
SOIL MOISTURE RETRIEVAL USING CONVOLUTIONAL NEURAL NETWORKS: 

APPLICATION TO PASSIVE MICROWAVE REMOTE SENSING  
 

 

Zhongzheng Hu1, Linlin Xu1*, Bowen Yu1,  

 
1 CUGB, School Of land Science And Technology , Beijing, China  

hzz_cugb@163.com, beyond13031@126.com, 594539169@qq.com 

 

Commission III, WG III/2 

 

 

KEY WORDS: Soil Moisture Retrieval, Microwave Remote Sensing, Deep Learning, Convolutional Neural networks, GPU 

 

 

ABSTRACT: 

 

A empirical model is established to analyse the daily retrieval of soil moisture from passive microwave remote sensing using 

convolutional neural networks (CNN). Soil moisture plays an important role in the water cycle. However, with the rapidly increasing 

of the acquiring technology for remotely sensed data, it's a hard task for remote sensing practitioners to find a fast and convenient 

model to deal with the massive data. In this paper, the AMSR-E brightness temperatures are used to train CNN for the prediction of 

the European centre for medium-range weather forecasts (ECMWF) model. Compared with the classical inversion methods, the deep 

learning-based method is more suitable for global soil moisture retrieval. It is very well supported by graphics processing unit (GPU) 

acceleration, which can meet the demand of massive data inversion. Once the model trained, a global soil moisture map can be 

predicted in less than 10 seconds. What's more, the method of soil moisture retrieval based on deep learning can learn the complex 

texture features from the big remote sensing data. In this experiment, the results  demonstrates that the CNN deployed to retrieve 

global soil moisture can achieve a better performance than the support vector regression (SVR) for soil moisture retrieval. 

 

 

1. INTRODUCTION 

A methodology to retrieve soil moisture from passive 

microwave remote sensing with convolutional neural networks 

(CNN) is presented. Soil moisture is a very important variable 

of water cycle, which can be used to predict the drought or crop 

yield in agriculture. Simultaneously, in some ongoing 

engineering construction (like housing, railway, road and bridge 

etc.), it also plays an important role. However, with the rapidly 

increasing of the acquiring technology for remotely sensed data, 

there are lots of different sensors for soil moisture retrieval, and 

the remotely sensed soil moisture products include: 

(a) The national aeronautics and space administration (NASA) 

soil moisture product (Tuttle et al., 2014); 

(b) The land parameter retrieval model (LPRM) soil moisture 

product (Dall'Amico et al., 2009); 

(c) The Japan aerospace exploration agency (JAXA) soil 

moisture product (Cui et al., 2016);  

(d) The JAXA AMSR2 soil moisture product (Lu et al., 2017); 

(e) The soil moisture and ocean salinity soil moisture (SMOS) 

product (Kerr et al., 2012); 

(f) The advanced scatterometer (ASCAT) soil moisture product 

(Wagner et al., 2013); 

(g) The essential climate variable (ECV) soil moisture product 

(Wang et al., 2016); 

(h) The European centre for medium-range weather forecasts 

(ECMWF) soil moisture product (Buizza et al., 1999). 

The first three products (a-c) are derived from the advanced 

microwave scanning radiometer — earth observing system 

(AMSR-E) (Zeng et al., 2015), and other five products (d-h) are 

retrieved from other different sensors. 
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Corresponding to this, a lot of traditional soil moisture retrieval 

algorithms were proposed, such as SMOS Level 2 and Level 3 

operational algorithms, SMAP Level 2 operational algorithm, 

the dual channel algorithm (DCA), land parameter retrieval 

model (LPRM), multi-orbit retrievals of soil moisture and 

optical depth (MT-DCA), and various other retrieval algorithms 

based on neural networks or local regressions (Wigneron et al., 

2017). There are many methods to retrieve soil moisture, but 

they cannot meet the demands of remote sensing big data. So, 

it's a hard task for remote sensing practitioners to find a fast and 

convenient model to retrieve soil moisture with the massive data. 

In this paper, a deep learning based empirical model is well 

used for soil moisture retrieval. 

 

Presently, a suitable method to inverse soil moisture by passive 

microwave remote sensing is deep learning in the context of 

remote sensing big data. Deep learning is a class of machine 

learning algorithm. It is capable of “learning features” from the 

data at each level and processing the complex input data and 

learning tasks. With the rapid increasing of remote sensing data, 

traditional retrieval methods, either empirical or physical 

models, cannot satisfy the requirement of the high complexity 

of the data and the non-linearity of retrieval problems (Ali et al., 

2015). Therefore, it is vital to develop the advanced method for 

inversion of soil moisture based on the deep learning technique. 

Compared with the classical inversion methods, the deep 

learning-based method is more suitable for soil moisture 

retrieval. 

 

Support vector regression (SVR) is a popular approach in the 

field of geo-/bio-physical parameter retrieval, which however 

only has the good intrinsic generalization ability and the 

robustness to noise in the case of limited availability of the 

reference samples (Durbha et al., 2007). In addition, traditional 
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models is not flexible enough to learn more about feature 

information. Therefore, it is of great advantage to investigate 

deep learning based soil moisture retrieval approach in 

comparison with classical algorithms. 

 

What’s more, the method of soil moisture retrieval based on 

deep learning is very well supported by graphics processing unit 

(GPU) acceleration, which can meet the demand of massive 

data inversion. However, traditional retrieval algorithms don’t 

support GPU parallel acceleration, which will waste more 

resources in the inversion of soil moisture. Once trained, the 

deep learning model is a very efficient method to retrieve soil 

moisture (Rodríguez-Fernández> et al ., 2015). As a result, it is 

of great value to study using GPU-accelerated soil moisture 

inversion based on the deep learning method.  

 

For the first time, this paper uses deep learning in the inversion 

of soil moisture content, which can learn the complex features 

from the big remote sensing data better and retrieve soil 

moisture in real time compared with classical algorithms. The 

CNN algorithm used in this research is composed of three pairs 

of convolution layers and pooling layers with one fully 

connected layer on top, whose activation function of the top 

layer is changed from softmax loss layer to Euclidean loss layer. 

The AMSR-E brightness temperature images are used as input, 

and the soil moisture value gained from ECMWF model which 

is considered the most accurate value of soil moisture content is 

used as ground truth. In this experiment, one month’s global 

data which include 30 pairs of images is used to train the deep 

learning model, and then it is used to predict the next month’s 

data for soil moisture maps. By comparing the root-mean-

square error (RMSE) and the R-square (R^2) with SVR, the 

experiment demonstrates the deep learning method for soil 

moisture retrieval can achieve better learn the complex 

relationship between the observations and the ground truth and 

achieve better generalization performance compared with 

traditional retrieval algorithms. 

 

This paper is organized as follows. Section 2 provides the 

datasets used in this study. Section 3 describes the methodology 

employed to establish CNN and train regression model for soil 

moisture retrieval. Section 4 discusses the experiment and the 

results of soil moisture retrieval using CNN model. Section 5 

summarizes the conclusions of the study. 

 

2. DATA 

The soil moisture retrieval is performed using data from a 

passive microwave sensor, AMSR-E, as well as modelled soil 

moisture reanalysis from ERA-interim in the ECMWF model 

which is a global atmospheric reanalysis from 1979, 

continuously updated in real time. The study focuses on one 

month's global data in July, 2011. All data are projected onto an 

equal area grid with a 0.25° resolution at the equator. 

 

Method Data Training Validation Testing 

CNN 

AMSR-E 30×30000 30×5000 1×50000 

ECMWF 30×30000 30×5000 1×50000 

SVR 

AMSR-E 30×30000 30×5000 1×50000 

ECMWF 30×30000 30×5000 1×50000 

Table 1. The samples used in this experiment. 

The data used in this paper are as above (Table 1), all the 

samples are patches of size  9×9. The images from July 1st to 

30th are used as training and validation sets, and there are 35000 

image patches every day. 30000 pairs image patches are used to 

train CNN model, and the rest are validation sets. For 

evaluating the quality of the model, the 50000 image patches 

from July 31th are used to predict the global soil moisture map. 

 

2.1 Advanced Microwave Scanning Radiometer-Earth Obs-

erving System (AMSR-E) 

The AMSR-E was a passive microwave sensor which observes 

brightness temperatures at 6.9, 10.7, 18.7, 23, 37 and 89 GHz at 

vertical and horizontal polarizations (Kolassa et al., 2017). The 

sensor was flown aboard the aqua satellite between 2002 to 

2011 with a revisit time of 1-2 days. In this paper, the 6.9 GHz 

and 10.7 GHz channels were used, because they have the 

strongest sensitivity to soil moisture. In order to use the AMSR-

E data as input to  the CNNs, a pre-processing step is necessary 

to eliminate outliers which will have a bad influence on the 

precision of training. 

                                                                                                                                                                                                                                                                                                                      

2.2 ERA-interim 

Modelled soil moisture fields from ERA-interim have been used 

to calibrate the retrieval and to assess the retrieval performance. 

The soil moisture value gained from ECMWF model which is 

considered the most accurate value of soil moisture content is 

used as ground truth. The ECMWF products used in this work 

are operational integrated forecasting system (IFS) models with 

the “hydrology-improved tiled ECMWF scheme for surface 

exchanges over land” (H-TESSEL) (Slingo, 1987). In this paper, 

the data is provided on a regular grid of 0.25° spatial resolution, 

and there are 12 time steps per day and location. The average of 

these 12 time steps has been used here to get a daily modelled 

soil moisture estimate. In this study, only the upper layer soil 

moisture, representing a depth of 7 cm, has been used, which is 

a few centi-meters deeper than the typical penetration depth of 

the microwave satellite data. 

 

3. METHODOLOGY  

In this paper, a supervised CNN model is used as a feature 

extractor and a regression model to retrieve the daily global soil 

moisture from the brightness temperature. The processing 

scheme is shown in Figure 1. It is composed of three major 

steps: preprocessing of the images, training of the CNN model, 

and prediction in new brightness temperature using the trained 

CNN model. Only the first steps will be  described, because the 

prediction follows the same as the testing. 

 

3.1 Preprocessing of the Images 

All the images employed to train CNN model need to be 

reprocessed, and the major steps includes image registration, 

spatial interpolation, and normalization. Because the one day’s 

data cannot overlap the whole world, it was a vital step to 

registrate 1-2 day’s AMSR-E data for obtaining the average 

images. In addition, the brightness temperature data and soil 

moisture truth value from ECMWF had different resolution. In 

this paper, the soil moisture truth value images grid with a 0.5° 

resolution have been projected onto an equal area grid with a 

0.25° resolution the same as brightness temperature data. Then 

the inputs and outputs are normalized to [0,1]. After 
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reprocessing, many patch images of size 9×9 were generated, 

the number of which is given in Table 1. 

 

Figure 1. The flowchart of the major steps of the algorithm. 

 

3.2 Structure of CNN 

Multilayer CNNs are a very efficient method to image classi-

fication. In this paper, the CNNs is employed to find a function 

linking a set of input data to SM. It can satisfy the requirement 

of the high complexity of the data and the non-linearity of 

retrieval problems. 

 

Figure 2. The structure of the proposed CNN model. 

 

The CNNs used in this study has  three pairs of convolution 

layers and pooling layers with one fully connected layer on top, 

whose activation function of the top layer is changed from 

softmax loss layer to Euclidean loss layer, as shown in the 

picture (Figure. 2). The first convolutional layer has 20 filters of 

width and height set to two. Inputs to the CNNs are image 

patches of size 9×9×4; thus, the size of the filter is (2,2,4). The 

output of the first convolution is the array of size (9-2+1,  9-2+1, 

20), that is (8,8,20). The first convolution layer is followed by a 

max pooling layer of pooling size 2×2 and stride 1. After the 

transfer of max pooling layer, the size of the image feature maps 

changed to (7,7,20).  The second convolution layer contains 

100 filters of size (2,2,20). It outputs convolved image of size 

(7-2+1,7-2+1,100). The following pooling layer is a array 

which size is 2×2 and stride 2. Its feature map is (3,3,100). The 

third convolution layer is composed of 200 filters that size is  

2×2 and stride 1. Its outputs feature map is (2,2,200). In this 

paper, the hidden layer (the first fully connected layer shown as 

Fig. 2) of dimension 500×1 follows the third convolution 

instead of the max polling layer. The second fully connected 

layer takes outputs only one single value, which is the truth 

value of soil moisture. By modifying the activation function of 

the top layer , the classification CNN model is transferred to 

CNN  regression model. In this study, the top layer is changed 

from softmax loss layer to Euclidean loss layer. 

 

4. DISCUSSION 

In this paper, the follow images show the result of the soil 

moisture retrieval using CNN model and using SVR. 

 

                                    

Figure 3. The soil moisture prediction using the CNN model. 

 

 

Figure 4. The soil moisture prediction using the SVR model. 

 

 

Figure 5. The soil moisture ground truth from AMSR-E. 

 

As shown in Figure 3-5, the prediction map using the CNN 

model is closer to the truth label of global soil moisture (Figure. 

5). In some parts of southern and northern Africa, as well as 
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Australia, the CNN model performs better against the SVR 

model. The results suggest that the CNN (Figure 3) deployed to 

retrieve global soil moisture can achieve a better performance 

than the SVR (Figure 4) for soil moisture retrieval. 
  

 R^2 RMSE 

CNN 0.6512 0.1272 

SVR 0.5598 0.1817 

Table 2. The RMSE and R^2 of CNN and SVR. 

 

In this study, as the above Table 2 shows, by comparing the 

root-mean-square error (RMSE) and the R-square (R^2), the 

CNN model have a R^2 (0.6512) higher than the SVR (0.5598), 

and the  RMSE (0.1272) is less than the latter (0.1817). What’s 

more, the prediction using the CNN model takes less time than 

the SVR model in global soil moisture retrieval. 

 

5.CONCLUSION 

In this paper, a CNN has been employed to AMSR-E brightness 

temperatures images to retrieve the global soil moisture daily. 

The CNN used took the image patches of brightness 

temperature data as input and output soil moisture value directly. 

When compared to classical SVR approach, the CNN method 

achieved soil moisture results that are closer to the ground truth 

map.  

 

The training on 31 images took about 2 hours, the prediction of 

soil moisture on one image took less than 10 seconds using an 

Nvidia GTX 1080Ti graphics card. With more powerful or more 

quantity graphics cards, the time spent on training and 

predicting will be reduced largely. Once the model between the 

brightness temperature and soil moisture trained, the soil 

moisture retrieval can run in parallel and multiple GPUs easily. 

However, the prediction of soil moisture on one image using 

SVR took more than two minutes. Therefore, comparing with 

traditional regression approaches, CNN had a great advantage 

on both prediction accuracy and computational cost for the 

retrieval of soil moisture from big remote sensing data. 

 

ACKNOWLEDGEMENTS 

This work was supported by the National Natural Science 

Foundation of China Grant 41501410. 

 

REFERENCES 

Zeng, J., Li, Z., Chen, Q., Bi, H., Qiu, J., & Zou, P. (2015). 

Evaluation of remotely sensed and reanalysis soil moisture 

products over the tibetan plateau using in-situ observations. 

Remote Sensing of Environment, 163, 91-110. 

 

Tuttle, S. E., & Salvucci, G. D. (2014). A new approach for 

validating satellite estimates of soil moisture using large-scale 

precipitation: comparing amsr-e products. Remote Sensing of 

Environment, 142(3), 207-222. 

 

Dall'Amico, J. T., Loew, A., Schlenz, F., & Mauser, W. (2009). 

SMOS rehearsal campaign 2008: radiometer data analysis and 

soil moisture retrieval using the LPRM. Earth Observation and 

Water Cycle conferenceEarth Observation and Water Cycle 

conference. 

Cui, H., Jiang, L., Du, J., Wang, G., & Lu, Z. (2016). 

Assessment of QP model based two channel algorithm with 

JAXA, LPRM soil moisture products over Genhe area in China. 

Geoscience and Remote Sensing Symposium (pp.1663-1666). 

IEEE. 

 

Lu, Z., Chai, L., Zhang, T., Cui, H., & Li, W. (2017). 

Evaluation of amsr2 retrievals using observation of soil 

moisture network on the upper and middle reaches of heihe 

river basin. Remote Sensing Technology & Application. 

 

Kerr, Y. H., Waldteufel, P., Richaume, P., Wigneron, J. P., 

Ferrazzoli, P., & Mahmoodi, A., et al. (2012). The smos soil 

moisture retrieval algorithm. IEEE Transactions on Geoscience 

& Remote Sensing, 50(5), 1384-1403. 

 

Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., & 

Hasenauer, S., et al. (2013). The ascat soil moisture product: a 

review of its specifications, validation results, and emerging 

applications. Meteorologische Zeitschrift, 22(1), 5-33. 

 

Wang, S., Mo, X., Liu, S., Lin, Z., & Hu, S. (2016). Validation 

and trend analysis of ecv soil moisture data on cropland in north 

china plain during 1981–2010. International Journal of Applied 

Earth Observation & Geoinformation, 48(48), 110-121. 

 

Buizza, R., Milleer, M., & Palmer, T. N. (1999). Stochastic 

representation of model uncertainties in the ecmwf ensemble 

prediction system. Quarterly Journal of the Royal 

Meteorological Society, 125(560), 2887–2908. 

 

Wigneron, J. P., Jackson, T. J., O'Neill, P., Lannoy, G. D., 

Rosnay, P. D., & Walker, J. P., et al. (2017). Modelling the 

passive microwave signature from land surfaces: a review of 

recent results and application to the l-band smos & smap soil 

moisture retrieval algorithms. Remote Sensing of Environment, 

192, 238-262. 

 

Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., & 

Notarnicola, C. (2015). Review of machine learning approaches 

for biomass and soil moisture retrievals from remote sensing 

data. Remote Sensing, 7(12), 221-236. 

 

Durbha, S. S., King, R. L., & Younan, N. H. (2007). Support 

vector machines regression for retrieval of leaf area index from 

multiangle imaging spectroradiometer. Remote Sensing of 

Environment, 107(1), 348-361. 

 

Rodríguez-Fernández>, N. J., Aires, F., Richaume, P., Kerr, Y. 

H., Prigent, C., & Kolassa, J., et al. (2015). Soil moisture 

retrieval using neural networks: application to smos. IEEE 

Transactions on Geoscience & Remote Sensing, 53(11), 5991-

6007. 

 

Kolassa, J., Gentine, P., Prigent, C., Aires, F., & Alemohammad, 

S. H. (2017). Soil moisture retrieval from amsr-e and ascat 

microwave observation synergy. part 2: product evaluation. 

Remote Sensing of Environment, 195, 202-217. 

 

Slingo, J. M. (1987). The development and verification of a 

cloud prediction scheme in the ecmwf model. 

Quart.j.roy.meteor.soc, 113. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-583-2018 | © Authors 2018. CC BY 4.0 License.

 
586




