonlocal similarity in the spectral-spatial space.
As a result, constructing a nonlocal spatial spectral correlation
model base on PCA is crucial for hyperspectral denoising.

This paper, therefore, introduces a novel denoising approach base
on nonlocal spectral spatial PCA (nonlocal SSPCA) for HSI de-
noising, which integrate spatial information and spectral informa-
tion of nonlocal area into the PCA model. The novelty of nonlo-
cal SSPCA lies in the following aspects: 1) separating the signal
and noise in HSI only by PCA; 2) exploiting spectral-spatial joint
structure of the HSI in PCA; 3) incorporating nonlocality of the
HSI into PCA denoising model by calculating the Mahalanobis
distance among pixels.

This paper is originated as follows. Section II introduces the pro-
posed denoising framework, as well as the PCA and the nonlocal
similarity approaches. Section III introduces the experiments re-
sults on both simulated and real hyperspectral images. Section
IV concludes the study.

2. METHODOLOGY
2.1 Problem Formulation

The HSI as a collection of all of spatial position and all of
the bands is represented by Lixy (j = 1,2,3,...,m),(k =
1,2,3,...,n),(b = 1,2,3,...,p), where j and k determine the
location of I;1; in image space, and b represents the band number
in spectral domain. I is a p X 1 vector, representing the spec-
trum curve in the position of (4, k), and I.., isazx1 (z = mxn)
vector, representing the all the pixels in the bth band, where [ is a
HSI that is contaminated by noise. The noise degradation model
of the HSI can be written as (Yuan et al., 2012) (Atkinson et al.,
2003)

Iiky = Xjkp + Ny (D

where X ;1 denotes the unobservable noise-free variable and 7,
is Gaussian-white noise In proposed PCA denoising model, be-
cause [;x, cannot reflect the spatial correlation and spectral cor-
relation of HSI.we use construct Y to entail the spatial spectral
information, and use Y as the input to the PCA model for spatial
spectral denoising of HSI.

Y = [?Jlay27~-~7Z/2]T (2)
the size of y; is ¢ X 1 vector. And from (1) we can get
I=Y=X+N 3)

Now the problem is transformed to the estimation of X from the
noisy measurement Y.

2.2 HSI denoising in PCA domain

In section 2.1, the problem have been turned into how to denoise
the matrix of Y by PCA, The goal of PCA is to find an orthonor-
mal transformation the matrix of P. However, in the process of
data centralization, in practice, v is calculated from samples of
Y, but not X. But, zero mean noise characteristics dictate that

the mean vector of y; is the same as x;, i.e., Ely] = E[z] = u.
Therefore, we subtract the mean value of v from Y to get the
centralized dataset of Y’

Y=Y-u=X+N @)

the optimal PCA transformation matrix of P can be obtained by
computing the cavariance matrix of ¥ ¢ of X. However, the
available dataset Y is contaminated by noise so that ¥ ¢ can not
be directly computed. Therefore, we need to estimate it by using
the linear noise model, which can be expressed as

Sy = El(y— Ely)(y — El]")]
1oor
~-YY
z )
= 1()’()’(T +XNT + NXT + NNT)
z
tl_le signal X X and noise N are uncorrelated. Therefore, the
XNT and NX7T will be nearly zero matrices, we can get

Yy~ ~(XXT+NN") =S¢ + 2N (6)

1
z
where > ¢ and Xy are the covariance matrices, respectively.
Since Gaussian noise is uncorrelated, we can know that X is
a t x t diagonal matrix with all the diagonal components being
o%. Therefore, we can get

Yy =An = Wx(on)Wi = W AnWi (7)
Thus we have
Z{/ =X x + NN
= WxAxWx + W (on )Wy @®)
= WAy Wx
where [ is identity matrix. We can prove that the PCA transfor-
mation matrix of P associated with X ¢ is the same as the PCA
transformation matrix associated with >y. Therefore, in PCA
denoising model, we can directly get W by decomposing X

and use W7y to replace the Wx. Through the above analysis, we
can directly decompose ¥y by

011 012 g1t
021 022 g2t
Yy =

LOt1 021 - - Ott
=Wx(Ax +on)WX ©)
w1t 0 - 07 W

Wi 0 X - 0 |WL

\wWE 0 0 - A W

where A1 > A2 > ... > )\ is eigenvalue vector of Y, W,
(r = 1,2,3,...,t), t x 1 vectors, denote the sequence of mu-
tually orthogonal PCA bases into which the projection of image
stack Y produces the PCs with sequentially largest variances rep-
resented by \,.. The orthonormal PCA transformation matrix for
X is then

P=w% (10)
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and then we transform our data into a PCA domain by

Y=YP 11
where Y is the de-correlated dataset for signal, most energy of
Y concentrates on the several most important components, i.e.,
while the last few components are mostly due to noise. Therefore,
by selecting the fist K PCs that contains most of the scan signal,
the noise can be remove

X=Y(1:K)P"(1:K,:) (12)
reformatting X results in denoised dataset. Since Y is trans-
formed according to a certain rule based on the original hyper-
spectral data I, finally we will use X to reconstruct our denoised
HSI according to the original rules.

2.3 nonlocal spatial spectral PCA denoising

I

Hyperspectral
Image cube

3D window
in all bands

Figure 1. Selecting some similar pixels 3D block around the
reference pixels

The core of nonlocal algorithm is to address the non-stationarity
of image signals by restructuring the Y. The boundary informa-
tion and texture information can be obtain by selecting the simi-
lar pixels with referenced pixels of Ik in a nonlocal window, In
our proposed method, However, besides the nonlocal similarity
in image, many researches have shown that the HSI has strong
correlations in both spatial and spectral domains. So, we use 3D
blocks instead of 2D patches in the sparse representation (see Fig.
3). The key to the nonlocal algorithm is to select the 7" pixels with
the highest similarity to the central pixel ina L x L x p 3D block.
Because every pixel with spectral information can be represented
L x L random vectors, the distance of random vectors cannot be
calculated by the classical Euclidean distance algorithm. There-
fore, the Mahalanobis distance can be considered for calculating
the distance of relevant random vectors, which can be represented
by

S Ly vi) = V(L — ve) TS Lk — vi:)

where v;; (I = L x L —1) represents all pixels other than the cen-
ter pixel I ;.. Since we only select the 7" pixels that are closest to
the center pixel, in the next calculation, we set [ = T'. Therefore,
the similar weights can be defined as

13)

1 _ SUjg:vr:)
w(Ljg:, v1:) = Plr )e n? 14)
Jjk:

where satisfy usual conditions 0 < w(ljk:,v.) < 1 and
> rw( Lk, vi.) = 1. The parameter h acts as a degree of al-
gorithm. It controls the decay of the exponential function and
therefore the decay of weights as a function of the distances
S(Ik:, vi:). P(Ik.) is the normalizing constant

T SUjk: 1)
- 2gke Bl

P(Ij)=> e n (15)

Through the above analysis, Y can be represented by

T T T T \T
Yi = (Ij,k,:zvl,an,n“'7UT,:) (16)
T T T \T
= (nl()’:,nll’:, ...,an7:)

where nly,.(g = 0,1,2,...,T) is px 1 vector, which is distributed
around the referenced pixel. Therefore, in nonlocal SSPCA, we
can get a vector of ¢ elements ¢t = p x (T + 1) in (2), the covari-
ance matrix of y; can be represented by

Eg:

UnlanloJ o’nlo,lnll‘b U"llo,l"llT,p

a7

Only pnlo,1 Only ynlyp Only pynlp

Uanypnl():l U”ZT,pnll,b Jan,pan,p

where o, Acnlp.p provide the covariance between different
spatial position of A and B and different bands of C' and D in
3D blocks. Therefore, nonlocal SSPCA can capture a nonlocal
spatial correlation information and spectral correlation informa-

wa e rjion, and utilize these information in PCA denoising model. The

PCA denoising process for Y has been introduced in section 2.2,
we can get

Xi == (i}:k,”ﬁf:y@;n“'7’0%,:)T (18)

where the size of X is the same as Y. Therefore we can get noise-
free HSI by

[ fjk: + Zszl w(Ljk:, vi: )01

jk: 5 19)

2.4 Complete procedure of the propose approach

The detailed procedure of nonlocal SSPCA is given in the follow-
ing.

1.Select a large 3D block around the referenced pixels of the HSI,
in order to obtain region samples at boundary areas, we perform
image padding in spatial dimension before obtaining samples.

2.Use Mahalanobis distance algorithm to calculate the distance
between all the pixels in 3D blocks and referenced pixel like (13).
In this step, spectral information is also used to calculate the dis-
tance between two pixels.

3.Select the nearest 1" pixels in window to contribute to the de-
noising according to the distance S, and calculating the similarity
weight according the distance S and the number of pixels 7" using
(14) and (15).

4.Use the selected pixels to construct the PCA transformation ma-
trix of Y, where the columns of the Y represent the number of
pixels, and the rows represent the nonlocal spatial information
and spectral information of the HSI.

5.PCA transformation of Y':
5.1.Data centralization of Y
5.2.Calculate the covariance matrix using (17)

5.3.Factorize ¥y = WAy W7, set the PCA transformation ma-
trix of P
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5.4.Transform the dataset to de-correlation PCA domain ¥ =
YP

5.5.Select the leading K PCs that contains most of the scan signal
by (12) .

6.Reorganize the HSI using weighted average like (19)
end

Through the above calculation process, we can finally get the de-
noised HSI.

3. EXPERIMENTS AND DISCUSSION
3.1 Experimental design

In all experiments, several popular denoising techniques in hy-
perspectral images are compared, such as wavelet-based Bay-
ersShrink, wiener filter, and the TV method. The parameters of
referenced methods are set by following the suggestion of the re-
spective authors. In proposed methods, a region of 3 x 3 is used
for spatial PCA and SSPCA. In nonlocal SSPCA, the nonlocal
area is set to be 19 x 19. Approximately 12 pixels are taken to
contribute to denoising of referenced pixels. Due to the different
methods of constructing the matrix of Y, the value of K is also
different. Choosing the appropriate K value to ensure that most
of signals are captured is a crucial job in the experiment.

3.2 Test on simulated image

The data is simulated based on the Indian Pines image, which
was captured by airborne visible/infraed imaging spectrometer
(AVIRIS) over a vegetation area in northwestern Indiana, USA,
with a spatial resolution of 20 m, consisting of 145 x 145 pixels
of 16 ground-truth classes and 220 spectral bands. Only the la-
beling information of Indian Pines images is used in simulation,
10 ground-truth classes with 17 spectral of 224 spectral bands
randomly chosen from USGS spectra library. The image is con-
sidered as a clean image. And then, we set SNR=20.

After testing all the methods on simulated image, in Fig. 2, we
show the PSNR and SSIM in each band with line chart. As we
can see, for both measure, the line of nonlocal SSPCA is above
those of the other methods, indicating that nonlocal SSPCA out-
performs the other methods in term of both noise removel and
detail preservation. The second best method seems to be SSPCA,
and followed closed by spectral PCA. Due to the importance
of spectral information in PCA denoising model, spatial PCA
achieves the lowest PSNR and SSIM lines among all methods.
Wiener, wavelet and TV methods are comparable performance,
but wiener have a high SSIM values. The lines of all denoising
methods are above the lines of the noisy image.

Fig. 3-4 display the clean, noisy, and denoisimg images of three
bands achieved by different methods. In the picture, we find that
nonlocal SSPCA is most similar to the true image, what’s more,
nonlocal SSPCA not only represses the presence of noise, but also
preserve the the edge information and detail information. SSPCA
also has a nice denoising effect, but we find that there is ambigu-
ity at the boundaries of the image. TV tends to oversmooth image
in denoising processing. There is most of noise still presented in
spatial PCA, which fails to reduce the noise.

spatial PCA " nonlocal SSPCA

Figure 3. Denoising results achieved by different methods, on
band 1 of simulated data. Denoised image by the proposed
nonlocal SSPCA method is the most similar one to the true

image. The other methods tend to either preserve undesirable

artifacts or oversmooth and weak signal.

Figure 4. Denoising results achieved by different methods, on
band 50 of simulated data.

Fig. 5 show the spectra clean, noisy, and denoisimg produced
by different methods. The similarity of true image reflect the
effect of the denoising. The line of nonlocal SSPCA produces
the most similar spectra to the true images. SSPCA also have
a good denoising effect. Although spectral PCA can obviously
restrain the noise, the effect is not very stable with the changes
of feature type. Comparing to Wiener and wavelet, denoising
performance of TV method is stronger. However, by combining
the visual effect of image, we find that wavelet achieves better
balance between noise removal and detail preservation. Spatial
PCA fails to significantly reduce the noise.
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comparable performance, but wiener have a high SSIM value.
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Figure 5. Spectra at pixel (60,60) of the simulated data, before
and after denoising by different methods.

3.3 Test on The Real Hyperspectral Data

In this experiment, all methods are tested on the Indian Pines
image. The HSI contains 220 spectral bands, with each band
contains different intensity of the noise. In order to testing our
proposed method, all bands are used in this experiment.

The denoising results of band 200 are shown in Fig. 6. It can be
clearly seen that the proposed nonlocal SSPCA method achieves
better denoising results than other methods. Because of con-
taining nonlocal spectral information and spectral information in
PCA denoising model, the nonlocal SSPCA reduces most ran-
dom noise efficiently, while also preserves image details, e.g.,
bright boundary information and point targets very well. Al-
though SSPCA also suppresses most of the noise in the HSI, the
denoised image is blurred slightly. Local detailed information,
such as edges and texture information of the image are lost in
the denoising process. The denoising result using the TV model
and wavelet model appear oversmoothed, and most of detailed in-
formation is lost. Other methods tend to either keep undesirable
artifacts or oversmooth the image.

4. CONCLUSION

In this paper, we have proposed nonlocal SSPCA hyperspectral
image denoising algorithm. The PCA was used to separate the
noise and signal from contaminated hyperspectral data. Mean-
while, the Mahalanobis distance algorithm was used to estimate
the spatial spectral similarity by calculating the distance between
the spectrum of referenced pixel and the spectrum of others pix-
els in nonlocal area, the nonlocal spatial spectral similarity was
used to estimated the acceptance probability and captured the im-
age non-stationary information into denoising model. And then,
this proposed method was tested on hyperspectral images, Mean-
while in comparison with several other classic denoising method.
Through the analysis of both the numerical and visual effects, we
have demonstrated that our proposed method have excellent re-
sults in denoising. It not only removes a lot of noise, but also
preserves detailed information.
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