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ABSTRACT

ROSENBERG, D., S. GODBOLE, K. ELLIS, C. DI, A. LACROIX, L. NATARAJAN, and J. KERR. Classifiers for Accelerometer-

Measured Behaviors in Older Women.Med. Sci. Sports Exerc., Vol. 49, No. 3, pp. 610–616, 2017. Purpose: Machine learning methods

could better improve the detection of specific types of physical activities and sedentary behaviors from accelerometer data. No studies in

older populations have developed and tested algorithms for walking and sedentary time in free-living daily life. Our goal was to rectify

this gap by leveraging access to data from two studies in older women. Methods: In study 1, algorithms were developed and tested in a

sample of older women (N = 39, age range = 55–96 yr) in the field. Women wore accelerometers and SenseCam (ground truth

annotation) devices for 7 d, yielding 3191 h and 320 d of data. Images were annotated and time matched to accelerometer data, and

random forest classifiers labeled behaviors (sitting, riding in a vehicle, standing still, standing moving, and walking/running). In study 2,

we examined the concurrent validity of the algorithms using accelerometer data from an observed 400-m walk test (2983 min of data

available) and 6 d of wearing both accelerometers and global positioning systems devices in a sample of 222 women (age range = 67–

100; 313,290 min of data available). Analyses included sensitivity, specificity balanced accuracy, and precision, as appropriate, averaged

over each test participant at the minute level for each behavior.Results: In study 1, the algorithms had 82.2% balanced accuracy. In study

2, the classifier had 87.9% accuracy for predicting walking. Overall machine learning classifiers and global positioning systems had

88.6% agreement. Conclusions: Free-living algorithms for walking and sedentary time yielded high levels of accuracy and concurrent

validity and can be applied to existing accelerometer data from older women.KeyWords:MACHINE LEARNING, OLDER ADULTS,

SITTING, WALKING, PHYSICAL ACTIVITY, SEDENTARY TIME

P
hysical activity promotes emotional, cognitive, func-
tional, and physical health in older adults (21). Current
estimates, however, suggest that few older adults meet

physical activity guidelines, particularly when assessed by ac-
celerometer cut points; estimates are fewer than 5% (30). Rates
are higher when using self-reported metrics. For example, in
the Women"s Health Study, 67% of women reported meeting
physical activity guidelines by questionnaires, whereas 13.4%

were classified as meeting guidelines using the most commonly
applied accelerometer cut point: 1952 counts per minute (27).

Accelerometer cut points allow acceleration data to be
translated into activity intensity categories (8). This ap-
proach mapped well to current physical activity guidelines
that state activities must be performed at a moderate or
vigorous intensity. However, the most commonly used ab-
solute cut points, developed on young adults, have not
worked well in older adult samples who engage in activities
at a relatively lower level of intensity. The use of absolute
cut points results in common activities, such as walking,
being misclassified as below the threshold for moderate in-
tensity (8).

The exclusive focus on activity intensity can be problematic,
however, as the public may not understand this concept and
behaviorally specific goals may be easier to communicate than
intensity-based ones (9). Understanding how specific patterns
of behaviors such as walking relate to health outcomes could
lead the field to more useful guidelines that older adults can
realistically attain (2).

Computational techniques are now being applied to accel-
erometer data to develop classifiers that can distinguish time
spent in actual behaviors, such as driving, walking, lifting
weights, and sitting (10). If valid, these classifiers could be
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applied to existing longitudinal studies that include acceler-
ometer assessments and well-documented health outcomes.
For example, several large epidemiologic studies such as the
Women"s Health Initiative, Nurses" Health Study, Reasons for
Geographic and Racial Differences in Stroke, and the Adult
Changes in Thought studies are gathering substantial amounts
of older adult accelerometer data (15,20,23).

Most studies using new computational techniques train and
test the algorithms on different participants from the same
sample and study behaviors in a laboratory setting or with
participants following a fixed protocol in more naturalistic
settings (28,29). Only two algorithms have been developed
for older adults based on laboratory protocols (13,25). More
recent studies, however, demonstrate that laboratory-based
algorithms do not perform as well when applied to free-living
data (1). Even algorithms from protocolized training data in
naturalistic settings do not predict behaviors as accurately as
totally free-living participants going about their normal be-
haviors across multiple days and hours (18). New algorithms
trained in such totally free-living settings in adults are
promising and can include important free-living behaviors
that are difficult to conduct in laboratory settings, such as
driving and bicycling (18). However, they have not yet been
developed specifically for older adults and have not yet been
validated in a completely independent sample of participants
outside of the algorithm testing phase (7). Previous studies
suggest up to an 8% difference in accuracy for training data
sets that vary by age and gender. For researchers to be con-
fident that they can apply such new algorithms to their free-
living older adult cohort data, further validation efforts are
required.

The purpose of our study was to develop and test a new
computational algorithm to classify walking and sedentary
time, including in a vehicle, in older adults. The algorithm was
developed on data collected across multiple free-living days
and validated in a completely independent cohort of older
adults that were not involved in the algorithm development
phase. We leveraged a unique opportunity in which older
adults, age 65–100 yr, a quarter using walking aids, in a
physical activity intervention trial completed an observed
400-m walk test while wearing accelerometers, providing a
ground truth for comparison. Participants then wore an ac-
celerometer and global positioning systems (GPS) devices
for 6 d, providing further opportunity for investigating the
algorithm"s concurrent validity against free-living GPS-
defined behaviors. The current work focused on older
women to identify and validate an algorithm that could be
applied to a large existing cohort of older women from the
Women"s Health Initiative (23).

METHODS

Both studies obtained ethics approval from the University
of California, San Diego institutional review board. Partici-
pants completed written informed consent for both studies.

Study 1: Algorithm Development and Testing

Participants and procedures. A convenience sample
of 39 older women were recruited to wear an ActiGraph
GT3X+ accelerometer (ActiGraph, Pensacola, FL) on a belt
over the right hip and a body-worn camera (the SenseCam,
Vicon Revue, United Kingdom) on a lanyard around their
neck during waking hours for 7 d. They were asked to con-
tinue their normal activities, but participants were trained
in institutional review board–approved procedures to ensure
privacy and confidentiality for themselves and others while
the camera was being worn, such as turning the camera off or
turning it over when needing privacy and only wearing the
camera in public setting or with permission from others. The
women were recruited to provide a diverse age range (56–94 yr),
variability in self-reported functioning and physical activity
levels, and a range of body mass index (19.74–45.62). All
participants were ambulatory, able to provide informed con-
sent, and complete surveys. Participants received and returned
the devices in person at UCSD. They received wear time in-
structions to improve compliance and at the end were given the
opportunity to delete any images they did not want included in
the data set.

Ground truth annotation. The SenseCam camera,
which captured first-person images approximately every 20 s,
allowed researchers to capture ground truth information about
participant behavior. SenseCam image data were downloaded
and imported into the Clarity SenseCam browser, and re-
searchers annotated the SenseCam images with ground truth
behavior labels (6). A standardized annotation protocol was
developed, and at least 80% agreement for each posture with a
standardized day was established. More details on SenseCam
image annotation can be found elsewhere (17), and the com-
plete annotation protocol is available from the authors upon
request. The SenseCam annotation protocol assigns mutually
exclusive posture labels to each image: sitting, riding a vehicle,
standing still with no movement), standing moving, i.e.,
walking within a confined space for example walking around
in the kitchen, and walking/running, i.e., making progress to a
distant point. Riding in a vehicle is separated out from other
sitting because the accelerometer measurements differ in this
context because of the vibration of the vehicle and the accel-
eration from driving. If a minute of data falls within a time
window bound by images with identical activity codes, that
activity label is applied to the minute. If a minute spans images
with changing activity codes, no label is applied to the minute
and it is not used for training the classifier.

Behavior classification algorithm. We used a be-
havior classification system that uses machine learning (ML)
algorithms to predict five behaviors—sitting, riding a vehicle,
standing still, standing moving, and walking/running—from
raw triaxial accelerometer data. We have developed and tested
this system in three other data sets (7,18). The classifier was
retrained on the current data set of older women. Our system
predicts a behavior label for each minute of accelerometer
data. A 1-min window was chosen because we believe it is a
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sufficiently detailed interval by which to represent public
health relevant behaviors on a daily level. The behavior
classification process is composed of three steps: feature
extraction, minute-level classification, and time smoothing.
A detailed description of these three steps can be found in
our previous publications (7,18). A short summary is pro-
vided here.

Feature extraction. The raw (unfiltered) triaxial accel-
erometer data were split into 1-min windows. For each 1-min
window, 41 descriptive features were calculated. For each
sample in a data window, the vector magnitude (VM) of the
acceleration signal was calculated, i.e., v = (x2 + y2 + z2)1/2.
The following basic statistical descriptors of the VM were
calculated over the data window: mean, SD (sd), coefficient
of variation (coefvariation), minimum (min), maximum
(max), and 25th, 50th, and 75th percentile (25thp, median,
75thp, respectively). The 1-s lag autocorrelation (autocorr) of
the VM and the correlation between each axis were computed
(corrxy, corrxz, and corryz). For each sample in the window,
the roll, pitch, and yaw angles of the direction of acceleration
were computed, as roll = tanj1(y, z), pitch = tanj1 (x, z), and
yaw = tanj1 (y, x). The average (avgroll, avgpitch, and
avgyaw) and the SD (sdroll, sdpitch, and sdyaw) of these
angles were computed over the window. A low-pass filter
with a cutoff frequency of 0.5 Hz (preliminary experiments
tested a few cutoff frequencies and found 0.5 Hz to perform
best) was applied to the data window to estimate the average
direction of gravity, and the roll, pitch, and yaw angles of this
direction were computed (rollg, pitchg, yawg) (14). The fast
Fourier transform was applied to the VM to decompose the
time domain signal to its frequency components. The
resulting power spectrum describes the contribution of a
given frequency to the measured acceleration signal. The
dominant frequency of the signal (fmax), i.e., the frequency
with the highest power, and corresponding maximal power
(pmax) were computed from the power spectrum. A similar
calculation was conducted between the frequency bands of
0.3 and 3 Hz (fmaxband and pmaxband). The entropy of the
frequency domain signal was computed. Finally, the power
in each frequency band between 1 and 15 Hz (fft1–fft15)
was computed.

Minute-level classification. Next, each feature vector
was input into a random forest classifier. A random forest
classifier is a commonly used ML algorithm made up of an
ensemble of randomized decision trees, each of which is
learned from a random sample of training data and a random
sample of features. The decision tree outputs a probability of
each behavior label for each feature vector. Test minutes are
classified by averaging the output probabilities from each
decision tree in the forest.

Time smoothing. After applying the random forest, a
minute-by-minute sequence of probabilities of each behav-
ior label results. These probabilities were smoothed over
time using a hidden Markov model (HMM). The HMM uses
the training data to learn the probability of transitions

between behaviors, i.e., it can learn that it is more common
to transition from sitting to standing than sitting directly to
walking. The HMM was used to choose the most likely se-
quence of behaviors from the sequence of probabilities
output by the random forest classifier.

Evaluation. We evaluated the performance of our be-
havior classification algorithms using leave-one-participant
out cross validation. This means each participant was used
as the test subject in turn, using the remaining participants to
train the classification algorithm. Sensitivity, specificity, and
balanced accuracy (the mean of sensitivity and specificity)
were averaged over each test participant at the minute level
for each behavior (sitting, riding a vehicle, standing still,
standing moving, and walking/running).

Traditional accelerometer count processing. For
comparison with the machine-learned outputs, we processed
the accelerometer data in Actilife 6. Median counts for each
machine-learned behavior were also shown to provide an
estimate of intensity, although counts were not a feature of
the algorithm.

Study 2: Validation in a New Cohort

Two types of validation were investigated to establish that
the algorithms developed in one cohort could be applied to
another without loss of performance, demonstrating gener-
alizability and validity. First, the algorithm performance was
tested against a gold standard observation. Participants
completed a timed 400-m walk and the start and end times
were recorded. During this time, it was known that the par-
ticipants were walking, although they were allowed to stop
and rest as needed during the task and before and after. Stops
were noted in the protocol. Second, the behavioral pre-
dictions from the algorithm were compared with GPS pre-
dictions to provide concurrent validity. The GPS predictions
included walking, stationary, and vehicle time.

Participants and procedures. Data were from a
sample of 222 older women (age 67–100 yr) living in 11
retirement communities and participating in a randomized
control trial comparing a physical activity to a healthy aging
comparison group were used for the validation phase (19).
None of the women were included in the algorithm develop-
ment phase. All participants were ambulatory but not at high
risk for falling and able to provide informed consent. Women
wore an ActiGraph GT3X+ accelerometer (ActiGraph) on a
belt over the right hip and a Qstarz BT1000X GPS data logger
during waking hours over 6 d.

Participants completed a timed 400-m walk test (26) using
standard procedures as part of a physical functioning test
battery. They were instructed to wear comfortable walking
shoes to do the task. The course was set up indoors at each
facility. All courses were flat but had various surfaces (some
carpeted and some wood flooring). Participants were
instructed to walk the course as quickly as possible while
remaining safe and were allowed to have standing breaks to
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rest if needed throughout. The test was ended if the partici-
pant needed to sit down or more than 15 min were needed to
complete the test. Participants wore the accelerometer device
during the walk and observers recorded the time the test started
and ended. Data from the baseline, 6-month, and 12-month
measurement tests were combined and included in the cur-
rent analyses to increase the number of walking minutes to be
predicted per participant.

Data Processing

Accelerometer data during a 400-m walk. Acceler
ometer data were truncated to the time within the recorded
start and stop of the 400-m walk test using the sqldf package
in R (11). The initial and last minute of the 400-m walk was
removed before analysis to eliminate partial minutes where
the walk was initiated and terminated. The behavioral cate-
gories of walking to a distant point and standing moving
within a confined space were combined.

Accelerometer data in comparison with GPS-
defined vehicle travel and walking. GPS and acceler-
ometer data were merged at the minute level in the validated
Personal Activity Location Measurements System (3,4). The
Personal Activity Location Measurements System uses the
90th percentile of speed during a trip, the percent of time
indoors during a trip, and the percent of time in a single
location during a trip to predict walking, riding in a vehicle,
and stationary time. Previous studies have shown this sys-
tem to have 85% accuracy (3,4). Stationary time represents
any behavior without movement in space; that is, less than
25-m distance in a minute. Only outdoor minutes of GPS were
used because the GPS detection of activities can be hindered by
poor signal strength indoors. Approximately 10.7% of out-
door time while wearing the GPS was spent walking, 22.5%
riding in a vehicle, and 66.8% stationary. The ML behavior
classifier described earlier was used to categorize each minute
of accelerometer data as sitting, riding in a vehicle, standing,
standing moving, or walking.

Analyses

The analyses assessed the concurrent validity of the ML
classifier using the two sources of data available; observed
400-m walk test and free-living concurrent GPS data. First,
we examined the minute-level sensitivity of the walking al-
gorithm using accelerometer data from the observed timed
400-m walk test. Nonwalking behaviors were not noted so
specificity metrics were not available. We then used gener-
alized estimating equations (GEE) to examine predictors of
achieving high (80% or higher) or low (G80%) sensitivity,
using the ‘‘geepack’’ library in R (14). To explore potential
reasons for high or low algorithm sensitivity, several pre-
dictors were examined based on prior work, which has shown
that older adults sometimes have slow gait speed or other
abnormalities in their mobility that could affect accelerom-
eter signals (24). We explored the effect of age, which was
self-reported at baseline. Furthermore, we examined several

time-varying predictors measured at each time point: gait speed
(calculated from the 400-m walk test), observer annotated use
of a walking aid during the 400-m walk, short physical per-
formance battery score (12), and fear of falling (falls efficacy
scale) (16). We used an exchangeable working correlation
structure to account for participant clustering and robust SE to
provide valid statistical inference even if the working corre-
lation might not hold. The predictors were age, gait speed,
number of stops during the 400-m walk, use of a walking aid,
short physical performance battery, and fear of falling.

Second, we examined the concurrent validity of the algo-
rithm for detecting walking, vehicle time, standing moving,
standing still, and sitting by timemerging the machine-learned
activity predictions to the GPS-based travel mode assign-
ments. Because the machine-learned classification and GPS
travel mode had different classes, we combine the minutes in
the classes of standing moving, standing still, and sitting and
compared it with the stationary GPS class. Two ratios were
calculated to assess agreement. First, we examined the number
of matching class minutes to the total minutes of the class by
GPS, which is similar to the recall metric when defined the
GPS classes as the standard for comparison, and second, we
examined the number of matching class minutes to the total
minutes of the class by ML, which is similar to precision. All
analyses were conducted using the R statistical package (22).

RESULTS

Phase 1: Algorithm Development and Testing

Participants providing data included 39 older women
(see Table 1). Table 2 shows the confusion matrix for the
predicted minutes and known annotated behaviors. The most
prevalent behavior was sitting, followed by riding in a vehicle
and walking. Sitting behaviors were accurately predicted 89%
of the time with misclassification as standing still occurring
7% of the time. Riding in a vehicle was accurately predicted
84% of the time with 6% of minutes being misclassified as
sitting and 5% as standing moving. Walking had lower ac-
curacy with 70% accurately being predicted and 24% being
misclassified as standing moving. Standing still and standing
moving had lower accuracy.

Table 3 demonstrates the sensitivity, specificity, and bal-
anced accuracy of the algorithm for the five behaviors tested
against the annotated SenseCam images, our ground truth.
Overall, the algorithm performed with 82.2% average bal-
anced accuracy, using the leave-one-participant-out cross
validation. The median counts provided for comparison indi-
cate that sitting, standing, and walking in this population occur

TABLE 1. Demographic and health characteristics of study samples.

Study 1
Algorithm

Development & Testing

Study 2 Observed
the 400-m

Walk Sample

Study 2
GPS

Sample

N 39 195 219
Age, mean, range 69.4, 56–94 83.6, 67–100 83.8, 67–100
White, % 79.5 91.3 91.3
Use of walking aid, % 12.8 25.6 18.3

ACCELEROMETER OLDER WOMEN Medicine & Science in Sports & Exercised 613

A
PPLIED

SC
IEN

C
ES



at lower intensities than would be detected by existing thresh-
olds of G100 for sedentary behavior and 91951 for moderate to
vigorous physical activity. Sitting in a vehicle recorded higher
intensities than the sedentary behavior cutoff. The accuracy
levels achieved by the algorithm were comparable with algo-
rithms developed in laboratory studies (13,25). Given that this
algorithm was developed on free-living data and laboratory
studies applied to free-living data lose over 10% accuracy, we
believed further validation in an independent cohort (Study 2)
was warranted.

Phase 2: Algorithm Validation in New Cohort

Validation of ML walking algorithm. Participants
providing data during the 400-m walk included 195 women
who completed the test (see Table 1). At total of 90% of
participants had one stop (range 1–4). The minute-level
sample available for validation of the walking algorithm
included 2983 min of the 400-m walk test data. Acceler-
ometer counts per minute during the 400-m walk varied
from 0 to 5264 counts per minute with a median value of
1591 counts per minute. This suggests that the commonly
used 1952 cut point for moderate to vigorous activity would
not have captured a substantial portion of walking that was
performed at the older women"s fastest safe pace. Overall,
during the 400-m walk, the combined walking and standing
moving classifier performed with an overall mean sensitivity
of 87.9%. During the 400-m walk, the algorithm misclassified
9.2% of the test minutes as sitting, 1.2% as vehicle, and 1.2%
as standing still. None of the included variables in the GEE
analyses significantly predicted the algorithm sensitivity
(Table 4). This suggests that the algorithm is robust across
age, functioning, fall risk, and walking speed.

Concurrent validity of ML algorithms with GPS. A
total of 219 women wore the accelerometer and GPS devices
for six free-living days (mean age = 83.8, age range = 67–100,
91.3% white, 18.3% self-reported using a walking aid,

313,290 min of data available). Concurrent validity for be-
haviors during the 6 d of accelerometer and GPS wear are
shown in Table 5. The overall agreement for the two methods
was 88.6%. Precision (PPV) and recall (sensitivity) for
walking was 68.1% and 85.5%. Precision and recall were
90.6% and 93.7%, respectively, for all stationary time (sitting,
standing moving, and standing still) and 83.4% and 85.1%,
respectively, for vehicle time precision and recall.

DISCUSSION

We developed a new classifier to predict five important
health-related behaviors in free-living older women and
demonstrated high performance of the algorithm (82.2%).
Although our classifier accuracy is comparable with other
algorithms developed in the laboratory with older adults
(13,25), it could have been affected by several factors.
Having less available walking data decreases accuracy by
reducing the classifier"s ability to generalize to walking
patterns it has not seen before. Standing moving can include
portions of walking, which can confuse the classifier.

We found excellent levels of sensitivity for our classifier
in regard to the identification of walking behaviors during a
400-m walk field test (87.9%). This is the first time that
machine-learned algorithms for physical activity and sitting,
developed in a completely separate training sample, have
been applied to a large, independent, and truly free-living
validation sample. The sensitivity of the algorithm was not
dependent on age, walking aid, falls risk, or physical func-
tioning. This means that the algorithm can be applied in
populations of women that vary in age, physical function,
and gait speed.

In addition, the classifier had excellent concurrent validity
with GPS data (88.6%). Our ability to accurately detect time
spent in a vehicle is an advancement over the use of accel-
erometer intensity cut points which misclassify time spent in
a vehicle as light-intensity about one-third of the time (7,18).
Little is known about the health effects of vehicle time in
aging-related health outcomes. Driving or riding in a vehicle

TABLE 2. Minute-level confusion matrix of predicted and annotated minutes.

No. Minutes of SenseCam Annotated Activity (Percent Accuracy)

ML Predicted Activity Sitting Riding in vehicle Walking Standing still Standing moving
Sitting 83,111 (89) 891 (6) 126 (2) 2072 (20) 671 (6)
Riding in vehicle 1148 (1) 11,673 (84) 103 (1) 273 (3) 282 (2)
Walking 224 (0) 323 (2) 4994 (70) 458 (5) 1874 (16)
Standing still 6995 (7) 296 (2) 161 (2) 4104 (40) 1380 (12)
Standing moving 1889 (2) 755 (5) 1711 (24) 3238 (32) 7707 (66)

TABLE 3. Percent accuracy of classifiers for sedentary behaviors and physical activity
using observed annotations of person worn camera images.

Sensitivity Specificity
Balanced
Accuracy

Median Counts
(IQR)a

Machine learned
Sitting 89 91 90 0 (0–17)
Sitting in vehicle 84 99 91 72 (21–177)
Walking 70 98 84 597 (231–1210)
Standing moving 66 94 79 268 (97–562)
Standing still 40 93 67 56 (3–252)

aCounts were not used as a feature in the algorithm but are provided here as count data are
commonly reported in traditional accelerometer studies as a metric of intensity. This
demonstrates that behaviors are occurring at lower intensities than would be identified by
traditional cut points (G100 for sedentary behavior; 1952 for moderate vigorous activity).

TABLE 4. Age and functioning predictors of algorithm performance (G80%) during the
400-m walk using GEE.

Beta
Coefficient SE P

Age j0.0232 0.0200 0.25
Gait speed during the 400-m walk j0.00437 0.44902 0.99
No. stops during the 400-m walk 0.1235 0.2758 0.654
Use of a walking aid 0.288 0.354 0.42
Fear of falling 0.00381 0.02007 0.8495
Short physical performance battery overall score j0.09403 0.05244 0.073
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could promote increased life space and ability to engage in
meaningful activities. Driving cessation is associated with
depression and poor health outcomes (5). However, it could
also substitute for time spent in more active pursuits and
could negatively affect health.

The classifiers developed and validated here could now be
applied to large samples of existing accelerometer data in older
women in which there is rich data on health outcomes. We can
then better understand whether intensity is more important or
whether total walking could be as associated with health out-
comes irrespective of intensity. With the recent surgeon gen-
eral"s Call to Action to Promote Walking, we can use
accelerometers to determine whether there are improvements in
walking behaviors because of public health interventions such
as sidewalk installations. Our previous studies have indicated
that the training sample and the type of training data are im-
portant predictors of algorithm performance (18). We, there-
fore, encourage use of algorithms that are appropriately
matched to testing and validation samples at this stage. Future
work may allow the development of an algorithm that is robust
across genders, ages, and body types.

Limitations of our study include that we only had gold
standard observational data available for walking and not for
other important behaviors for which we have developed algo-
rithms including driving, sitting, standing, running, and cycling.
Because participants could stop during the walk, not all time
may have been walking; however, we saw no effect of number
of stops on the algorithm performance. In the future, we plan to
compare machine-learned accelerometer algorithms for sitting

and standing in older adults to the field gold standard for pos-
ture (activPAL) measures. Ongoing work with the activPAL
as a ground truth will likely improve our estimates of standing
still. The features of roll-pitch and yaw angles of the direction
of acceleration were approximations because gyroscope or
magnetometer data were not available.

Our study strengths include the first demonstration of how
new algorithms can be developed outside of a laboratory or
prescriptive free-living setting and applied and externally
validated in a new sample. In addition, our focus on older
adults is important because they engage in physically active
behaviors at a range of intensities that are often far below the
most commonly used cut points for moderate-intensity
physical activity (8). Focusing on the identification of be-
haviors allows us to capture movements that are much more
common and could still have effects on health outcomes.
Furthermore, being able to recommend that older adults in-
crease the time they spend walking is much more under indi-
vidual control than recommending a certain level of activity
intensity, something which most of the public is likely unable
to clearly understand.

CONCLUSIONS

We found excellent sensitivity for identifying walking be-
haviors using accelerometer data in older adults. Furthermore,
we found high levels of concurrent validity with GPS for sed-
entary, vehicle, and walking time. Our algorithms are available
in R (https://cran.r-project.org/web/packages/TLBC/index.
html) to researchers who have interests in applications to
existing epidemiologic data sets in the validated age range.

Dr. Rosenberg was supported by K23HL119352. There are no
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