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ABSTRACT: 

 

Classifying the original point clouds into ground and non-ground points is a key step in LiDAR (light detection and ranging) data 

post-processing. Cloth simulation filtering (CSF) algorithm, which based on a physical process, has been validated to be an accurate, 

automatic and easy-to-use algorithm for airborne LiDAR point cloud. As a new technique of three-dimensional data collection, the 

mobile laser scanning (MLS) has been gradually applied in various fields, such as reconstruction of digital terrain models (DTM), 3D 

building modeling and forest inventory and management. Compared with airborne LiDAR point cloud, there are some different 

features (such as point density feature, distribution feature and complexity feature) for mobile LiDAR point cloud. Some filtering 

algorithms for airborne LiDAR data were directly used in mobile LiDAR point cloud, but it did not give satisfactory results. In this 

paper, we explore the ability of the CSF algorithm for mobile LiDAR point cloud. Three samples with different shape of the terrain 

are selected to test the performance of this algorithm, which respectively yields total errors of 0.44%, 0.77% and1.20%. Additionally, 

large area dataset is also tested to further validate the effectiveness of this algorithm, and results show that it can quickly and 

accurately separate point clouds into ground and non-ground points. In summary, this algorithm is efficient and reliable for mobile 

LiDAR point cloud.  
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1. INTRODUCTION 

 

MLS technology can accurately and quickly acquire 

three-dimensional LiDAR (light detection and ranging) point 

cloud of earth surface. LiDAR point cloud filtering, which is to 

separate point clouds into ground and non-ground points, is an 

essential step in post-processing. 

 

Many ground filtering algorithms have been proposed during 

previous decades, and these algorithms can be mainly divided 

into three categories (Zhang et al., 2016): slope-based methods 

(Sithole, 2001; Susaki, 2012; Vosselman, 2000), mathematical 

morphology-based methods (Chen et al., 2007; Li, 2013; Li et 

al., 2014; Zhang et al., 2003) and surface-based methods (Nie 

et al., 2017; Pfeifer et al., 1999; Zhao et al., 2016). The 

aforementioned ground filtering algorithms has proven to be 

successful for airborne LiDAR point cloud. However, these 

algorithms commonly have the following problems: (1) 

parameters setting are complicated; (2) filtering results are 

usually unreliable in complex areas; (3) most of them are not 

open source.  
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In recent years, cloth simulation filtering (CSF) algorithm is 

proved to be an accurate, automatic and easy-to-use algorithm 

for airborne LiDAR point cloud. Specifically, the accuracy of 

this algorithm is comparable with most of the state-of-the-art 

ground filtering algorithms, and its parameters are few and are 

easily set by the users without much experience. In addition, 

this algorithm has been developed a CloudCompare plugin. 

 

Due to the different speed of travel, trajectory and scan distance 

of the laser scanning system, there are some differences 

between airborne and mobile LiDAR point clouds (Table 1), in 

which distribution feature plays an important role in the 

filtering result. There is much missing in mobile LiDAR point 

cloud due to occlusion of objects, which lead that the 

distribution feature is very unevenly. As a result, 

aforementioned filtering algorithm did not give satisfactory 

results for mobile LiDAR point cloud. 

 

Types Airborne Mobile 

Point density Low, 21000 / m  High, 210000 / m  

Distribution 

feature 
Evenly Unevenly 

Spatial  

feature 
2.5-dimension 3-dimension 

Complexity  

feature 
Complicated Very complicated 

Building  

feature 
Top information Side information 

 

Table 1.Differences between airborne and mobile LiDAR point 

cloud 

 

In this paper, we explored the performance of the CSF 

algorithm for mobile LiDAR point cloud. Three reference 

samples with the different characteristics of the terrain were 

tested.  

 

The remainder of the paper is organized as follows. The 

principle of the CSF algorithm is described in Section 2. Next, 

the experiments are performed and the results are analyzed in 

Section 3. Finally, the conclusion is given in Section 4. 

 

 

2. METHOD 

 

The method is based on the simulation of a simple physical 

process. Imagine a piece of soft enough cloth placed above the 

terrain, and then the cloth falls under the action of gravity. The 

final shape of the cloth is the DSM (digital surface model). In 

contrast, if the surface is turned upside down, and then a cloth 

with rigidness falls under the action of gravity, the final shape 

of the cloth is the DTM. 

 

 

 

Figure 1.Overview of the CSF algorithm. 

 

To simulate this physical process, CSF algorithm utilizes a 

cloth simulation technique to separate point clouds into ground 

and non-ground points (Zhang et al., 2016). Figure 1 illustrates 

the overview of this algorithm. The procedure of the algorithm 

is shown as follows (Figure 2): 

 

 
 

Figure 2.The flowchart of the CSF algorithm 

 

 

3. EXPERIMENTS AND RESULTS 

 

Three case studies are illustrated to assess the performance of 
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the CSF algorithm. As shown in Figure 3a, various non-ground 

objects (such as buildings, trees and poles) exist in the study 

area. In particular, the features of the topography for three cases 

are significantly different, including flat terrain, gentle slope 

terrain and high slope terrain. The reference datasets were 

obtained by manually classification, and each point was labeled 

as ground or non-ground points. 

 

To verify the effectiveness of the CSF algorithm in large area, 

we also tested a large area dataset, which mainly include 

1000m road and area on both sides of road (the size is

1000 128m m ). The elevation ranges from 9m to 43 m in the 

study area, whose point number is 5422298. The original 

dataset is shown in Figure 4a. 

 

Four user-defined parameters are set in the CSF algorithm, 

including: (1) rigidness (RI), which governs the rigidness of the 

cloth; (2) grid resolution (GR), which is the horizontal distance 

between neighboring cloth particles; (3) distance threshold 

(DT), which controls the final classification of all LiDAR 

points as ground and non-ground points based on the distance 

from these points to the cloth; (4) iterations numbers (IN), 

which controls the maximum iteration numbers. The specified 

parameters are listed in Table 2, in which the rigidness was set 

by visually inspecting the features of terrain. Other parameters 

were set by a few trials. 

 

Samples RI 
GR 

 (m) 

DT  

(m) 

IN 

(numbers) 

1 3 0.3 0.15 150 

2 2 0.2 0.15 200 

3 1 0.3 0.2 300 

 

Table2. Parameters for each sample 

  

(a)                             (b) 

 

Figure 3.Results of each sample: (a) original datasets colored by height; (b) the ground points extracted from the CSF algorithm. 

 

  

 

Figure 4.Result of large area dataset: (a) original dataset colored by height; (b) the ground points extracted from the CSF algorithm. 
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In Figure 3b, it can be seen the CSF algorithm can filter out 

most of non-ground points from the original point cloud with 

the different features of terrain, and the terrain characteristics 

can be effectively remained as well. 

 

For the large area dataset, the algorithm costed about 1.2 min to 

finish the experiments. By the visual inspection, we can see 

that this algorithm can successfully filter out non-ground points, 

as shown in Figure 4b. 

 

Moreover, qualitative evaluation of the CSF algorithm was 

implemented by using reference samples. In this research, type 

I, type II and total errors were utilized to quantitatively assess 

the performance of this algorithm. Specifically, type I error is 

the rate of ground points misclassified as non-ground points, 

type II error is the rate of non-ground points misclassified as 

ground points, and the total error is the rate of misclassified 

points, which equation is presented as follows: 

 

/

/

( ) / (c )

Type I error a c

Type II error b d

Total error a b d





  

         (1) 

 

where a represents the number of ground points misclassified 

as non-ground points, b represents the number of non-ground 

points misclassified as ground points, and c and d represent the 

total number of ground and non-ground points, respectively. 

 

Table 3 shows the accuracy assessment of CSF algorithm, and 

Figure 5 shows the corresponding spatial distributions of the 

type I and type II errors, which indicates that this algorithm 

have high precision for all reference samples, and the total error 

is less than 1.20% for all the results. The main reason of high 

precision is that the simulated cloth can be directly treated as 

the final generated DTM for some circumstances, which avoids 

the interpolation of ground points, and can also recover areas of 

missing data. In addition, the distribution complexity of 

non-ground objects seldom influences the terrain 

approximation process (Zhang et al., 2016). 

 

Samples Type I (%) 
Type II 

(%) 

Total error 

(%) 

1 0.50 0.37 0.44 

2 0.68 1.29 0.77 

3 0.94 2.45 1.20 

 

Table 3.Three types of error statistics 

 

 

 

Figure 5.The spatial distributions of the type I and type II errors 

 

 

4. CONCLUSIONS 

 

This research explores the effectiveness of the CSF algorithm 

for mobile LiDAR point cloud. Three samples with different 

shape of the terrain are tested. Results show that this algorithm 

can acquire relatively high precision for all benchmark samples. 

Moreover, the large area dataset also is tested, and the ground 

points can be successfully extracted, which indicated this 

algorithm is universal and reliable for mobile LiDAR point 

cloud. This works can provide some experience for mobile 

LiDAR point cloud filtering processing. 
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